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Abstract: The angle-retaining color space (ARC) and the corresponding chromaticity diagram encode
information following a cylindrical color model. Their main property is that angular distances in
RGB are mapped into Euclidean distances in the ARC chromatic components, making the color
space suitable for data representation in the domain of color constancy. In this paper, we present
an in-depth analysis of various properties of ARC: we document the variations in the numerical
precisions of two alternative formulations of the ARC-to-RGB transformation and characterize how
various perturbations in RGB impact the ARC representation. This was done empirically for the ARC
diagram in a direct comparison against other commonly used chromaticity diagrams, and analytically
for the ARC space with respect to its three components. We conclude by describing the color space in
terms of perceptual uniformity, suggesting the need for new perceptual color metrics.

Keywords: color space; chromaticity diagram; angular error; color invariants; explainability

1. Introduction

A color space can be defined as “a geometric construct in which points that represent
colors (or color stimuli) are arranged according to some principle” [1]. Such principles
are typically driven by the application purpose of the color space itself. For example, the
separation of an intensity-like component from the chromatic components is a key element
in image compression, enhancement, and analysis. In the case of image compression, the
JPEG algorithm and the corresponding JFIF file interchange format support and encourage
using the Y’CbCr color space, so that the chromatic channels Cb and Cr can be encoded at
a lower resolution, leveraging on the reduced sensitivity of the human eye to color details.
The same principle is applied within the high-efficiency video coding (HEVC), also known
as H.265. For image enhancement, Tang et al. [2] proposed a diffusion-based algorithm that
decomposes the input image into its chromaticity and brightness components, which are
subsequently processed using two distinct and dedicated approaches. Similarly, Vazquez-
Corral et al. [3] approached image denoising with a color-sensitive decomposition of the
input color information. Regarding image analysis, Li et al. [4] defined the quantized
diagnostic counter-color pattern (QDCP): a novel rotation-invariant texture descriptor used
in combination with local binary patterns [5] to identify and model chromatic similarity.

The separation of chromatic and intensity components was also proven to be useful
in the visualization and analysis of information related to illuminant estimation and com-
putational color constancy, with the definition of the angle-retaining color space [6] and
angle-retaining chromaticity diagram [7] (called ARC space and ARC diagram for short).
Computational color constancy is a discipline that aims to reduce the color cast of the
dominant light source in a digital image, mimicking a similar mechanism observed in the
human visual system. It is often addressed as a two-stage process: illuminant estimation
and illuminant correction (also referred to as chromatic adaptation), which are evaluated
against a ground truth illuminant. When such ground truth is provided in the form of
a red–green–blue (RGB) triplet, the recovery angular error [8,9] is used to quantify the
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angular distance between the estimated illuminant V = (vR, vG, vB) and the ground truth
illuminant U = (uR, uG, uB):

errrec = arccos
(

U ·V
|U||V|

)
= arccos

 ∑i uivi√
∑i u2

i

√
∑i v2

i

 (1)

Similarly, the reproduction angular error [10] is used to quantify the illuminant correc-
tion based on the same two elements:

errrep = arccos

 U
V
· (1, 1, 1)

|U
V
|
√

3

 = arccos


∑i

ui
vi√

∑i
u2

i
v2

i

√
3

 (2)

By representing illuminants as three-dimensional vectors and focusing on their angular
distances, the recovery and reproduction errors effectively consider only the “difference”
in illuminant chromaticity, disregarding the different intensities, which are not considered
relevant for the chromatic characterization of light sources. This formulation is known to
have a low correlation with human perception, as corroborated later on in Section 5, but it
offers a straightforward tool to efficiently compute color differences.

It should be noted that computational color constancy, its evaluation, and related data
visualization, are typically performed in a device-specific RAW-RGB color space [11] and
derivative chromaticity diagrams. Such chromaticity diagrams are typically based on a
normalization of the three RGB components, as in the case of the ratio [12,13], uv [11,14–16],
and rg [16–22] diagrams, or on geometric transformations, such as the Maxwell trian-
gle [23]. These will be presented in detail in Section 3. Alternative representations of
color information involve physiologically-inspired color spaces, such as CIE XYZ [24] and
its two-dimensional chromaticity counterpart known as CIE xy, and its derivations CIE
L*u*v* and CIE L*a*b* [25], which are aimed at better perceptual uniformity and are often
used in industrial applications for faithful color reproduction, or even the Munsell color
order system [26]. Given our focus on computational color constancy in digital images, we
compare ARC against RGB-derived chromaticity diagrams. In Section 5, we will also refer
to the Munsell system to provide a perceptual characterization of the presented ARC space.

Angular-based error metrics are the established de facto standards in computational
color constancy. The ARC diagram, and by extension the ARC space, was designed to
characterize the input RGB information by representing the chromatic components so that
angular distances in RGB are retained as Euclidean distances. As a result, visual inspection
of color constancy data (such as error distributions) will not be biased by distortions in
the underlying data representation. For example, when plotting reproduction errors in
the ARC diagram, it is possible to have a direct impression of the error distribution for
different chromaticities, proportional to their actual roles in the overall angle-based error
evaluation. This cannot be achieved with other diagrams that introduce various distortions,
as shown in [7]. Additionally, ARC allows performing analyses and operations that were
originally designed for Euclidean spaces, in the context of angular distances. For example,
when describing the distribution of illuminants in video sequences, Buzzelli et al. [27] used
a metric of two-dimensional scatteredness called standard distance [28] on ARC diagram
coordinates, effectively embedding angular distances in this characterization. This would
not have been possible by directly computing the standard distance in RGB coordinates, as
Euclidean distances in a 3D space are not well correlated with angular distances. In [7], the
diagram was originally defined and applied to the comparison of color constancy datasets
and methods. In [6], its expansion as a full-fledged color space was explored in terms of
its potential application to the fields of image enhancement and classification based on
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texture analysis. Adding to the previous research, in this paper, we provide a novel formal
characterization of the ARC chromaticity diagram and color space. Specifically:

1. We compare two alternative formulations of the conversion from ARC to RGB, based
on different geometric interpretations: a first formulation described in the original
introduction of the ARC space [6], and a second formulation derived from a work by
Chen et al. [29] on the definition of a spherical color space. Specifically for this paper,
we characterize the two formulations in terms of precision in numerical representation.

2. We characterize how small perturbations in the original RGB triplets map as changes
in various chromaticity diagrams. A similar analysis was originally conducted in [7],
providing a shape description of the local distortions introduced with chromaticity rep-
resentations. In contrast, here we instead describe the intensity of such deformations,
formulated with a novel approach. This information is both presented qualitatively
with intuitive representations, as well as quantified numerically.

3. We present an analytical study on the invariance of each component of the ARC space
to various perturbations in the input RGB triplets as related to different changes in
environmental illumination conditions. This analysis borrows existing definitions of
light transformations [30], and provides an entirely original mathematical derivation.

4. We explore the perceptual properties of the ARC space by referring to the standard
Munsell hue data, and propose a direction for improvement in future works. Previous
works related to ARC did not provide any study or insight into its relationship with phys-
iological data, which can be considered important for color reproduction applications.

2. Angle-Retaining Chromaticity and Color Space
2.1. RGB-to-ARC Transformation

Buzzelli et al. [7] defined the angle retaining chromaticity diagram as a two-dimensional
(2D) representation of color information, disregarding the intensity. A complete three-
dimensional (3D) angle-retaining color space is then defined in [6]. The resulting three
components are:

αA = arctan 2
(√

3(G− B), 2R− G− B
)

(3)

αR = arccos
(

R + G + B√
3
√

R2 + G2 + B2

)
(4)

αZ =
√

R2 + G2 + B2 (5)

The transformation from RGB to ARC space can be interpreted geometrically by
referring to Figure 1, in terms of operations applied to the RGB gamut cube:

1. The RGB cube is rotated so that the neutral gray axis becomes the new vertical axis, and
so that the pure green vertex is positioned in the 3D octant of the resulting coordinate
system having negative x, and positive y and z. The representation is also brought
from Cartesian coordinates into polar coordinates (e.g., ρ, θ, φ).

2. For the 2D ARC diagram, the radial distance ρ is intentionally dropped, to discard
the intensity information. The authors in [7] show that this operation corresponds
to expanding all RGB points to the surface of a sphere with the center in the origin
and flattening such a sphere by following an equidistant projection, which preserves
the great-circle distances with respect to the point of neutral grays. This guarantees
the main properties that angular distances in RGB are retained as Euclidean distances
in ARC.

3. For the 3D ARC space, the spherical polar coordinates are reinterpreted as cylindrical
polar coordinates, and if necessary brought into Cartesian coordinates. As shown by
the authors [6], this guarantees that the angle-retaining property of ARC is maintained
for each “horizontal slice” of the 3D space (i.e., by ignoring the third dimension when
computing Euclidean distances).
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Figure 2 depicts a chamomile flower (in the middle center), modified by shifting its
αA and αR ARC chromaticity values. In this particular example, reducing αR has the effect
of desaturating the yellow petals to the point of being white, while changing αA introduces
an overall hue shift.

Figure 1. Geometric interpretation of the RGB-to-ARC conversion. Step 1 applies a rotation and a
change in the coordinate system. Step 2 provides the transformation into the 2D ARC diagram. Step 3
provides the transformation into the 3D ARC space.

Figure 2. Visualization of how modifying ARC chromatic components αA and αR impacts the
reconstructed RGB image. Original image in the middle center.

2.2. ARC-to-RGB Transformation

Inverting the transformation from 3D ARC to RGB can be achieved with two alter-
native formulations, each presenting a unique intuition about the underlying geometric
transformations.

Buzzelli et al. [6] derived the inversion by describing the 3D ARC point as the intersec-
tion between:

• A half-plane in the RGB space that hinges on the neutral axis, with an orientation
depending on the value of αA.

• An infinite cone with its vertex in the RGB origin, and its axis corresponding to the
neutral axis. The aperture of this cone is directly related to the value of αR.

• A sphere having its center in the RGB origin, and radius equivalent to αZ.

The correspondence between the aforementioned geometric surfaces and the ARC
components are visualized in Figure 3.
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Figure 3. Correspondence between ARC components αA, αR, αZ, and the surface in the ARC and
RGB space that each component identifies.

This formulation leads to expressing R, G, and B as:

R =
kR√

k2
R + k2

G + k2
B

αZ (6)

G =
kG√

k2
R + k2

G + k2
B

αZ (7)

B =
kB√

k2
R + k2

G + k2
B

αZ, (8)

where kR, kG, and kB describe the Cartesian relationship between αA and αR:

kR = |3sgn(αA)sgn(c)
√
(c2 − c + 1)d +

(
c2 − c− 2

)
d− (c2 − c + 1)| (9)

kG = |
(

c2 + 2c + 1
)

d−
(

c2 − c + 1
)
| (10)

kB = |3sgn(αA)
√

c2(c2 − c + 1)d−
(

2c2 + c− 1
)

d− (c2 − c + 1)|. (11)

These expressions are, in turn, based on the half-plane and cone parameters c and d:

c =
2
√

3√
3− 3 cot(αA)

(12)

d =
tan(αR)

2

2
(13)

This formulation, based on the intersection of three independent surfaces, provides a
visual interpretation that can be useful in studying invariant properties (transformations
of the color triplet that are restricted to either of these surfaces). Such a study on color
transformation invariance is presented in Section 4.

A second (alternative) inversion can be derived based on the work by Chen et al. [29]
on the definition of a spherical color space. Here, the inverse transformation can be seen as
direct backtracking of the geometric passages illustrated in Figure 1:

1. Transformation from the polar coordinates to Cartesian coordinates.
2. Inverse rotation of the three axes.

This yields:

R =

√
6

3
cos αA sin αRαZ +

1√
3

cos αRαZ (14)
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G = − 1√
6

cos αA sin αRαZ +
1√
2

sin αA sin αRαZ +
1√
3

cos αRαZ (15)

B = − 1√
6

cos αA sin αRαZ −
1√
2

sin αA sin αRαZ +
1√
3

cos αRαZ (16)

In order to verify the effectiveness, in terms of numerical accuracy, of the two ap-
proaches, we sampled a set of random RGB points, converted them into ARC space follow-
ing Equations (3)–(5), and then inverted the resulting point back into RGB by following
either the formulation based on surface intersection [6], or the one based on the rotation
of polar coordinates [29]. The input and reconstructed RGB points should, ideally, be
identical. The results are reported in Figure 4, visualizing the correlation between input and
reconstructed values (each color component taken individually), as well as their error distri-
butions in terms of root mean square error (RMSE). By quantifying the two correlations in
terms of Pearson linear coefficient, we obtain, respectively, 0.9994 and 1.0000. Both suggest
a robust numerical representation; however, it can be observed how the formulation based
on the surface intersection introduces sparse occurrences of large errors, which can be
traced to extremely saturated input colors. Although such colors are rarely encountered
in the application domain of computational color constancy, for the sake of generality, the
formulation based on the rotation of the polar coordinates appears superior, and it is now
adopted in the official code implementation of the ARC space [31].

Figure 4. Comparison between ARC-to-RGB inversion based on surface intersection [6] (left), and
the rotation of the polar coordinates [29] (right). The top row shows the correlation between the
input and reconstruction, measured in terms of the Pearson linear coefficient, respectively, as 0.9994
and 1.0000. The bottom row shows the details of the error distribution: note the difference in the
horizontal scale.

3. Properties of the 2D ARC Diagram

We present an analysis of the properties related to the 2D ARC diagram, by selecting—
as a benchmark for comparison—a number of alternative chromaticity diagrams, which
are typically used as visualization aids or as representation spaces for color-related image
processing. These are visualized in Figure 5, displaying the equivalent of the RGB gamut in
each diagram.
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1. “ARC”’s axes are here labeled as αX and αY in reference to the Cartesian coordinate
version of αA and αR. The ARC diagram has been used for pure data visualization
purposes [32,33] and data representation purposes, to exploit angular distances in
operations originally designed for Euclidean distances [27,34].

2. The “ratio” is obtained by normalizing two color components for a third one (in
the example, R/G and B/G). This representation was used to represent chromaticity
histograms for illuminant estimation [12], and to present the INTEL-TUT dataset for
camera-invariant color constancy [13].

3. “uv” is computed as the logarithm of the ratios from the previous diagram, as a
measure to partially constrain its domain. It was introduced in [14], and used to
encode color information in various color constancy methods [11,15,16], and again for
data presentation [35].

4. “rg“ is obtained by dividing two color components (R and G in the example) by the
sum of all three. It is often used due to its simplicity in data visualization [16–20] as
well as representation for illuminant estimation [21,22].

5. “Maxwell” is computed by projecting the three components onto a plane perpendicular
to the neutral axis. It is named in reference to the pioneering works on color by James
Clerk Maxwell [23].

6. “HSV” refers to the traditional hue–saturation–value color space, from which we
consider the chromatic components hue and saturation. Although not typically used
in the domain of color constancy, we chose to include it for comparison due to its
conceptual similarity to ARC.

Specifically, we are interested in characterizing how small perturbations in the original
RGB point, which could be produced by arbitrary physical phenomena impacting the
starting illuminant, map as changes in a given chromaticity diagram. Ideally, variations
of the same intensity in different areas of the RGB cube should produce the same effect in
terms of chromaticity changes. This property would guarantee the absence of distortions in
data representation as introduced by the chosen chromaticity diagram. However, it should
be noted that a perfect match is not possible due to the implied dimensionality reduction
from three to two components, as discussed in [7]. The results are illustrated in Figure 6.

Figure 5. RGB gamut as displayed in different chromaticity diagrams.

The relationship between RGB and chromaticity distortion can be formulated as:

distdiag,{r,g,b}(G, G, B) =
errrec

(
[R G B] ·M{r,g,b}(+ε), [R G B] ·M{r,g,b}(−ε)

)
eud

(
diag

(
[R G B] ·M{r,g,b}(+ε)

)
, diag

(
[R G B] ·M{r,g,b}(−ε)

)) , (17)
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where diag identifies the chromaticity diagram and the multiplication of the input point
[R G B] by matrices M{r,g,b} realizes a rotation around either color axis, according to:

Mr(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

, (18)

Mg(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

, (19)

Mb(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

. (20)

The numerator in Equation (17) computes the angular error between the two RGB
points following Equation (1), whereas the denominator measures the Euclidean distance
between the two resulting 2D chromaticities:

eud(U, V) =
√

∑
i
(ui − vi)2. (21)

In Figure 6, we visually illustrate the application of Equation (17) to all RGB points
lying on the outer shell of the RGB cube. The group of three columns on the left shows
the effect of distortion (matrix multiplication) on each individual R, G, and B channel. For
visualization, all values are normalized (divided) with respect to the following factor:

normdiag,{r,g,b} =
distdiag,{r,g,b}(1, 1, 1)

2
(22)

This operation has two effects:

1. The distortion of each diagram is normalized for its distortion level in the case of a
neutral gray, in order to remove a global bias related to different orders of magnitude.

2. The normalization allows observing, at a glance, the differences in distortion impacts
across different diagrams.

In this sense, a strong distortion is visualized with values tending towards black or
white, whereas gray indicates little or no distortion. For example, while ARC is reasonably
flat, the ratio diagram in the immediate next row shows a strong distortion towards the
bottom left corner, concerning the impact of R and G variations. The same information is
quantified and reported in Table 1 in terms of the standard deviation of each distribution,
for which a lower value implies less variation in the distortion. Reflecting what can be
visually appreciated, the ARC diagram presents the lowest variability, followed by the
Maxwell triangle and the rg diagram. The largest variation in distortion is introduced
instead by the ratio chromaticity diagram, where the division by one color component
introduces a strong non-linear dependence for that component itself.

The last column of Figure 6 presents once again a visualization of Equation (17), this
time normalized for the min–max of each channel–diagram pair, with all three channels
combined into one. In this case, the image is supposed to qualitatively convey the informa-
tion about the type of chromatic distortions, regardless of their magnitude. For example,
the uv and Maxwell diagrams introduce distortions directly correlated to the input red,
green, and blue variations. Conversely, all other diagrams introduce distortions that result
from a combination of the modified axes, such as cyan magenta and yellow.
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Figure 6. Visual representation of how perturbations on various RGB points map as changes in
different chromaticity diagrams. The first three columns present three distortions independently
(rotation of R, G, and B), for which flat values close to gray indicate better stability. The last column
combines the three pieces of information for a qualitative evaluation of the strongest color distortions.
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Table 1. Standard deviation of the ratio between distortion in RGB space and distortion in chromatic-
ity, for different chromaticity diagrams and considering different distortions (rotations around the R,
G, or B axis). A lower value is better. The average column is supported by ranking information.

Chromaticity Diagram St. Dev. (R) St. Dev. (G) St. Dev. (B) St. Dev.
(Average)

ARC 0.0103 0.0103 0.0103 0.0103(1)
ratio 0.3945 0.3945 0.2245 0.3378(6)
uv 0.1630 0.1630 0.1658 0.1639(5)
rg 0.0769 0.0769 0.0556 0.0698(3)
Maxwell 0.0609 0.0609 0.0609 0.0609(2)
HS (HSV) 0.1193 0.1193 0.1193 0.1193(4)

4. Properties of 3D ARC Space

We investigated properties related to the 3D ARC space. Specifically, given a pair
(α∗, f ), defining an ARC component α∗, and a transformation f on the input RGB point,
we intend to determine whether the following equation holds:

ARCα∗([R G B]) = ARCα∗( f ([R G B])) (23)

In geometric terms, this means verifying whether a given transformation of the input
RGB triplet introduces a change that keeps the point, respectively:

• On the surface of the half-plane in the RGB space, whose equation is defined by αA.
• On the surface of the infinite cone in the RGB space, whose equation is defined by αR.
• On the surface of the sphere of the RGB space, whose equation is defined by αZ.

We refer the reader to Section 2.2 and Figure 3 for the correspondence between ARC
components and surfaces. We consider (as transformations ( f )) the light variations de-
scribed by van de Sande et al. [30], as these can be traced back to specific variations in
the lighting conditions. Ideally, if we know how individual variations in the environment
lighting affect each component of the data representation, we could define descriptors and
formulate analyses with known properties of invariance. Combinations of ARC compo-
nents and transformations are reported in Table 2.

Table 2. Invariant properties of each ARC component αA, αR, αZ, with respect to various transforma-
tions in light conditions.

ARC
Component

Light Intensity
Changea 0 0

0 a 0
0 0 a

R
G
B


Light Intensity

ShiftR
G
B

+

o1
o1
o1


Light Intensity

Change and Shifta 0 0
0 a 0
0 0 a

R
G
B

+

o1
o1
o1


Light Color

Changea 0 0
0 b 0
0 0 c

R
G
B


Light Color

Change and Shifta 0 0
0 b 0
0 0 c

R
G
B

+

o1
o2
o3


αA (Hue-like) Invariant Invariant Invariant Conditional Conditional
αR (Saturation-like) Invariant Not invariant Not invariant Conditional Conditional
αZ (Intensity-like) Not invariant Not invariant Conditional Conditional Conditional

The definition of Conditional invariance is here formulated as: “there exist non-trivial
solutions that involve a mutual compensation of simultaneous distortion elements”. For
example, with respect to the “Light intensity change and shift” transformation described
later on (where the input RGB triplet is multiplied by a scalar a and then summed by
offset o1) it is possible to define a value of o1 as a function of R, G, B, and a, such that it
compensates the effect of a in the intensity component αZ. By non-trivial solution, we mean
that we exclude scalar a = 1 and offset o1 = 0.

In the following, we provide an overview of each transformation presented in Table 2.
We refer the reader to Appendix A for the derivation of the stated invariance of each
component/transformation pair.
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4.1. Light Intensity Change

Described by the expression: a 0 0
0 a 0
0 0 a

R
G
B

, (24)

it can be associated with the effects of achromatic shadows and shading phenomena, or, in
other terms, lighting geometry changes [30]. By construction, the chromatic components of
ARC (αA and αR) are invariant to this transformation, which corresponds to a pixel value
being made brighter or darker. For the same motivation, the intensity component αZ cannot
be invariant to this transformation.

4.2. Light Intensity Shift

Described by the expression: R
G
B

+

o1
o1
o1

, (25)

this transformation is defined as capturing the behavior of diffuse lighting, object high-
lights, mutual inter-reflections between objects, as well as the impact of infrared sensitivity
observed in certain imaging sensors [30]. The hue-like component αA can be shown to be
fully invariant to this type of transformation. Conversely, the saturation component αR and
intensity component αZ only admit a conditional invariance that would require negative
RGB values, effectively resulting in being non-invariant.

4.3. Light Intensity Change and Shift

Described by the transformation:a 0 0
0 a 0
0 0 a

R
G
B

+

o1
o1
o1

, (26)

this is a combination of the transformations described in Equations (24) and (25). In general,
when both sub-transformations produce an invariant, so will their combination, whereas
the lack of invariance from either sub-transformation implies the same non-invariance for
their combination. However, by referring to the provided definition of the conditional
invariance, it can be shown that αZ can be preserved under a “light intensity change and
shift” transformation, as long as the offset o1 cancels out the effect of scalar a, which can be
achieved following this relationship:

o1 =
1
3

(
±
√
(3− 2a2)B2 + 2a2B(G + R) + (3− 2a2)G2 + 2a2GR + (3− 2a2)R2 − a(B + G + R)

)
(27)

4.4. Light Color Change

Described by the transformation:a 0 0
0 b 0
0 0 c

R
G
B

, (28)

this is equivalent to the von Kries-like transform [36] that is often used in the domain of
computational color constancy to model the illuminant correction phase. Although known
to be suboptimal and unable to fully handle metameric effects [37], the von Kries transform
is commonly adopted due to its simple formulation. In its general form, the transformation
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from Equation (28) prevents invariance for all ARC components. However, conditional
invariance can be achieved by formulating scalar c as a function of the other scalars, a and b.
Specifically, conditional invariance for αA is given by:

c =
− 2
√

3aR(B−G)
B+G−2R +

√
3bG(B−G)
B+G−2R +

√
3bG

√
3B−

√
3B(B−G)

B+G−2R

(29)

Conditional invariance for αR is given by:

c =
±
√

B2(−2aR−2bG)2−4B2
(

(B+G+R)2

B2+G2+R2−1
)(

a2R2(B+G+R)2

B2+G2+R2 −a2R2−2abGR+ b2G2(B+G+R)2

B2+G2+R2 −b2G2
)
−B(−2aR−2bG)

2B2
(

(B+G+R)2

B2+G2+R2−1
) (30)

Finally, conditional invariance for αZ is given by:

c =

√
−a2R2 − b2G2 + B2 + G2 + R2

B
(31)

4.5. Light Color Change and Shift

Described by the transformation:a 0 0
0 b 0
0 0 c

R
G
B

+

o1
o2
o3

, (32)

this is the most general transformation considered in this paper, combining the von Kries-
like transform from Equation (28) with a colored offset. Geometrically, it is equivalent to
an affine transformation applied to the RGB coordinates. The transformation inherits the
conditional invariant properties relative to Equation (28), in addition to specific constraints
for the offsets o1, o2, and o3. Conditional invariance for αA is given by:

o3 =
−Bo1 + Bo2 + Go1 − o2R

G− R
(33)

Conditional invariance for αz is given by:

o3 = ±
√

B2 − o2(2G + o2)− o2
1 − 2o1R− B (34)

Given its simple formulation, conditional invariance for αZ can also be directly ex-
pressed without decomposition between scalars a, b, c, and offsets o1, o2, o3 as:

o3 = ±
√
−a2R2 − 2ao1R− b2G2 − 2bGo2 + B2 + G2 − o2

1 − o2
2 + R2 − Bc (35)

As a general comment, while the invariance properties related to “Light intensity
change” could be considered trivial, resulting from construction, the “Light intensity shift”
and “Light intensity change and shift” invariance for αA are important pieces of infor-
mation to characterize the response of the ARC representation to these types of changes
in the lighting conditions. Understanding the mechanics of how light influences data
representation, and its subsequent processing in, for example, color constancy, constitutes a
step towards the concept of explainable artificial intelligence, where each building block is
thoroughly characterized instead of being considered a black box. In terms of conditional
invariance, the emerged properties open the possibility for specific illumination conditions
to not impact one or more ARC components. What is described here only in terms of math-
ematical relationships could be further analyzed in the future with the aid of visualization
techniques in order to provide intuitive interpretations and practical applications.
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5. ARC Properties Related to Human Perception

We conclude with a preliminary investigation of the properties of the ARC space and
diagram relative to human perception. We approach this analysis by considering hue lines
from the Munsell Color Order System [26], and observing how they appear in ARC.

We consider the “renotation” colors from a large-scale visual experiment performed in
1943 with observers across several continents [38]. These include patches annotated in terms
of Munsell hue (40 possible hues), Munsell value (values from 1 to 9), and Munsell chroma
(from 2 to 26), for a total of 1625 patches. These are converted into CIE xyY chromaticity
coordinates using illuminant C and the CIE 1931 2-degree observer and eventually brought
into sRGB assuming a D65 illuminant [39]. Finally, the sRGB coordinates are converted into
ARC following Equations (3)–(5).

We define two experiments, as shown in Figure 7:

1. We select all patches with intermediate Munsell value = 5; therefore, varying the
Munsell hue and Munsell chroma, and plotting them in the ARC diagram, connecting
patches relative to the same Munsell hue group. The resulting plot, shown in Figure 7
(left) with 40 hues radiating from the center, is not composed of straight lines, especially
for highly-saturated purple, red, and lime areas. This implies that moving in the
direction defined by the αR component does not guarantee perceived hue invariance.

2. We select all patches with intermediate Munsell chroma = 8; therefore, varying the
Munsell hue and Munsell value, and once again plotting them in ARC and grouping
the points by the Munsell hue. The result, shown in Figure 7 (right), is equivalent to
plotting the information in the 3D arc space and then observing the data from the “top
view”, i.e., neglecting the intensity component. In addition to the already commented
upon the effect of hue instability, it can be observed that the Munsell value does not
correspond to the ARC intensity component: each Munsell hue group in fact appears
as radiating from the center, instead of being composed of overlapping points.

Figure 7. Visualization of Munsell patches converted from sRGB to ARC diagram, grouped by the
Munsell hue. On the left: patches having Munsell value = 5. On the right: patches having Munsell
chroma = 8. The underlying colors of the ARC diagram have been reduced in contrast for better
visualization of the Munsell datapoints.

Generally speaking, the observed mismatch between Munsell coordinates and ARC
components implies that the ARC representation does not natively offer properties of
perceptual uniformity when used to encode sRGB data. Given the tight relationship between
the ARC representation and angular errors, this experiment also reflects the underlying
gap between simple angle-based metrics and human-perceived differences. Therefore, we
hypothesize that it is not possible to enforce perceptual uniformity while also preserving
the angle-retaining properties that characterize ARC. We argue that there is an advantage in
separating the objective and subjective aspects of any evaluation, including the evaluation of
the color constancy itself. Disregarding the intensity component is an objective requirement,
embedded in the very definition of color constancy, concerned with a purely chromatic
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characterization of the light sources. The actual sensitivity to different chromaticities (such
as sensitivity to the yellow–blue axis as opposed to the green–magenta axis) is instead
subjective in nature: it might vary due to individual differences [40], and it should take
into account external factors, such as the scene content and the conditions under which the
image is viewed [8]. For this reason, we suggest that additional properties be embedded
by defining custom metrics, such as CIE ∆E for the CIE L*a*b* color space. This would
allow maintaining the main angle-retaining property of ARC, while including further
characteristics with distance metrics that can be adapted and changed based on each use
case.

6. Conclusions

We presented an in-depth analysis of the ARC space and ARC diagram under different
points of view.

The numerical precisions of two ARC-to-RGB inversion formulas were compared,
informing the most-appropriate adoption in the official ARC implementation. Different
chromaticity diagrams were compared in terms of their robustness to perturbations of the
input RGB values, with ARC resulting in the most stable solution, followed by Maxwell’s
triangle and rg chromaticity. The invariances of the three ARC components, with respect
to various changes in lighting conditions, were analytically documented. With respect to
conditional invariance, these properties were found to describe only very specific condi-
tions for which invariance was met: further analysis of these constraints with the aid of
visualization techniques could potentially highlight their practical application. The percep-
tual uniformity of ARC was investigated by referring to Munsell hue lines, suggesting a
relatively low correlation with human perception. This characteristic could be addressed in
the future by embedding custom distance metrics in the ARC color space, in order to still
preserve its defining angle-retaining characteristics when relying on Euclidean distances.
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Appendix A. Properties of 3D ARC Space—Derivation

In the following, we provide a demonstration for the invariance and conditional-
invariance properties of the ARC space with respect to variations in the light conditions.
These are obtained by finding the solutions to the following equation:

ARCα∗([R G B]) = ARCα∗( f ([R G B])) (A1)

for all three ARC components α∗ and five different transformations f .

Appendix A.1. Light Intensity Change

Described by the expression: a 0 0
0 a 0
0 0 a

R
G
B

 (A2)

αA component:

arctan 2
(√

3(G− B), 2R− G− B
)
= arctan 2

(√
3(aG− aB), 2aR− aG− aB

)
(A3)
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Scalar a can be collected in both arguments from the right part of the equation, lead-
ing to:

arctan 2
(√

3(G− B), 2R− G− B
)
= arctan 2

(
a
√

3(G− B), a(2R− G− B)
)

(A4)

Assuming a > 0, this is always verified, as both arguments to the arctan 2 function are
scaled by an equal amount.
αR component:

arccos
(

R + G + B√
3
√

R2 + G2 + B2

)
= arccos

(
aR + aG + aB√

3
√
(aR)2 + (aG)2 + (aB)2

)
(A5)

Scalar a can be collected in both the numerator and denominator from the right part
of the equation, leading to:

arccos
(

R + G + B√
3
√

R2 + G2 + B2

)
= arccos

(
a(R + G + B)

a
√

3
√

R2 + G2 + B2

)
(A6)

Assuming a 6= 0, the two a scalars cancel out, verifying the equation.
αZ component: √

R2 + G2 + B2 =
√
(aR)2 + (aG)2 + (aB)2 (A7)

Collecting scalar a in the right part of the equation does not lead to any simplification.
The equation is not verified, unless for the trivial cases of a = 1, or R = G = B = 0.

Appendix A.2. Light Intensity Shift

Described by the expression: R
G
B

+

o1
o1
o1

 (A8)

αA component:

arctan 2
(√

3(G− B), 2R− G− B
)
=

arctan 2
(√

3((G + o1)− (B + o1)), 2(R + o1)− (G + o1)− (B + o1)
)

(A9)

Expanding the right part of the equation, we have:

arctan 2
(√

3(G + o1 − B− o1), 2R + 2o1 − G− o1− B− o1

)
(A10)

Terms o1 cancel out in both arguments, thus always verifying Equation (A9).
αR component:

arccos
(

R + G + B√
3
√

R2 + G2 + B2

)
= arccos

(
R + o1 + G + o1 + B + o1√

3
√
(R + o1)2 + (G + o1)2 + (B + o1)2

)
(A11)

The equation admits the following solution:

o1 = −2
3
(R + G + B) (A12)

This would classify as a conditional invariance. However, it can be shown that the
constraint from Equation (A12) leads to configurations that are not admissible in our
domain, as the resulting negative o1 is large enough that it would always produce negative
values in either color channel. In other words the inequality:
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2
3
(R + G + B) < min(R, G, B) (A13)

has no solutions for R > 0, G > 0 and B > 0.
αZ component: √

R2 + G2 + B2 =
√
(R + o1)2 + (G + o1)2 + (B + o1)2 (A14)

The equation also admits a solution in the form:

o1 = −2
3
(R + G + B) (A15)

By the same proof provided for Equation (A11), this has no practical solutions for
R > 0, G > 0 and B > 0.

Appendix A.3. Light Intensity Change and Shift

Described by the transformation:a 0 0
0 a 0
0 0 a

R
G
B

+

o1
o1
o1

 (A16)

αA component:

arctan 2
(√

3(G− B), 2R− G− B
)
=

arctan 2
(√

3((aG + o1)− (aB + o1)), 2(aR + o1)− (aG + o1)− (aB + o1)
)

(A17)

By combining the simplifications from Equations (A4) and (A10), both the offset
component o1 and the scalar component a cancel out, thus verifying the equation.
αR component:

arccos
(

R + G + B√
3
√

R2 + G2 + B2

)
= arccos

(
aR + o1 + aG + o1 + aB + o1√

3
√
(aR + o1)2 + (aG + o1)2 + (aB + o1)2

)
(A18)

The scalar component a can be collected and simplified following Equation (A6). How-
ever, the offset o1 leads to the same unfeasible conditional invariance from Equation (A12),
effectively resulting in non-invariance.
αZ component: √

R2 + G2 + B2 =
√
(aR + o1)2 + (aG + o1)2 + (aB + o1)2 (A19)

The relationship can be expressed in terms of o1, with the interpretation that an appro-
priate value of o1 can be selected in order to compensate for the effect of the transformation
introduced by scalar a:

o1 =
1
3

(
±
√
(3− 2a2)B2 + 2a2B(G + R) + (3− 2a2)G2 + 2a2GR + (3− 2a2)R2 − a(B + G + R)

)
(A20)

This conditional invariance has no evident unfeasibility features (contrarily to the case
for Equation (A12)).
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Appendix A.4. Light Color Change

Described by the transformation:a 0 0
0 b 0
0 0 c

R
G
B

 (A21)

αA component:

arctan 2
(√

3(G− B), 2R− G− B
)
= arctan 2

(√
3(bG− cB), 2aR− bG− cB

)
(A22)

The equation offers the following solution for c as a function of the other scalars a and
b, as well as the input RGB values:

c =
− 2
√

3aR(B−G)
B+G−2R +

√
3bG(B−G)
B+G−2R +

√
3bG

√
3B−

√
3B(B−G)

B+G−2R

(A23)

αR component:

arccos
(

R + G + B√
3
√

R2 + G2 + B2

)
= arccos

(
aR + bG + cB√

3
√
(aR)2 + (bG)2 + (cB)2

)
(A24)

By re-arranging the terms and solving for c, this equation is proven to accept the
following two solutions:

c =
±
√

B2(−2aR−2bG)2−4B2
(

(B+G+R)2

B2+G2+R2−1
)(

a2R2(B+G+R)2

B2+G2+R2 −a2R2−2abGR+ b2G2(B+G+R)2

B2+G2+R2 −b2G2
)
−B(−2aR−2bG)

2B2
(

(B+G+R)2

B2+G2+R2−1
) (A25)

αZ component: √
R2 + G2 + B2 =

√
(aR)2 + (bG)2 + (cB)2 (A26)

Solved for c, this yields two solutions in the form:

c = ±
√
−a2R2 − b2G2 + B2 + G2 + R2

B
(A27)

Given that both the numerator and denominator are positive, the only solution which
produces a positive c, and thus which is admissible in our domain, is:

c =

√
−a2R2 − b2G2 + B2 + G2 + R2

B
(A28)

Appendix A.5. Light Color Change and Shift

Described by the transformation:a 0 0
0 b 0
0 0 c

R
G
B

+

o1
o2
o3

, (A29)

αA component:

arctan 2
(√

3(G− B), 2R− G− B
)
= arctan 2

(√
3(bG− cB), 2aR− bG− cB

)
(A30)

arctan 2
(√

3(G− B), 2R− G− B
)
= arctan 2

(√
3((G + o2)− (B + o3)), 2(R + o1)− (G + o2)− (B + o3)

)
(A31)
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Equation (A30) produces the same solution from Appendix A.4:

c =
− 2
√

3aR(B−G)
B+G−2R +

√
3bG(B−G)
B+G−2R +

√
3bG

√
3B−

√
3B(B−G)

B+G−2R

(A32)

Equation (A31) yields an additional constraint:

o3 =
−Bo1 + Bo2 + Go1 − o2R

G− R
(A33)

αR component:

arccos
(

R + G + B√
3
√

R2 + G2 + B2

)
= arccos

(
aR + bG + cB√

3
√
(aR)2 + (bG)2 + (cB)2

)
(A34)

arccos
(

R + G + B√
3
√

R2 + G2 + B2

)
= arccos

(
R + o1 + G + o2 + B + o3√

3
√
(R + o1)2 + (G + o2)2 + (B + o3)2

)
(A35)

Equation (A34) produces the same solution from Appendix A.4:

c =
±
√

B2(−2aR−2bG)2−4B2
(

(B+G+R)2

B2+G2+R2−1
)(

a2R2(B+G+R)2

B2+G2+R2 −a2R2−2abGR+ b2G2(B+G+R)2

B2+G2+R2 −b2G2
)
−B(−2aR−2bG)

2B2
(

(B+G+R)2

B2+G2+R2−1
) (A36)

Equation (A35) yields an additional constraint:

o3 = 1
2(BG+BR+GR)(

−
(

B2G
)
+ B2o1 + B2o2 − B2R+

±√
((

B2G− B2o1 − B2o2 + B2R + 2BGR− G2o1 − G2o2 − G2R− G3 − GR2 − o1R2 − o2R2 − R3)2
+

−4(BG + BR + GR)
(
−B2Go1 − B2o1o2 + B3(−o1)− B2o2R− B3o2 − BG2o1 + BG2o2 + BGo1

2+

+2BGo1R + BGo2
2 + 2BGo2R + Bo1

2R + Bo1R2 + Bo2
2R− Bo2R2 − G2o1o2 − G3o1+

+G2o2R + Go1
2R + Go1R2 + Go2

2R− o1o2R2 − o2R3
))

+

−2BGR + G2o1 + G2o2 + G2R + G3 + GR2 + o1R2 + o2R2 + R3

)

(A37)

αZ component: √
R2 + G2 + B2 =

√
(aR)2 + (bG)2 + (cB)2 (A38)√

R2 + G2 + B2 =
√
(R + o1)2 + (G + o2)2 + (B + o2)2 (A39)

Equation (A38) produces the same solution from Appendix A.4:

c =

√
−a2R2 − b2G2 + B2 + G2 + R2

B
(A40)

Equation (A39) yields an additional constraint:

o3 = ±
√

B2 − o2(2G + o2)− o2
1 − 2o1R− B (A41)

Alternatively, Equations (A38) and (A39) can be rewritten as:√
R2 + G2 + B2 =

√
(aR + o1)2 + (bG + o2)2 + (cB + o2)2 (A42)
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By re-arranging the terms and solving for o3, this equation accepts the following
two solutions:

o3 = ±
√
−a2R2 − 2ao1R− b2G2 − 2bGo2 + B2 + G2 − o2

1 − o2
2 + R2 − Bc (A43)
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