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Abstract

Background: Microarray gene expression data are accumulating in public databases. The expression profiles
contain valuable information for understanding human gene expression patterns. However, the effective use of
public microarray data requires integrating the expression profiles from heterogeneous sources.

Results: In this study, we have compiled a compendium of microarray expression profiles of various human tissue
samples. The microarray raw data generated in different research laboratories have been obtained and combined
into a single dataset after data normalization and transformation. To demonstrate the usefulness of the integrated
microarray data for studying human gene expression patterns, we have analyzed the dataset to identify potential
tissue-selective genes. A new method has been proposed for genome-wide identification of tissue-selective gene
targets using both microarray intensity values and detection calls. The candidate genes for brain, liver and testis-
selective expression have been examined, and the results suggest that our approach can select some interesting
gene targets for further experimental studies.

Conclusion: A computational approach has been developed in this study for combining microarray expression
profiles from heterogeneous sources. The integrated microarray data can be used to investigate tissue-selective
expression patterns of human genes.

Background
There are many different types of cells in the human
body, and similar cells group together to form a tissue
with a specialized function. Multiple tissues constitute
an organ such as brain, heart or liver. Gene expression
variation is the primary determinant of tissue identity
and function. Certain genes are expressed specifically or
preferentially in a particular tissue. These genes are
broadly called tissue-selective genes [1]. Note that tissue
specificity is regarded as a special case of tissue selectiv-
ity, and tissue-specific genes are expressed only in a par-
ticular tissue. It is a fundamental question in biology to
understand how selective gene expression underlies

tissue development and function. Moreover, tissue-selec-
tive genes are implicated in many complex human dis-
eases [2], and identification of these genes may provide
valuable information for developing novel biomarkers
and drug targets [1].
Tissue-selective expression was traditionally studied at

the single-gene level with time-consuming techniques
such as Northern blot and in situ hybridization. With
the recent development of high-throughput technolo-
gies, biologists can perform genome-wide gene expres-
sion profiling in various tissues. These high-throughput
technologies include Expressed Sequence Tag (EST)
sequencing, Serial Analysis of Gene Expression (SAGE),
and DNA microarrays. Yu et al. [3] analyzed the NCBI
EST database (dbEST) to select a set of human genes
that are preferentially expressed in a tissue of interest.
The selection was based on the expression enrichment
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score, which was defined as the ratio between observed
and expected number of ESTs for a gene. For the
selected tissue-selective genes, regulatory modules were
detected by examining the promoter motifs and their
relationships with transcription factors. However, EST
data are generated mainly for transcript sequence infor-
mation, and EST counts can only be used as rough esti-
mates of gene expression levels. Siu et al. [4]
investigated gene expression patterns in different regions
of the human brain by using SAGE, and identified some
brain region-selective genes. Kouadjo et al. [5] also used
the SAGE strategy to identify housekeeping and tissue-
selective genes in fifteen mouse tissues. While SAGE tag
counts can provide reliable estimation of gene expres-
sion, it is rather inefficient and expensive to use SAGE
for profiling a large number of tissue samples with bio-
logical replicates.
The DNA microarray technology has been widely used

to simultaneously profile the levels of thousands of
mRNA transcripts in various tissues, and may hold great
promise for elucidating the molecular mechanisms of
complex human diseases. Many microarray datasets
have been generated for identifying disease-associated
biomarkers, classifying disease types, and predicting
treatment outcomes. However, only a few microarray
studies were designed to investigate human tissue-selec-
tive gene expression. Su et al. [6] used custom oligonu-
cleotide arrays to examine the expression patterns of
predicted genes across a panel of human and mouse tis-
sues. The NCBI Gene Expression Omnibus (GEO at
http://www.ncbi.nlm.nih.gov/geo/) has an Affymetrix
microarray dataset for human body index of gene
expression (GEO accession: GSE7307). Since each indi-
vidual dataset does not contain a large number of
expression profiles of various tissues, computational
methods may be used to integrate the gene expression
data from different microarray studies. Greco et al. [7]
investigated tissue-selective expression patterns with an
integrated dataset of microarray profiles publicly avail-
able at the GEO database. The relatively small dataset
contained 195 expression profiles from six different
microarray studies. The results suggested that gene
expression data from Affymetrix GeneChip experiments
could be integrated through pre-processing raw data
(CEL files) with commonly used methods.
In this study, we have compiled a compendium of

2,968 microarray expression profiles of various human
tissues from the NCBI GEO database. These expression
profiles have been selected from 131 microarray datasets
generated at different laboratories. Our data integration
approach includes microarray data normalization, trans-
formation, and quality control. The integrated data have
been used to identify brain, liver and testis-selective
genes using a new computational method based on both

microarray hybridization intensities and detection calls.
The results further suggest that the publicly available
microarray expression profiles from heterogeneous
sources can be integrated into a single dataset for exam-
ining gene expression patterns across various tissues.

Methods
Collection and curation of microarray gene expression
profiles
Human microarray gene expression data are accumulat-
ing in public databases. These expression profiles have
been generated for various research objectives, and
show significant variations in data quality. To compile a
compendium of high-quality microarray profiles for
studying gene expression patterns, we manually curated
the human microarray data publicly available in the
NCBI GEO database (as of November 3, 2009). The fol-
lowing criteria were used to select microarray expression
profiles in this study. First, the profiles had to be gener-
ated using the Affymetrix HG-U133 Plus 2.0 Array, a
platform for complete coverage of the human genome
with 54,675 probe sets. This array platform was used by
the majority of human gene expression profiles depos-
ited in the GEO database. Second, a detailed description
of the microarray profiling study and raw data in CEL
file format was available. The description contained
important information about a microarray sample (e.g.,
tissue source, clinical condition, treatment, etc). Third,
the expression profiles had to be obtained using normal
tissue samples. Microarray profiles of cancer cells or dis-
eased tissues were excluded from selection. Fourth, the
tissue sample used for microarray profiling should not
be cultured in vitro or treated with any drugs before
RNA extraction. No expression profiles of primary or
secondary cell cultures were selected for this study.
By following the above criteria, we compiled 3,030

microarray gene expression profiles across a variety of
human tissues (Table 1). The number of selected profiles
varied among tissues, depending on data availability. An
attempt was made to include as many tissues as possible,
even though some tissues had only a few expression pro-
files available in the GEO database. Nevertheless, some tis-
sues had a relatively large number of expression profiles,
and were thus particularly suited for identifying tissue-
selective genes. For instance, there were 645 brain gene
expression profiles (616 profiles after data quality control).
These expression profiles were obtained from various
regions of postmortem brain such as entorhinal cortex,
hippocampus and cerebellum, and could be used to iden-
tify genes specifically expressed in neurons.

Microarray data normalization and integration
Microarray raw data in CEL file format were down-
loaded from the GEO database, and then normalized by
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using the dChip software (available at http://www.dchip.
org). As a widely used tool for microarray data analysis,
dChip can display and normalize CEL files with a
model-based approach [8]. For a given group of CEL
files, dChip can be used to calculate the model-based
expression values and make the qualitative detection
calls for each array. The detection call (Present, Mar-
ginal or Absent) provides a statistical assessment about
whether the perfect matches (PMs) show significantly
more hybridization signal than the corresponding mis-
matches (MMs) in a probe set. Since the detection call
and expression level are computed in different ways, a
gene transcript with an Absent call may still be given an
expression value (although usually low).

One challenging task in this study was to combine the
expression profiles of various tissue types and from dif-
ferent microarray studies into a single integrated dataset.
As outlined in Figure 1, our approach included the fol-
lowing steps. First, the selected microarray CEL files
were organized into different normalization groups, each
of which contained expression profiles of the same or
similar tissue type. For example, one normalization
group was consisted of 117 liver microarray profiles,
whereas another group contained 112 expression pro-
files of six endocrine glands, including pituitary gland
(12 profiles), thyroid gland (16 profiles), parathyroid
gland (1 profile), thymus gland (2 profiles), adrenal
gland (25 profiles) and pancreas (56 profiles). Within a
normalization group, the variation of tissue type was
thus minimized although the expression profiles were
nevertheless obtained from different microarray studies.
Second, each group of microarray profiles was normal-

ized by using the invariant set method [9]. For each nor-
malization group, the expression profile with median
overall intensity was chosen as the baseline array, against
which the other profiles were normalized at probe inten-
sity level. A subset of PM probes with small rank differ-
ence between the profile to be normalized and the
baseline array were chosen as the invariant set for fitting a
normalization curve. The normalization transformation
was then performed for all the probes in the profile based
on the curve [9]. While the invariant set normalization
method could reduce the variation in microarray profiles

Table 1 List of human tissues and microarray expression
profiles

Tissue # of profiles
selected

# of profiles
integrated

Brain (various regions) 645 616

Pituitary gland 12 12

Thyroid gland 16 9

Adrenal gland 25 25

Pancreas 56 55

Skeletal muscle 122 109

Skin 101 101

Adipose tissue 80 80

Retina 12 12

Gingiva 71 71

Salivary gland 18 18

Tongue 22 20

Stomach 51 51

Small intestine 59 59

Colon 107 105

Liver 117 117

Kidney 73 73

Breast 132 132

Ovary 61 59

Uterus 117 117

Placenta 56 56

Umbilical cord 54 54

Testis 36 36

Prostate 58 58

Nasal epithelium 31 31

Airway epithelium 89 89

Lung 66 66

Alveolar macrophage 88 87

Heart 31 31

Tonsil 13 13

Lymph node 14 14

Blood (various cell
types)

413 409

Other tissues 184 183

Figure 1 Schematic diagram of microarray data normalization and
integration.
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from different studies, it might not be applied to an
expression dataset with various tissue types. Owing to the
biological variation of gene expression across different tis-
sues, a baseline array should be used to normalize the
microarray profiles of each tissue type (or similar tissues).
Finally, the normalized microarray profiles were inte-

grated into a single dataset after outlier array exclusion
and global median transformation. When fitting the sta-
tistical model to a probe set, dChip used an outlier detec-
tion algorithm to identify array-outliers whose response
pattern for the probe set was significantly different from
the consensus probe response pattern in the other arrays
[8]. After the model was fitted for all probe sets, the per-
centage of probe sets detected as array-outliers was cal-
culated for each array. If the percentage exceeded 15%,
the array was discarded as an outlier array. In this study,
only 62 outlier arrays were detected for all the 3,030
selected expression profiles (Table 1). Global median
transformation was then applied to the remaining pro-
files. Each expression value in a profile was divided by
the profile’s median value. The transformation was
necessary because the expression profiles from different
normalization groups often had different median values.
Thus, the integrated dataset had 2,968 expression profiles
with the same median value (i.e., 1.00).

Genome-wide identification of tissue-selective genes
In this study, a new computational method has been
designed to analyze the integrated microarray data for

identifying tissue-selective genes, which refers to the
genes specifically or preferentially expressed in a parti-
cular tissue. The computational task is not trivial for the
following reasons. First, the expression profiles have
been compiled from various studies, in which tissues at
different ages and in different conditions were used for
microarray profiling. Thus, the microarray profiles of
the same tissue type should not be considered as biolo-
gical replicates. Second, some tissue-selective genes can
be expressed at certain developmental stages or in speci-
fic conditions, and their expression may not be consis-
tently detected in all the microarray profiles of a tissue
type. Third, microarray data are inherently noisy. It was
thus desired that both the expression values and detec-
tion calls of microarray profiles can be utilized for tis-
sue-selective gene identification.
Figure 2 illustrates our approach for genome-wide

identification of tissue-selective genes. First, for a given
tissue type t, the microarray expression profiles are
divided into two sets: experiment set and control set.
The experiment set contains the expression profiles of
tissue type t, and the control set has the expression pro-
files of the other tissue types. The experiment set
usually has fewer microarray profiles than the control
set. For example, to identify brain-selective genes in this
study, the experiment set contained 616 expression pro-
files, whereas the control set had 2,352 expression pro-
files of the other tissue types such as liver, kidney,
muscle, skin, etc.

Figure 2 Schematic diagram of microarray data analysis for genome-wide identification of tissue-selective genes.
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Second, all the human genes (array probe sets) are
examined for significant expression in the microarray
profiles. The term “significant expression” in this study
is used to describe gene expression data that meet the
following two criteria: (1) the detection call is Present;
and (2) the expression value is no less than a threshold
θ (θ ≥ 0). Since there are no negative values in a micro-
array profile, significant expression would be solely
defined by the detection call if θ = 0. For each probe
set, the number of significant expression in the experi-
ment set (Se) and that in the control set (Sc) are calcu-
lated. Genes that have Se ≥ min and Sc ≤ max are
selected for further analyses. The threshold min is used
to specify the minimum number of significant expres-
sion that should be detected in the experiment set. Con-
sidering the noise in microarray data, significant
expression may also be detected in the control set, but
the number Sc should not exceed max (maximum num-
ber of significant expression). The threshold max is set
to 0 if no observation of significant expression is
allowed in the control set. For a tissue-selective gene, its
frequency of significant expression should be higher in
the experiment set than in the control set. Score1 is cal-
culated as follows:

Score
S N

S N
e e

c c

1 10= log (1)

where Ne is the total number of expression profiles in
the experiment set, and Nc is the total number of
expression profiles in the control set.
Third, for each selected probe set, its expression level

in the experiment set is compared with that in the con-
trol set. Our assumption is that potential tissue-selective
genes should show higher expression in the experiment
arrays than in the control arrays. Score2 is calculated as
follows:

Score
X

X
e

c

2 10= log (2)

where Xe is the mean expression level of the selected
probe set in the Se experiment arrays with significant
expression, and Xc is the mean expression level in con-
trol arrays. In this study, the control arrays were sorted
according to their expression values for the selected
probe set, and the top Se control arrays with the highest
expression values were used to compute the mean, Xc .
The probe sets with Score2 ≤ 0 were excluded from con-
sideration for tissue-selective genes.
Finally, the potential tissue-selective gene targets are

prioritized according to the overall score, which is calcu-
lated as follows:

Priority Score w Score w Score= × + ×1 21 2 (3)

where w1 and w2 are two weights for Score1 and
Score2, respectively. In this study, w1 = 1 and w2 = 1
were used to calculate the priority score for each
selected probe set. Moreover, the statistical significance
of the tissue-selective expression pattern was evaluated
by the permutation analysis. The hybridization signals of
a probe set, including its expression values and detec-
tion calls, were permuted, and then divided into the
experiment and control set to calculate the priority
score. After one million permutations were performed
for each selected probe set, the significance level (p-
value) was calculated as the fraction of permutations
that gave rise to scores greater than or equal to the
actual priority score of the probe set. The p-value thus
provided an estimation of the probability for observing
the tissue-selective expression pattern by chance.

Results and discussion
A compendium of 2,968 expression profiles of various
human tissues have been compiled from 131 microarray
studies. These expression profiles have been combined
into a single dataset after global normalization, and then
used for the genome-wide analysis of tissue-selective
gene expression. Although the analysis can be per-
formed for any tissues with available microarray data
(Table 1), we present in this paper the results from
three case studies on brain, liver and testis-selective
gene expression.

Brain-selective gene expression
The human brain is highly complex, and contains 50-
100 billion neurons. There are many different brain
regions with specific functions. For example, the frontal
lobe is involved in higher mental functions and long-
term memories, whereas the occipital lobe is the visual
processing center. In this study, the microarray expres-
sion profiles of different brain regions were combined
into the experiment set (616 profiles), and compared
with the expression profiles of non-brain tissues in the
control set (2,352 profiles). Thus, the brain-selective
genes identified in this study might be involved in basic
neuron functions such as neural signal processing and
transmission via synapses (complex membrane junctions
between neurons).
Table 2 shows the top 20 high-scoring genes from one

of the analyses with different parameter settings. In this
analysis, significant expression was defined by the detec-
tion call being Present and the relative expression value
no less than 1.00 (array median value). The minimum
number of significant expression in the experiment
group (min) was set to 62 (~10% of experiment arrays),
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and the maximum number of significant expression in
the control group (max) was set to 24 (~1% of control
arrays). With the above parameters, 222 genes have
been identified as brain-selective targets with the prior-
ity score ranging from 1.18 to 4.69 (see Additional file
1). The permutation analysis suggests that the brain-
selective expression patterns of all the selected genes are
statistically significant (p < 0.000001). In Figure 3, the
gene expression patterns are visualized with the heat
map generated by using TM4 MeV [10]. Clearly, the
transcripts of the selected genes are predominantly
detected in brain samples.

Perhaps more importantly, many genes identified in this
study have been previously suggested to be expressed
specifically or preferentially in the brain. These genes
include GRIN1, MBP, LGI3, MOG, NTSR2, GFAP,
CNTN2, PCDHGC5, CABP1, GABRD, MOBP and
GABRA1 (Table 2). The protein encoded by the GRIN1
gene is a critical subunit of the glutamate receptor chan-
nel, and plays a key role in the plasticity of synapses
underlying memory and learning [11]. Genetic altera-
tions in GRIN1 have been shown to be associated with
Alzheimer’s disease [12] and bipolar disorder [13]. In
this study, GRIN1 has the highest priority score with

Table 2 List of high-scoring genes with selective expression in the brain1

Probe Gene Description Se Sc X Xe c Score

205914_s GRIN1 Glutamate receptor, ionotropic, N-methyl D-aspartate 1 284 0 4.54 4.69

236324 MBP Myelin basic protein 211 0 5.13 4.62

238061 LGI3 Leucine-rich repeat LGI family gene 3 536 1 14.77 4.48

205989_s MOG Myelin oligodendrocyte glycoprotein 569 2 24.03 4.42

206899 NTSR2 Neurotensin receptor 2 380 1 16.49 4.38

203540 GFAP Glial fibrillary acidic protein 604 14 115.10 4.28

244113 - cDNA sequence (GB: R44603) 595 3 24.55 4.27

231489_x - cDNA sequence (GB: H12214) 551 18 94.24 4.04

206970 CNTN2 Contactin 2 (axonal) 407 1 6.67 4.02

224536_s PCDHGC5 Protocadherin gamma subfamily C, 5 68 0 3.37 3.94

1556877 - cDNA sequence (GB: BC040662) 364 1 5.48 3.88

235375_x TTC9B Tetratricopeptide repeat domain 9B 408 3 13.64 3.85

208320 CABP1 Calcium binding protein 1 365 5 18.23 3.71

230255 GABRD GABA-A receptor subunit delta 451 8 23.42 3.70

235794 MOBP Myelin-associated oligodendrocyte basic protein 596 12 25.64 3.69

206678 GABRA1 GABA-A receptor subunit alpha 1 532 15 35.05 3.68

233471 PTPN5 Protein tyrosine phosphatase, non-receptor type 5 350 2 5.52 3.57

1557481_a C21orf131 Chromosome 21 open reading frame 131 474 3 5.92 3.55

219642_s PEX5L Peroxisomal biogenesis factor 5-like 415 6 12.91 3.53

232409_x FBXL16 F-box and leucine-rich repeat protein 16 227 3 11.70 3.53
1 The number of significant expression in the experiment set (Se) and that in the control set (Sc) are shown together with the ratio of the mean expression level
in the experiment arrays to the level in the control arrays ( X Xe c ).

Figure 3 Visualization of tissue-selective gene expression patterns. The normalized expression values were transformed by logarithm (base 10),
and each microarray profile had the median value of zero.
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significant expression in 284 brain samples but none in
the other tissues (Table 2). GABRD and GABRA1
encode two subunits of the GABA-A receptor, which
binds the major inhibitory neurotransmitter GABA in
the brain [14]. GABA-A receptors are chloride channels
that regulate membrane potential, and play structural
roles in synapse maturation and stabilization. LGI3
encodes a leucine-rich repeat protein involved in the
regulation of neuronal exocytosis [15]. CABP1 is a neu-
ron-specific member of the calmodulin superfamily, and
modulates Ca2+-dependent activity of inositol 1, 4, 5-tri-
sphosphate receptors [16]. Both CNTN2 and PCDHGC5
encode immunoglobulin-like proteins important for the
establishment and function of neural connections in the
brain [17,18]. In addition, MBP, MOG and MOBP
encode constituents of the myelin sheath of oligoden-
drocytes, and GFAP encodes an intermediate filament
protein of mature astrocytes in the central nervous
system.
However, the expression and function of many other

genes selected by the above analysis have not been well
documented in the literature. For example, the TTC9B
protein contains the tetratricopeptide repeat domain,
and is conserved in other mammals, but its function in
the brain is still unclear. In this study, the TTC9B gene
shows significant expression in 408 out of 616 brain
samples (Table 2). By contrast, in only 3 out of 2,352
control samples, significant expression is detected.
Moreover, the mean expression level of TTC9B in the
brain samples is 13.64-fold higher than that in the other
tissues. As shown in Table 2, brain-selective expression
patterns have also been demonstrated for four other
genes (PTPN5, C21orf131, PEX5L and FBXL16) and
three cDNA sequences (R44603, H12214 and
BC040662), even though their functions in the brain
remain to be characterized. The three sequences were
obtained from brain cDNA libraries, but their corre-
sponding genes were not determined. Altogether, the
results suggest that the approach developed in this study
can be used to not only confirm the brain-selective
expression of some known genes, but also identify inter-
esting targets for further experimental studies.

Liver-selective gene expression
The liver plays a key role in metabolism, and its func-
tions include plasma protein synthesis, detoxification,
and production of bile necessary for digestion. To iden-
tify liver-selective genes, the microarray data were
grouped into the experiment set consisting of 117 liver
expression profiles and the control set containing 2,851
profiles of non-liver tissues. The parameters for the ana-
lysis are as follows: θ = 1.00 (array median value), min =
23 (~20% of liver arrays), and max = 29 (~1% of control
arrays), where θ is the relative intensity threshold for

significant expression, min is the minimum number of
significant expression in the experiment set, and max is
the maximum number of significant expression in the
control set. There are 69 gene targets identified for
potential liver-selective expression, and the priority
score ranges from 1.64 to 5.88 (see Additional file 2).
Based on the permutation analysis, the liver-selective
expression patterns of all the selected genes are statisti-
cally significant (p < 0.000001). The expression patterns
of these genes are shown in Figure 3.
Interestingly, 17 of the top 20 high-scoring genes

listed in Table 3 are previously known to be expressed
predominantly in the liver. In particular, nine genes
(MASP2, CFHR5, CFHR3, CRP, SERPINC1, F2, CFHR4,
APOA5 and MBL2) are highly expressed in the liver,
and their protein products are secreted to blood plasma.
MASP2, CFHR5, CFHR3, CRP, CFHR4 and MBL2 play
important roles in the innate immune defense against
pathogens [19]. SERPINC1 and F2 are involved in regu-
lating the blood coagulation cascade [20]. APOA5
encodes an apolipoprotein important for the regulation
of plasma triglyceride level, a major risk factor for cor-
onary artery disease [21]. Six of the known liver-selec-
tive genes encode metabolic enzymes involved in
cholesterol catabolism and bile acid biosynthesis
(CYP7A1), the urea cycle (ARG1), glyoxylate detoxifica-
tion (AGXT), and the oxidation of alcohols (ADH4) and
other compounds (CYP2C8 and HAO1). In addition,
HGFAC encodes a peptidase involved in hepatocyte
growth factor activation, and C14orf68 encodes a liver-
specific mitochondrial carrier protein. The other three
high-scoring genes (SLC17A2, ASPG and TDO2) have
not been previously shown to be expressed preferentially
in the liver.

Testis-selective gene expression
When compared with brain and liver tissues, many
other tissues have fewer number of microarray expres-
sion profiles available (Table 1). The microarray dataset
has only 36 expression profiles of the testis, which pro-
duces sperm and male sex hormones. To identify testis-
selective genes, these 36 expression profiles (experiment
set) were compared with 2,932 microarray profiles of
non-testis tissues (control set) by using the following
parameters: θ = 1.00 (array median value), min = 7
(~20% of testis arrays), and max = 29 (~1% of control
arrays). The analysis resulted in 581 gene targets with
the priority score ranging from 1.35 to 6.05 (see Addi-
tional file 3). The testis-selective expression patterns of
these targets were found to be statistically significant by
permutation testing (p < 0.000001). Figure 3 shows the
expression patterns of the testis-selective gene targets.
As listed in Table 4, the top 20 high-scoring targets

include five known testis-selective genes (C9orf11,
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Table 3 List of high-scoring genes with selective expression in the liver1

Probe Gene Description Se Sc X Xe c Score

210798_x MASP2 Mannan-binding lectin serine peptidase 2 116 0 26.61 5.88

208088_s CFHR5 Complement factor H-related 5 110 1 95.56 5.41

1554459_s CFHR3 Complement factor H-related 3 116 5 103.31 4.77

37020 CRP C-reactive protein, pentraxin-related 110 18 228.26 4.53

210049 SERPINC1 Serpin peptidase inhibitor, clade C, 1 117 18 213.02 4.53

205754 F2 Coagulation factor II (thrombin) 117 13 135.57 4.47

207406 CYP7A1 Cytochrome P450, 7A1 56 1 19.52 4.43

207097_s SLC17A2 Solute carrier family 17, member 2 117 6 45.67 4.34

207874_s CFHR4 Complement factor H-related 4 115 18 138.54 4.33

207027 HGFAC HGF activator 112 4 22.37 4.18

220224 HAO1 Hydroxyacid oxidase 1 117 18 86.38 4.14

231703_s ADH4 Alcohol dehydrogenase 4 (class II), pi 89 3 18.26 4.12

224243 APOA5 Apolipoprotein A-V 109 3 14.26 4.10

207256 MBL2 Mannose-binding lectin 2, soluble 117 18 74.97 4.07

219903_s CYP2C8 Cytochrome P450, 2C8 61 1 7.03 4.02

1557226_a ASPG Similar to asparaginase 95 2 8.27 3.98

231702 TDO2 Tryptophan 2,3-dioxygenase 84 3 13.10 3.95

231662 ARG1 Arginase, liver 102 14 40.21 3.85

210326 AGXT Alanine-glyoxylate aminotransferase 117 8 14.95 3.73

237765 C14orf68 Chromosome 14 open reading frame 68 117 13 23.52 3.71
1 The number of significant expression in the experiment set (Se) and that in the control set (Sc) are shown together with the ratio of the mean expression level
in the experiment arrays to the level in the control arrays ( X Xe c ).

Table 4 List of high-scoring genes with selective expression in the testis1

Probe Gene Description Se Sc X Xe c Score

1554981 C9orf11 Chromosome 9 open reading frame 11 19 0 71.87 6.05

207736_s TNP2 Transition protein 2 (histone to protamine) 18 0 52.45 5.89

231563 - cDNA sequence (GB: BF508261) 19 0 49.40 5.88

237319 C2orf53 Chromosome 2 open reading frame 53 14 0 36.33 5.62

1552395 TSSK3 Testis-specific serine kinase 3 17 0 22.10 5.49

1562864 - cDNA sequence (GB: BC033504) 15 0 22.90 5.45

243494 - cDNA sequence (GB: AI204633) 19 0 15.59 5.38

243143 FAM24A Family with sequence similarity 24, A 18 0 15.27 5.35

231362 - cDNA sequence (GB: AI423933) 19 0 14.14 5.34

1560494_a CPXCR1 CPX chromosome region, candidate 1 17 0 14.38 5.30

236661 IQCF6 IQ motif containing F6 18 0 12.53 5.26

220498 ACTL7B Actin-like 7B 18 0 11.49 5.23

1556740 - cDNA sequence (GB: AA398245) 12 0 16.70 5.21

1554368 NT5C1B 5’-nucleotidase, cytosolic IB 19 1 99.85 5.19

241527 - cDNA sequence (GB: AI799028) 16 0 11.57 5.18

1561704 - cDNA sequence (GB: BC041892) 11 0 16.40 5.17

241518 - cDNA sequence (GB: AA428659) 11 0 16.11 5.16

242925 RNF148 Ring finger protein 148 19 1 91.88 5.15

1554855 PARK2 E3 ubiquitin-protein ligase parkin 10 0 16.74 5.13

1556207_a - cDNA sequence (GB: BC035261) 17 0 8.65 5.08
1 The number of significant expression in the experiment set (Se) and that in the control set (Sc) are shown together with the ratio of the mean expression level
in the experiment arrays to the level in the control arrays ( X Xe c ).
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TNP2, TSSK3, ACTL7B and NT5C1B). The C9orf11
gene encodes a vesicle membrane protein involved in
the biogenesis of acrosome, a cap-like structure that
covers the anterior half of the head in the spermatozoa
[22]. TNP2 encodes a chromosomal transition protein
for the conversion of nucleosomal chromatin to the
compact form found in the sperm nucleus [23]. TSSK3
encodes a protein kinase expressed exclusively in the
testis, and may be involved in signal transduction during
male germ cell development or mature sperm function
[24]. ACTL7B and NT5C1B are expressed preferentially
in the testis, but their exact functions are still unknown.
The other high-scoring targets have not been pre-

viously shown to be testis-selective genes. PARK2 is
known to be expressed in the brain, and mutations in
this gene cause Parkinson disease [25]. The results from
this study suggest that the highest expression of PARK2
appears to occur in the testis (Table 4). There are five
other genes (C2orf53, FAM24A, CPXCR1, IQCF6 and
RNF148) whose expression and function in the testis
have not been well documented in the literature. In
addition, the high-scoring targets include nine cDNA
sequences. Interestingly, all the sequences except
BC033504 and AI423933 were obtained from testis
cDNA libraries (BC033504 from a brain library and
AI423933 from a glioblastoma library). Considering the
relative small sample size of testis expression profiles, it
is uncertain whether all the selected probe sets represent
true testis-selective genes. However, the targets with
high priority scores should provide a good starting point
for experimental studies on testis-selective gene expres-
sion and function.

Conclusion
A comprehensive microarray dataset has been compiled
in this study for genome-wide analysis of human tissue-
selective gene expression. The dataset contains 2,968
expression profiles of various normal tissues from 131
microarray studies. A new computational method has
been designed to identify tissue-selective genes using
both microarray intensity values and detection calls. To
demonstrate that the integrated microarray data can be
used to investigate human gene expression patterns, we
have examined the lists of potential brain, liver and tes-
tis-selective genes. Notably, many of the high-scoring
targets are actually known tissue-selective genes, sug-
gesting that the approach developed in this study works
effectively. Furthermore, the approach can be used to
identify some interesting targets with tissue-selective
expression patterns. These targets may be used for
further experimental studies on human gene expression
and function.

Additional file 1: List of brain-selective gene targetsList of brain-
selective gene targets. The full list of potential brain-selective genes
identified in this study.

Additional file 2: List of liver-selective gene targetsList of liver-
selective gene targets. The full list of potential liver-selective genes
identified in this study.

Additional file 3: List of testis-selective gene targetsList of testis-
selective gene targets. The full list of potential testis-selective genes
identified in this study.
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