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Abstract

Background: Electrophysiological studies show that reductions in power within the alpha band are associated with
the Alzheimer’s disease (AD) continuum. Physical activity (PA) is a protective factor that has proved to reduce AD
risk and pathological brain burden. Previous research has confirmed that exercise increases power in the alpha
range. However, little is known regarding whether other non-modifiable risk factors for AD, such as increased age
or APOE ε4 carriage, alter the association between PA and power in the alpha band.

Methods: The relationship between PA and alpha band power was examined in a sample of 113 healthy adults
using magnetoencephalography. Additionally, we explored whether ε4 carriage and age modulate this association.
The correlations between alpha power and gray matter volumes and cognition were also investigated.

Results: We detected a parieto-occipital cluster in which PA positively correlated with alpha power. The association
between PA and alpha power remained following stratification of the cohort by genotype. Younger and older adults were
investigated separately, and only younger adults exhibited a positive relationship between PA and alpha power.
Interestingly, when four groups were created based on age (younger-older adult) and APOE (E3/E3-E3/E4), only younger E3/
E3 (least predicted risk) and older E3/E4 (greatest predicted risk) had associations between greater alpha power and higher
PA. Among older E3/E4, greater alpha power in these regions was associated with improved memory and preserved brain
structure.
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Conclusion: PA could protect against the slowing of brain activity that characterizes the AD continuum, where it is of
benefit for all individuals, especially E3/E4 older adults.
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Introduction
As life expectancy increases worldwide, we are witnes-
sing an increase in the prevalence of age-related diseases,
such as Alzheimer’s disease (AD) [61]. AD is a neurode-
generative disease of unknown etiology characterized by
progressive cognitive impairment that prevents the indi-
vidual from engaging in an active, independent life and
ultimately causes death [24, 62]. Although the clinical on-
set of AD usually occurs at 70 years on average [13],
strong evidence suggests that the underpinning neuro-
pathological process begins up to 20 years before the ap-
pearance of the first symptoms [4, 9, 35, 36]. AD is a
multifactorial disease that is influenced by a combination
of environmental and genetic factors, where age and the
carriage of the apolipoprotein E (APOE) ε4 allele are con-
sidered the greatest non-modifiable risk factors [19, 42].
Several neuroimaging techniques have been utilized to

investigate AD disease progression. This work has iden-
tified a slowing of background brain activity throughout
the AD continuum, mainly over occipital and parietal re-
gions, as measured through magnetoencephalography
(MEG) or electroencephalography (EEG) [1, 2, 49, 67].
More specifically, decreases in the peak and median fre-
quencies of the power spectrum have been consistently
described [18, 58], which is thought to be driven by both
an enhancement of low frequencies (2–8 Hz) and a de-
crease in high frequencies (8–45 Hz) [3, 55, 59, 60]. Par-
ticularly relevant is the activity within the alpha band
(8–12 Hz), which usually comprises the peak of the
power spectrum. Power in the alpha band has been the
focus of attention in many studies targeting different
stages of preclinical and prodromal AD, as well as clinic-
ally symptomatic AD. Alterations of this kind of activity
have been detected in asymptomatic ε4 carriers [25] and
in individuals with subjective cognitive decline (SCD)
[44] and mild cognitive impairment (MCI) [28], and cor-
relate with cognitive worsening. Power reduction in the
alpha band is thought to be the result of cumulative syn-
aptic damage, mostly of cholinergic connections, which
impedes the synchronization of activity at higher fre-
quencies [16, 55].
While there is currently no cure for AD, several life-

style factors have been identified to prevent or slow
down disease progression. Physical activity (PA) is one
of the most relevant protective factors within this field
of study [38, 77]. Several studies suggest that PA triggers
a series of neuroprotective mechanisms in the brain that

effectively reduce AD risk and neuropathological burden
[6, 17, 37, 42, 53]. Additionally, previous literature has
shown that both acute and chronic PA are associated
with higher peak frequencies and power in the alpha
band [25, 31, 39]. Less well-known is how risk factors
for AD, such as increased age and APOE ε4 carriage, in-
fluence this relationship. In this line, ε4 carriage has
been associated with lower age at onset and has a greater
impact on brain pathology at earlier disease stages [13,
75]. It is crucial to understand whether individuals who
are more likely to develop AD can also benefit from a
more active lifestyle. We have previously shown that
highly active older adults (age 60–80) present with
higher alpha peak frequencies, although this relationship
only existed among ε4 non-carriers [25].
In this study, we aim to provide a detailed

characterization of the relationship between PA and activ-
ity in the alpha band, and the role of age and APOE ε4
carriage as potential moderators of this relationship. With
that purpose, we will examine MEG recordings at rest
from a sample of younger (48–59 years) and older adults
(60+) with available objective measures of PA, classified as
APOE E3/E3 or E3/E4. Based on current literature, we
hypothesize that PA will be associated with higher power
in the alpha band in posterior brain regions. However, we
believe that E3/E4 carriage could determine the time win-
dow during which PA could more effectively impact brain
function, so that this relationship will be stronger in youn-
ger E3/E4, compared with older E3/E4.

Materials and methods
Participants
A sample of 262 individuals participated in a research
project aimed to study the neurophysiological features of
healthy and pathological aging, with a particular interest
in the recruitment of individuals at increased risk for
AD. Participants were invited to join the study from
local hospitals and associations and through several dis-
semination talks. A team of expert neuropsychologists
ensured that individuals willing to participate met inclu-
sion criteria. The list of exclusion criteria has been de-
tailed previously [25]. Participants were asked to provide
signed informed consent. The Institutional Review Board
Ethics Committee at Hospital Universitario San Carlos
approved the study protocol, and the procedure was per-
formed following the Helsinki Declaration and national
and European Union regulations.
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From the original cohort, we only included partici-
pants who had available and valid data regarding our
main variables of interest (n = 191; Mini-Mental State
Examination (MMSE) score, genetic information, and
validated magnetic resonance imaging (MRI), MEG,
and actigraphy data). Additionally, we excluded any-
one aged less than 45 years (n = 6), with an MMSE
score less than 26 (n = 7), or carrying less frequent
APOE genotypes (ε2ε2, n = 2; ε2ε3, n = 14; ε2ε4, n =
2; ε4ε4, n = 5). We focused on the comparison be-
tween individuals at standard genetic risk for AD
(ε3ε3) and individuals at increased genetic risk for
AD in heterozygosis (ε3ε4) since sample sizes were
insufficient to separately study the effects of ε2 car-
riage (linked to reduced risk of AD but increased risk
of type III hyperlipoproteinemia [75]) and ε4 carriage
in homozygosis. Nevertheless, excluded genotypes are
known to alter molecular and cellular dynamics [22,
75], which could potentially interfere with the neuro-
physiological response to exercise, and therefore, we
decided not to group together all ε4 carrying (ε2ε4,
ε3ε4, ε4ε4) and all ε4 non-carrying (ε2ε2, ε2ε3, ε3ε3)
genotypes. Also, participants aging less than 60 were
considered young adults (45–59) and those aging 60
and above were considered old adults (60–82). Ac-
cordingly, the remaining 155 participants were then
categorized into one of four groups: young E3/E4
(n = 30), old E3/E4 (n = 16), young E3/E3 (n = 61), and
old E3/E3 (n = 48). To ensure all groups were
matched with regard to PA levels, sex, educational
level, MMSE, and body mass index, a subset of par-
ticipants from each group were selected for inclusion:
young E3/E4 (n = 20), old E3/E4 (n = 16), young E3/E3
(n = 44), and old E3/E3 (n = 33). Additionally, we
made sure that genotype groups would match in age
(E3/E3 and E3/E4) and age groups would match in
the percentage of E3/E4 (younger adults and older
adults). Reasons to match the sample according to all
these relevant variables instead of using them as co-
variates in subsequent analyses have been reported
previously [14].
The final sample was composed of 113 healthy adults,

aged 48–82 years. A detailed list of the sample character-
istics can be found in Table 1, including scores extracted
from the neuropsychological tests: Geriatric Depression
Scale [76], the anxiety subscale from the Goldberg Anx-
iety and Depression Inventory [33], and the Digit Span
(an index was created using forward and backward
spans) and Logical Memory II (an index was created
using gist immediate and delayed recall) subscales from
the Weschler Adult Intelligence Scale IV (WAIS-IV,
[73]), as well as some potential confounding variables,
such as education, anxiety, depression, and body mass
index (BMI).

Physical activity measurement
An ActiGraph GT3X+ accelerometer (LLC, Pensacola,
FL) was provided to every participant, and they were re-
quested to wear the device on their right hip for 7
complete days. They were advised to only take the Acti-
Graph off during water-based activities [11, 12]. ActiLife
software (6.13.3) (LLC, Pensacola, FL) was used to clean
and process the acquired data. To meet validation cri-
teria, each individual should have worn the accelerom-
eter for a minimum of 10 h per day during at least 3
weekdays and 1 weekend day [11]. Non-wear time was
defined as ≥ 60 min of continuous zeroes, allowing for
up to 2 min of ≤ 100 counts [69]. For this study, we con-
sidered a standardized measure of total PA (TPA) vol-
umes calculated by ActiLife: Total Time In Freedson
Bouts. TPA was normalized by total wear time.

APOE genotyping
Genomic DNA was extracted from 10ml blood samples
in ethylenediaminetetraacetic acid (EDTA). TaqMan as-
says were used on an Applied Biosystems 7500 Fast Real
Time PCR machine (Applied Biosystems, Foster City,
CA) to determine single nucleotide polymorphisms
(SNPs) rs7412 and rs429358 genotypes and establish
APOE haplotypes accordingly. As mentioned above, only
ε3ε3 and ε3ε4 individuals were included in this study.

MRI acquisition and volumetric analyses
T1-weighted MRI images from each participant were
generated using a General Electric 1.5 T system and ap-
plying a high-resolution antenna and a homogenization
PURE filter (Fast Spoiled Gradient Echo sequence, TR/
TE/TI = 11.2/4.2/450 ms; flip angle 12°; 1 mm slice thick-
ness, 256 × 256 matrix, and FOV 25 cm). Freesurfer soft-
ware (version 6.1.0) was used for automated cortical
parcellation and subcortical segmentation [21]. The
measures that were included in further analyses were
total gray matter (GM), precuneal, and hippocampal vol-
umes (in mm3). The volumes of bilateral structures were
collapsed in order to obtain a single measure for each
region.

Magnetoencephalography
Neurophysiological data was acquired using a whole-
head Elekta-Neuromag MEG system with 306 channels
(Elekta AB, Stockholm, Sweden) at the Center for Bio-
medical Technology (Madrid, Spain). MEG data was col-
lected at a sampling frequency of 1000 Hz and online
band-pass filtered between 0.1 and 330 Hz.
All subjects underwent a 5-min eyes-closed resting-

state MEG recording while sitting comfortably inside of
a magnetically shielded room. They were requested to
stay awake and to minimize their body movements. Each
subject’s head shape was defined relative to three
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anatomical locations (nasion and bilateral preauricular
points) using a 3D digitizer (Fastrak, Polhemus, VT,
USA), and head motion was tracked through four head-
position indicator (HPI) coils attached to the scalp.
These HPI coils continuously monitored the subjects’
head movements, while eye movements were monitored
by a vertical electrooculogram assembly (EOG) com-
posed of a pair of bipolar electrodes. Raw recording data
was first introduced to Maxfilter software (v 2.2, correl-
ation threshold = 0.9, time window = 10 s) to remove ex-
ternal noise using the temporal extension of the signal
space separation method with movement compensation
[68]. Then, magnetometer data [27] was automatically
examined to detect ocular, muscle, and jump artifacts
using Fieldtrip software [54], which were visually con-
firmed by an MEG expert. The remaining artifact-free
data was sectioned into 4-s segments. Afterwards, inde-
pendent component analysis (ICA)-based procedure was
applied to remove heart magnetic field artifacts and

EOG components. Only those recordings with at least
20 clean segments (80 s of brain activity) were utilized in
subsequent analyses.
MEG clean time series were band-pass filtered (2 s

padding) between 2 and 45 Hz. Source reconstruction
was carried out using a regular grid of 1 cm spacing in
the Montreal Neurological Institute (MNI) template.
The resulting model comprised 2459 sources homoge-
neously distributed across the brain. This model was
linearly transformed to each subject’s space. The lead-
field was calculated using a single shell model [52].
Sources’ time series were reconstructed using a linearly
constrained minimum variance beamformer [71]. Power
spectrum of each grid’s node was computed by means of
fast Fourier transform using Hanning tapers with 0.25
Hz smoothing. For each node, relative power was calcu-
lated by normalizing by total power over the 1.5- to 45-
Hz range. Since power in the alpha band was the focus
of the study, only frequency steps (25 in total) within the

Table 1 Descriptive measures of the final sample

Variable Whole
sample

YOUNG34 (N =
20)

OLD34 (N =
16)

YOUNG33 (N =
44)

OLD33 (N =
33)

Group comparison

Sex (M; F) 31; 82 4; 16 3; 13 12; 32 12; 21 χ2(3, N = 113) = 2.484, p = 0.482

Age 59.92 ± 7.52 55.05 ± 2.76 66.56 ± 5.67 54.48 ± 2.9 66.91 ± 6.27 Y33 − Y34 : t(62) = − 0.749, p = 0.478
O33 − O34 : t(47) = 0.187, p = 0.853

Education 4.60 ± 0.62 4.55 ± 0.69 4.8 ± 0.41 4.64 ± 0.57 4.48 ± 0.71 F(3, 108) = 0.987, p = 0.402, η2 = 0.027

MMSE 29.16 ± 0.94 29.25 ± 0.97 29.25 ± 0.86 29.07 ± 0.87 29.18 ± 1.07 F(3, 109) = 0.250, p = 0.861, η2 = 0.007

Depression 1.29 ± 1.39 1.42 ± 1.64 1.27 ± 1.10 1.38 ± 1.41 1.10 ± 1.37 F(3, 100) = 0.288, p = 0.834, η2 = 0.009

Anxiety 1.82 ± 2.12 1.80 ± 2.19 2.11 ± 2.67 1.89 ± 2.14 1.63 ± 1.96 F(3, 96) = 0.140, p = 0.936, η2 = 0.004

BMI 24.98 ± 3.56 24.53 ± 2.74 24.42 ± 3.85 25.53 ± 4.16 24.76 ± 2.98 F(3, 107) = 0.613, p = 0.608, η2 = 0.017

Physical activity 0.012 ± 0.012 0.011 ± 0.010 0.010 ± 0.012 0.015 ± 0.013 0.011 ± 0.012 F(3, 108) = 1.006, p = 0.393, η2 = 0.027

Total gray matter (×
103)

5.73 ± 0.51 5.80 ± 0.40 5.48 ± 0.47 5.87 ± 0.55 5.62 ± 0.48 F(3, 107) = 3.193, p = 0.027, η2 =
0.082
Y33 −O33 (p = 0.028), Y33 −O34 (p =
0.009)

Precuneus (× 103) 8.46 ± 1.04 8.62 ± 1.06 8.10 ± 0.93 8.82 ± 1.13 8.05 ± 0.75 F(3,107) = 4.706, p = 0.004, η2 =
0.117
Y33 −O33 (p = 0.001), Y33 −O34 (p =
0.014)
Y34 −O33 (p = 0.046)

Hippocampus (×103) 3.71 ± 0.41 3.79 ± 0.39 3.44 ± 0.38 3.83 ± 0.38 3.63 ± 0.40 F(3,107) = 4.610, p = 0.004, η2 =
0.114
Y33 −O33 (p = 0.031), Y33 −O34 (p =
0.001)
Y34 −O33 (p = 0.009)

Episodic memory 24.28 ± 5.13 24.35 ± 4.97 23.09 ± 6.32 24.05 ± 4.78 25.16 ± 5.49 F(3, 96) = 0.466, p = 0.707, η2 = 0.014

Working memory 10.26 ± 2.10 10.37 ± 2.19 10.00 ± 2.31 10.20 ± 1.95 10.39 ± 2.21 F(3, 108) = 0.151, p = 0.929, η2 = 0.004

Mean values ± standard deviation were provided for sample characteristics as well as variables used for correlation analyses. These include the following: sex
(where M stands for male and F for female); age (in years); education (in terms of educational level on a 0—illiterate—to 5—postsecondary education—scale);
Mini-Mental State Examination (MMSE); anxiety (Goldberg’s test); depression (Geriatric Depression Scale); body mass index (BMI); total physical activity (TPA,
normalized by actigraphy wear time); total gray matter (GM), hippocampal, and precuneal volumes (bilateral average, in mm3); episodic memory (Logical Memory
II Index: immediate and delayed recall for gist); and working memory (Digit Span Index: direct and reverse). Results are displayed for the whole sample and also
for each subsample of interest (young E3/E4—Y34; old E3/E4—O34; young E3/E3—Y33; and old E3/E3—O33). Chi-squared test was calculated for sex, Student’s t
test to compare within age groups, and ANOVAs for the rest of the variables. When significant differences between groups were found, least significant difference
post hoc measures were calculated and significant p values are shown and marked in bold. No significant between-group differences arose across most
comparisons, except for GM volumes, where older groups presented smaller volumes

Frutos-Lucas et al. Alzheimer's Research & Therapy          (2020) 12:113 Page 4 of 12



interval [8–14 Hz] were considered for the analyses. The
source template with 2459 nodes in a 10-mm spacing
grid was segmented into 78 regions of the Automated
Anatomical Labeling atlas (AAL, [70]), excluding the
cerebellum, basal ganglia, thalamus, and olfactory corti-
ces. Those 78 regions of interest included 1202 of the
original 2459 nodes. Trials were averaged across subjects
ending up with a source-reconstructed power matrix of
1202 nodes × 25 frequency steps × 113 participants. This
final power matrix was employed in the correlation ana-
lysis (see below).

Statistical analyses
The aim of this study was the detection of any robust cor-
relation between power values derived from clusters of
nodes localized in certain brain regions and TPA. Such
analysis relied on network-based statistics (NBS) [23, 78].
Clusters were built according to a criterion of spatial and
frequency adjacency. Each cluster consisted of several ad-
jacent nodes, which systematically showed a significant
partial correlation (with age as covariate) in at least 3 con-
secutive frequency steps (a 0.75-Hz interval) between their
corresponding power values and TPA (Spearman correl-
ation p value < 0.01). Importantly, all nodes within a clus-
ter must have shown the same sign of the correlation
coefficient, thus indicating that the cluster might be
deemed as a functional unit. Only clusters involving at
least 1% of the nodes (i.e., a minimum of 12 nodes) in
each frequency step were considered. Cluster-mass statis-
tics were assessed through the sum of the Spearman rho
values across all nodes and significant frequency steps.
Then, to control for multiple comparisons, the entire

analysis pipeline was repeated 5000 times, shuffling the
correspondence between power estimates and TPA
across subjects. At each repetition, the maximum statis-
tic of the surrogate clusters (in absolute value) was kept
creating a maximal null distribution that would ensure
control of the family-wise error rate (FWER) at the clus-
ter level. Cluster-mass statistics on each cluster in the
original dataset were compared with the same measure
in the randomized data. The NBS p value represented
the proportion of the permutation distribution with
cluster-mass statistic values greater or equal than the
cluster-mass statistic value of the original data.
Power values were averaged across all nodes and fre-

quencies that belonged to the cluster. Such average was
considered as the representative power marker value for
that cluster, and further subjected to new correlation
analyses. Therefore, the statistics presented in the “Re-
sults” section derived from the correlation between the
averaged power value of each significant cluster and the
corresponding TPA for each participant. As it has been
mentioned above, correlations were first performed
within the whole sample. In a second step, correlations

between power and TPA scores were performed inde-
pendently for all subgroups within the sample (E3/E3,
E3/E4, younger adults, older adults, young E3/E3, young
E3/E4, old E3/E3, and old E3/E4). Additionally, moder-
ation analyses were carried out to study the possible in-
fluence exerted by either age (younger vs older adults)
or APOE (E3/E4 vs E3/E3) in the reported relationship
between average power and TPA. To this aim, we
employed multiple regression analysis and calculated the
increase in variance explained by our model after includ-
ing the interaction term in two separate models (i.e.,
APOE*TPA and age*TPA, model_1 and model_2 re-
spectively). These models used TPA and APOE (model_
1)/age (model_2) as predictors to linearly estimate aver-
age power in the significant cluster. In a second step, the
interaction term for each specific model was added
(TPA*APOE or TPA*age). The p value for this inter-
action term is interpreted as the moderating effect
significance.
Finally, average power values were correlated with

measures of memory performance (working an episodic
memory) and GM volumes (total gray matter, precu-
neus, and hippocampus), traits that are known to be af-
fected early in AD. These analyses were only carried out
for those subgroups showing a significant correlation be-
tween TPA and average power (the complete list is
shown in Table 2). Statistical analyses were carried out
using Matlab R2017a (Mathworks Inc).

Table 2 AAL ROIs that were partially captured by the significant
cluster

ROI Percentage of ROI occupied

Right precentral gyrus 88.89

Right postcentral gyrus 63.64

Left precuneus 67.86

Left middle occipital lobe 58.62

Right superior parietal gyrus 83.33

Left superior parietal gyrus 81.25

Right angular gyrus 72.22

Left postcentral gyrus 35.29

Right inferior parietal gyrus 100.00

Right superior frontal gyrus 25.81

Right precuneus 38.10

Right inferior frontal gyrus, opercular 46.15

Left superior occipital lobe 54.55

Right cingulate gyrus, middle part 33.33

Left cuneus 45.45

Right supramarginal gyrus 50.00

Listed are the regions of interest (ROIs) from the Automated Anatomical
Labeling (AAL) atlas that are part of the significant cluster where physical
activity correlates with power in the alpha band. It shows as well the
percentage of each ROI that is captured by that cluster
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Results
A significant cluster was found in the frequency interval
[10.75–13 Hz] mainly comprising posterior regions of
the brain (see Fig. 1a and Table 2). The power in all fre-
quencies of this interval positively correlated with TPA
across the whole sample (rho = 0.360, p < 0.0001). The
maximum cluster size was found at 11.75 Hz (220
nodes). The cluster size oscillates between a minimum
of 67 nodes at the beginning of the frequency range and
14 at the end of that frequency range (see Fig. 1b). 11.75
Hz showed the highest average correlation coefficient
value across all nodes of the cluster; rho = 0.3029.
The correlation between TPA and power in the [10.75–

13Hz] interval within the cluster generated in the previ-
ous step remained significant for both genotype groups
(E3/E3: rho = 0.326, p = 0.004; E3/E4: rho = 0.442, p =

0.007; see Fig. 1c) and for younger adults (rho = 0.456, p <
0.001), although not for older adults (rho = 0.234, p =
0.105; Fig. 1d). In this line, only the moderator effect of
age, but not that of E3/E4, was significant (respectively,
p = 0.030 and p = 0.923). When both factors were simul-
taneously considered, only young E3/E3 (rho = 0.487, p <
0.001) and old E3/E4 (rho = 0.603, p = 0.013) presented a
significant correlation (Fig. 1e). Importantly, there were
no significant differences in power in the [10.75–13Hz]
range among the four subgroups.
The average power value of the significant cluster was

used for new correlation analyses in younger E3/E3 and
older E3/E4. Alpha power in posterior brain regions corre-
lated with preserved brain structure and improved work-
ing and episodic memory, but only among older E3/E4.
The complete set of correlations is displayed in Table 3.

Fig. 1 Significant cluster at 10.75–13 Hz. The brain regions comprised within the significant cluster (depicted in red; a), the evolution of the
cluster size through the different frequency steps (b; maximum size at 11.75 Hz), and the scatter plots showing the correlation between the
cluster’s average power (AvgPow) and total physical activity (TPA) and each genotype subgroup of the sample (APOE ε4 carriers—APOE 34—and
non-carriers—APOE 33; c), each age group (younger and older adults; d), and all four subgroups (e)
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Discussion
The slowing of background brain activity, usually de-
fined as a shift to the left in the power spectrum, is a
consolidated marker of aging and brain disease which
has been used to monitor pathological progression along
the AD continuum. In this study, we aimed to
characterize the relationship between PA and activity in
the alpha band, and the role of age and APOE ε4 car-
riage as potential moderators of this relationship. In a
previous publication, we reported that greater self-
reported PA was significantly associated with greater
alpha peak frequencies in older adults. Moreover, we
were able to observe that such relationship remained sig-
nificant only among E3/E3, although the small sample
size in the E3/E4 group did not allow us to reach a def-
inite conclusion [25]. In this study, taking a different ap-
proach, we have been able to detect a positive
relationship between objectively measured PA (in terms
of total volume) and power in the alpha band in a cluster
comprising mainly occipital and parietal regions, which
are classic sources of this brain rhythm. More import-
antly, this effect persisted in both E3/E4 and E3/E3.
However, when we split the sample into younger and
older adults, only younger adults exhibited greater alpha
power at greater PA volumes. Interestingly, when we
further divided the sample considering both risk factors
combined (age and genotype), only young E3/E3 and old
E3/E4 showed the beneficial association with PA.
Late onset Alzheimer’s disease is a multifactorial dis-

ease, which means that different risk and protective, en-
vironmental, and genetic factors interact throughout the
lifespan to determine the likelihood that an individual
will develop the disease. PA has been well-established as
an important neuroprotective element that has the po-
tential to decrease AD risk and improve AD-related
neuropathological burden [6, 17, 53]. In fact, both
greater power in the alpha band and a more active

lifestyle have been reported to be associated to an indi-
vidual’s capacity to generate long-term potentiation-like
synaptic plasticity [65]. PA presents the advantage of be-
ing a modifiable lifestyle variable. Individuals can pur-
posefully increase their PA levels in order to improve
their health outcomes. On the other side, age and APOE
ε4 carriage are considered the two non-modifiable risk
factors for AD that have the greatest impact on the
probability that an individual will develop AD [19, 42].
For this reason, it is important to understand how these
elements interplay to shape brain structure and function.
As it has already been mentioned, increasing age is as-

sociated with greater risk for AD and lower power in the
alpha band at rest. Here, we report that the potentially
protective association between PA and greater alpha
power is stronger in younger adults (48–59 years). This
finding does not necessarily contradict the previous find-
ing showing that the alpha peak frequency at rest was
higher in highly active older adults. Both features (alpha
peak and alpha power) are closely related, and they are
affected by the same processes that cause the loss of
(mainly cholinergic) synapses [16, 51, 55]. Still, they re-
flect distinct aspects of the same phenomenon, which
could be differentially modulated by various external fac-
tors along the disease continuum. Power is highly influ-
enced by the number of simultaneously active synapses.
Even in the absence of brain disease, aging is character-
ized by a reduction in power in high frequencies [30].
Therefore, PA might not be able to increase power as ef-
fectively in older adults, due to neuronal damage inher-
ent to aging. However, it seems to still be able to exert a
positive effect, as reflected by a positive association with
the peak frequency. In fact, the power frequency range
we found to be associated with PA levels (10.75–13 Hz)
does not overlap with (it is higher than) the average
alpha peak previously reported for healthy adults [26].
Other studies, however, have reported that acute PA

(e.g., a single bout of aerobic exercise) has a greater ef-
fect on spectral measures [15] and cognitive outcomes
[8] in older adults, although Moraes et al. [48] only
found significant effects in young adults. The acute
neurophysiological response to PA, especially the en-
hancement of theta activity, is believed to serve a cogni-
tive function to overcome exercise-related cognitive
challenges [34]. In these studies, older individuals pre-
sented lower baseline power across different frequency
ranges (alpha, theta, and delta) than younger individuals.
The increase in power produced by acute PA, which im-
mediately reverts after exercise ceases [40, 41], was
greater in older individuals, while still not reaching the
power levels featured by younger participants. Therefore,
there seems to be more room for improvement among
older adults, which is promoted by acute PA. However,
habitual engagement in PA could possibly have greater

Table 3 Average power correlations

Variable OLD34 YOUNG33

N Rho p value n Rho p value

Total gray matter 16 0.624 0.012* 43 − 0.017 0.915

Precuneus 16 0.515 0.044* 42 0.117 0.460

Hippocampus 16 0.271 0.310 43 − 0.081 0.605

Episodic memory 11 0.881 < 0.001* 43 0.181 0.246

Working memory 16 0.587 0.017* 43 − 0.220 0.156

Results for the Spearman correlation analyses between average power in the
significant cluster and different measures of structural integrity and memory
performance, including total gray matter (GM), hippocampus, and precuneus volumes
(bilateral average, in mm3); episodic memory (Logical Memory II Index: immediate and
delayed recall for gist); and working memory (Digit Span Index: direct and reverse).
Correlation analyses were carried out for the two subgroups that showed a positive
relationship between physical activity and alpha power in the significant cluster: old
E3/E4—OLD34—and young E3/E3—YOUNG33. P values lower than 0,05 are indicated
with an asterisk and marked in bold. Only old E3/E4 presented an association
between alpha power and cognitive performance/GM volumes
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potential to constrain the slowing of background (rest-
ing) activity among younger individuals. Thus, it is rea-
sonable to suggest that the immediate and long-term
beneficial effects of PA in the brain could be mediated
by different mechanisms which might not be equally
prominent at different life stages. For example, different
neurotransmitters could be responsible for such diverse
effects, which in turn could possibly be differentially al-
tered in aging and disease [46, 48].
Alternatively, it is possible that with aging, there is a

shift from posterior to anterior background activity
sources. In fact, a few studies showing that alpha power
could increase in older adults with acute, habitual phys-
ical exercise or after an exercise-based intervention fo-
cused on frontal activity sources [10, 64, 72]. Here, when
we studied the effect of age, we focused on a cluster
comprising parieto-occipital brain regions where the re-
lationship between PA and alpha power was maximized
across the whole sample. Hence, it remains possible that
older adults present a weaker association limited to the
brain sources explored here. It is also important to bear
in mind that in previous studies, both the intensity and
the duration of acute exercise have been found to influ-
ence the specific neural response evoked [47, 74], which
could also explain certain differences across studies.
APOE ε4 carriage poses the greatest genetic risk factor

for AD. There is controversy in the field regarding
whether ε4 carriers and non-carriers benefit to the same
extent from PA engagement. Many studies conclude that
physical inactivity is particularly harmful for ε4 carriers
[5, 32, 45, 63, 66]. Yet, a considerable number of publi-
cations fail to find benefits among ε4 carriers, suggesting
that the presence of this allele could impair the mecha-
nisms through which PA exerts its action [7, 20, 56].
Nevertheless, these apparently conflicting results are a
consequence of the employment of different study de-
signs to evaluate a wide variety of outcomes. In the
present study, we were able to replicate the association
between PA and alpha power described for the sample
as a whole when looking separately at E3/E4 and E3/E3.
Although ε4 carriage can worsen cholinergic deficits
[57], which could explain previously reported alterations
in alpha activity, PA is equally associated with higher
alpha power regardless of genetic burden.
Here, we describe for the first time that only young

E3/E3 and old E3/E4 present a significant positive rela-
tionship between PA and alpha power. Such findings
contradict our original hypothesis that, in E3/E4, PA
would be associated with better outcomes at earlier
stages in life. We would have thought that the presence
of this risk allele would accelerate brain aging and path-
ology, hence bringing forward the time window during
which PA could perform its protective role. In this line,
in AD patients, age and APOE interactions had been

previously described, where cerebral glucose metabolism
disruption was steeper among carriers through the aging
process [50]. It seems though that PA in midlife is asso-
ciated with greater alpha power only among ε4 E3/E3.
One possible explanation is that the benefits of PA are
maximal in individuals at opposite ends of the risk
spectrum. On the one end, young individuals who do
not present increased genetic risk for AD are able to
generate a positive response to exercise, since the ma-
chinery that mediates these effects is in optimal condi-
tions. On the other end, old individuals at increased
genetic risk are at a more vulnerable position where
even the slightest changes could result in meaningful im-
provements. This is coherent with the idea that only in
this group power correlated with improved memory and
better-preserved brain structure. In other words, local
increases in alpha power in older ε4 E3/E4 could serve a
compensatory purpose. However, mean age in our sam-
ple, even in the older groups, was still below previously
reported mean age at disease onset [13]. Therefore, it is
possible that the beneficial effects that E3/E4s show in their
60s could be observable in E3/E3 at later stages that were
not covered within our age range (they might not need to ac-
tivate compensation mechanisms yet), when pathological
burden among E3/E4 might be too advanced to allow circuit
reorganization. More research is needed to fully elucidate the
processes that give rise to these seeming interactions be-
tween PA, age, and APOE genotype. In particular, it would
be interesting to increase the participants’ age range in future
studies. Including individuals in their 80s and 90s (when
greater damage is expected due to the aging process and also
the risk of AD is higher) would enable us to test whether
older E3/E3 show a significant relationship between PA and
power in the alpha band within the identified cluster. Also,
by including younger individuals in their 20s and 30s, we
could explore whether young E3/E4 show this effect before
the detrimental effects of APOE ε4 are more notorious. Add-
itionally, we plan to follow up this cohort every 3 years. Lon-
gitudinal changes within this same sample will provide
highly valuable information to understand the underpinnings
of the effects here reported.
The present study combines a series of strengths that

confer it a novel perspective. Accelerometers were used
to obtain objective estimates of PA, which were later
used as continuous measures, thus avoiding the loss of
statistical power that comes with the stratification in dif-
ferent PA levels. In this line, over-recruitment of E3/E4
enabled the careful examination of the interplay among
a series of modifiable and non-modifiable factors that
impact dementia risk. Age and genetic risk for AD were
considered separately and, for the first time, jointly as
potential limiting factors that could constrain the rela-
tionship between PA and synaptic function. In addition,
we used a completely data-driven methodology that
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enables the automatic delimitation of the spatial and fre-
quential dimensions of the clusters. Finally, brain activity
data was collected through MEG, which offers ample
temporal and spatial resolutions [43]. Remarkably, this
technique enables the measurement of synaptic activity,
which is early affected in the AD continuum and, as we
have discussed here, can be enhanced through PA.
Neurophysiological approaches (i.e., MEG and EEG) in
the study of AD characterization and prevention present
the advantage of being completely non-invasive tech-
niques that can easily be repeated over time. Therefore,
they offer great potential to be used in the process of
monitoring disease progression or assessing the impact
of different kinds of interventions.

Limitations
Overall, this study endeavors to deepen our understanding
of how PA could serve a protective role in the prevention
of AD, even in the presence of non-modifiable risk factors.
Still, numerous questions remain unanswered which fu-
ture studies should address. For example, the cross-
sectional nature of this study does not enable the estab-
lishment of a causal relationship between PA and brain
activity. Also, we did not include ε4ε4 homozygotes, due
to the small sample size of this group in our cohort, and
therefore, we could not explore dosage effects. In this line,
a greater sample size would have enabled us to perform a
three-way interaction analysis to properly asses the com-
bined moderating effect of APOE and age on PA. Finally,
although objective measures of PA suppose an improve-
ment with respect to self-reported PA in terms of preci-
sion, they do not reflect individual levels of exertion [29],
which are more closely related to the physiological re-
sponse to exercise [37].

Conclusions
The current study provides new insights and builds on
previous literature on the APOE ε4 modulation of the
neural effects of PA. In particular, this study provides
evidence that age should be considered in the attempt to
disentangle seemingly mixed results from earlier investi-
gations. Our results show, for the first time, that only
young E3/E3 and old E3/E4 carriers present a significant
positive relationship between PA and alpha power and
that, in the latter group, such higher alpha power is also
associated with better memory performance and GM
preservation. Above all, this study highlights the import-
ance of implementing public policies that promote phys-
ical activity in midlife and late life.
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