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Abstract
Genetic population assignment used to inform wildlife management and conservation 
efforts	requires	panels	of	highly	informative	genetic	markers	and	sensitive	assignment	
tests.	We	explored	the	utility	of	machine-	learning	algorithms	(random	forest,	regular-
ized	random	forest	and	guided	regularized	random	forest)	compared	with	FST ranking 
for	selection	of	single	nucleotide	polymorphisms	(SNP)	for	fine-	scale	population	as-
signment.	We	 applied	 these	methods	 to	 an	 unpublished	 SNP	 data	 set	 for	 Atlantic	
salmon (Salmo salar)	 and	 a	 published	 SNP	 data	 set	 for	 Alaskan	 Chinook	 salmon	
(Oncorhynchus tshawytscha).	 In	 each	 species,	we	 identified	 the	minimum	panel	 size	
required	to	obtain	a	self-	assignment	accuracy	of	at	least	90%	using	each	method	to	
create	panels	of	50–700	markers	Panels	of	SNPs	identified	using	random	forest-	based	
methods	performed	up	 to	7.8	and	11.2	percentage	points	better	 than	FST-	selected	
panels	of	similar	size	for	the	Atlantic	salmon	and	Chinook	salmon	data,	respectively.	
Self-	assignment	accuracy	≥90%	was	obtained	with	panels	of	670	and	384	SNPs	for	
each	data	set,	respectively,	a	level	of	accuracy	never	reached	for	these	species	using	
FST-	selected	panels.	Our	results	demonstrate	a	role	for	machine-	learning	approaches	
in marker selection across large genomic data sets to improve assignment for manage-
ment	and	conservation	of	exploited	populations.
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conservation	genetics,	fisheries	management,	individual	assignment,	random	forest,	SNP	
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1  | INTRODUCTION

Genetic assignment of individuals to their source populations is use-
ful for uncovering the spatial distribution of populations and migra-
tion	patterns	(e.g.,	André	et	al.,	2016)	relevant	to	wildlife	management	
and	 conservation	 (Manel,	 Gaggiotti,	 &	Waples,	 2005).	 For	 exploited	
species,	assignment	tests	may	be	used	to	monitor	population-	specific	
exploitation,	 ensuring	 the	 maintenance	 of	 genetic	 diversity	 and	

improving	management	practices	 through	 the	 identification	of	 over-	
exploited	 stocks.	 Assignment	 tests	 have	 been	 assessed	 and	 imple-
mented	in	commercial	fishery	species	such	as	herring,	Clupea harengus 
L.,	(Bekkevold	et	al.,	2015),	Atlantic	cod,	Gadus morhua	L.,	(André	et	al.,	
2016),	 Chinook	 salmon,	 Oncorhynchus tshawytscha,	 (Larson	 et	al.,	
2014a;	 Smith,	 Templin,	 Seeb,	 &	 Seeb,	 2005;	 Templin,	 Seeb,	 Jasper,	
Barclay,	 &	 Seeb,	 2011)	 and	 Atlantic	 salmon,	 Salmo salar	 (Bradbury,	
Hamilton,	Rafferty,	et	al.,	2015;	Karlsson,	Moen,	Lien,	Glover,	&	Hindar,	
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2011).	These	 studies	 rely	on	genetic	 differences	 among	populations	
to assign individuals to their source populations across large spatial 
scales	(e.g.,	Bekkevold	et	al.,	2015).	Resolution	of	spatially	distinct	bi-
ological units across fine spatial scales can be difficult as weak genetic 
divergence	may	limit	the	accuracy	of	assignment	tests	(Larson	et	al.,	
2014a).	Developing	methods	to	detect	this	divergence	and	improve	
assignment accuracy may benefit management practices across both 
large and small geographic scales.

Rapid	advances	in	sequencing	and	genotyping	technologies	have	
enabled the development of large panels of spatially informative single 
nucleotide	polymorphisms	 (SNPs)	 from	genomewide	 scans.	Markers	
selected	particularly	for	maximum	self-	assignment	accuracy	are	likely	
to	 be	 useful	 for	 assignment	 across	 both	 broadscale	 and	 small-	scale	
studies	 (Larson	et	al.,	2014a);	however,	 the	trade-	off	between	panel	
size	and	self-	assignment	accuracy	often	 results	 in	panels	 that,	at	an	
adequate	performance	threshold,	are	too	large	to	be	of	practical	value	
for	fisheries	applications,	due	to	the	costs	of	analysis.	Currently,	the	
most	widely	 used	methods	 for	 SNP	 selection	 in	 ecological	 research	
rely	on	measures	of	population	differentiation	(see	Helyar	et	al.,	2011;	
Rosenberg,	2005	for	review).	Most	commonly,	SNPs	are	ranked	by	fix-
ation	index,	FST	(André	et	al.,	2016;	Karlsson	et	al.,	2011;	Larson,	Seeb,	
Pascal,	Templin,	&	Seeb,	2014;	Larson	et	al.,	2014a;	Lemay	&	Russello,	
2015).	As	a	measure	of	differentiation	of	populations,	FST	for	SNP	se-
lection can be calculated at each locus between subpopulations (pair-
wise FST)	 or	 for	 a	metapopulation	 relative	 to	 the	 overall	 population	
(global FST;	Foll	&	Gaggiotti,	2006).	Although	widely	used,	it	is	difficult	
to gauge the applicability of FST-	based	methods	across	different	study	
systems because published studies are often biased towards research 
demonstrating	successful	self-	assignment.	As	FST-	based	methods	only	
consider	loci	through	a	single,	univariate	rank	for	importance	(Brieuc,	
Ono,	Drinan,	&	Naish,	2015),	the	overall	performance	of	the	selected	
panel may be limited.

As	an	alternative,	 iterative	algorithms	 implemented	 in	 the	soft-
ware	BELS	(Bromaghin,	2008)	and	genetic	algorithms	(Topchy,	Jain,	
&	 Punch,	 2004)	 have	 been	 proposed	 for	 informative	 SNP	 selec-
tion	 (Rosenberg,	 2005).	 Although	 potentially	 an	 improvement	 for	
assignment-	focused	marker	 selection,	 both	methods	 are	 computa-
tionally	 intensive	 and	BELS	 lacks	 consideration	of	various	 possible	
subsets	of	SNPs	(Helyar	et	al.,	2011).	 In	contrast	to	simple	ranking,	
random	forest	(RF)	is	a	machine-	learning	approach	that	considers	a	
subset	of	features	or	predictive	variables	(e.g.,	SNPs)	at	each	node	to	
grow	a	series	of	decision	trees	(Breiman,	2001).	In	the	classification	
implementation,	an	individual	is	assigned	to	a	class	(e.g.,	population),	
using a bootstrapped sample of these features or loci. Features can 
be ranked by importance based on the change in classification error 
affected by the presence or absence of a feature in a subset. The 
RF	algorithm	also	considers	loci	in	various	combinations	of	subsets,	
improving the power of the algorithm to rank these features or loci 
for importance. The increasing popularity of RF in biological research 
has provided ample evidence to indicate its potential for success-
ful use in population genetics. The regression implementation has 
been	used	to	select	SNPs	to	predict	phenotypes	(Brieuc	et	al.,	2015;	
Bureau	et	al.,	2005;	Pavey	et	al.,	2015)	and	to	identify	environmental	

parameters that may have an influence on population structure in 
landscape	genetics	(Zhan,	2016).	RF	classification	has	been	applied	
as a method of feature selection to predict microbial community 
structure	using	phylogenetic	and	functional	trait	data	(Ning	&	Beiko,	
2015)	 and	 to	 select	 genes	 for	 functionality	 using	 microarray	 data	
(André	et	al.,	2016;	Deng	&	Runger,	2013;	Díaz-	Uriarte	&	De	Andres,	
2006;	Kursa,	2014);	however,	to	our	knowledge	it	has	yet	to	be	ap-
plied	to	SNP	selection	for	population	assignment.

Atlantic	and	Chinook	salmon	are	species	that	exemplify	opportu-
nities,	challenges	and	applications	associated	with	selecting	panels	
of	genetic	markers	 for	efficient	 self-	assignment	 to	 source	popula-
tions.	Both	species	are	widely	distributed,	extensively	exploited,	and	
of	particular	conservation	concern	in	parts	of	their	ranges	(Bradbury,	
Hamilton,	Dempson,	et	al.,	2015;	Bradbury	et	al.,	2016;	COSEWIC,	
2011;	Larson,	Seeb,	et	al.,	2014).	Both	species	display	natal	philopat-
ric	behaviour	with	low	rates	of	straying	(Hendry,	Castric,	Kinnison,	
&	Quinn,		2004;	Neville,	Isaak,	Dunham,	Thurow,	&	Rieman,	2006)	
and	exhibit	hierarchical	population	structure	(Bourret,	Dionne,	Kent,	
Lien,	&	Bernatchez,	2013;	Templin	et	al.,	2011),	making	these	spe-
cies ideal candidates for testing assignment efficiency. Despite their 
philopatric	behaviour,	fine-	scale	assignment	of	Atlantic	and	Chinook	
salmon	 can	 be	 difficult,	 necessitating	 novel	 approaches	 to	 detect	
subtle	genetic	differences	across	 subpopulations	 (Greig,	Jacobson,	
&	Banks,	 2003).	Here,	we	 investigate	 self-	assignment	 accuracy	 at	
fine geographic scales using data obtained from two sources. For 
Atlantic	salmon,	we	use	unpublished	data	for	juveniles	sampled	from	
rivers	 running	 into	 Lake	Melville,	 a	 3,069	km2 marine embayment 
in	 Labrador,	 Canada.	Within	 Lake	Melville,	 food,	 social	 and	 cere-
monial	(FSC)	fishery	practices	are	conducted	by	Innu	First	Nations,	
Inuit	 (Nunasiavut)	and	Metis	 (NunatuKavut)	groups	and	constitute	
important	traditional	and	recreational	harvests	(ICES,	2013).	An	av-
erage	of	34	tonnes,	or	approximately	13,200	salmon,	are	harvested	
from	within	and	nearby	Lake	Melville	each	year	(Bradbury,	Hamilton,	
Rafferty,	et	al.,	2015),	necessitating	a	better	understanding	of	stock	
assessment for management of these populations. For Chinook 
salmon,	we	 use	 a	 published	 data	 set	 (Larson	 et	al.,	 2014a)	with	 a	
larger sample size to assess the potential for wider applicability of 
RF	feature	(SNP)	selection.

Herein,	we	 identify	 and	 evaluate	various	 sizes	 of	 SNP	 panels	
using global FST	 and	 three	variations	of	RF:	 standard,	 regularized	
random	forest	(RRF)	and	guided	regularized	random	forest	(GRRF)	
(Deng	&	Runger,	2013).	We	aim	to	identify	one	or	more	methods	
for	selection	of	an	optimal	panel,	while	comparing	the	trade-	off	be-
tween	panel	size	and	self-	assignment	accuracy	across	methods	and	
identifying	the	minimum	panel	size	required	to	achieve	a	minimum	
overall	self-	assignment	accuracy	of	90%.	We	provide	evidence	of	
successful	 implementation	 of	 machine-	learning	 approaches	 on	 a	
metapopulation	scale	for	site-	by-	site	(river)	classification	to	estab-
lish	a	relevant,	nonredundant,	maximally	reduced	panel	of	genetic	
markers.	By	testing	these	novel	approaches,	we	explore	methods	
for capitalizing on large genomic data sets for genetic popula-
tion	 assignment,	with	 potential	 for	 application	 across	 a	 range	 of	
systems.
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2  | MATERIALS AND METHODS

2.1 | Sampling and genotyping

A	 total	 of	 231	 juvenile	 (parr)	 Atlantic	 salmon	 were	 sampled	 from	
11	 rivers	 (one	 to	 two	sites	per	 river)	within	Lake	Melville,	Labrador	
(Table	1,	 Figure	1),	 in	2013	and	2014	by	electrofishing	 and	angling.	
Heart	samples	were	collected	and	placed	in	95%	ethanol.	DNA	was	
isolated	using	the	DNeasy	Blood	and	Tissue	kit	or	DNeasy	96	Blood	
and	 Tissue	 kit	 (Qiagen,	 Toronto,	 ON,	 Canada)	 following	 the	 manu-
facturer’s	protocol,	 including	 the	optional	RNase	A	 treatment.	DNA	
samples	were	quantified	using	 the	Qubit	dsDNA	HS	Assay	Kit	 (Life	
Technologies,	Burlington,	ON,	Canada)	with	assays	 read	on	a	Qubit	
v2.0	 (Life	 Technologies)	 or	 using	 the	 Quant-	iT	 PicoGreen	 dsDNA	
Assay	Kit	(Life	Technologies)	with	assays	read	on	a	FLUOStar	OPTIMA	
fluorescence	plate	reader	 (BMG	Labtech,	Ortenberg,	Germany).	The	
DNA	 quality	 for	 all	 samples	 was	 verified	 by	 agarose	 gel	 electro-
phoresis	 of	 100	ng	 of	 extracted	 DNA,	 visualized	 using	 SYBR	 Safe	
(Life	Technologies),	 and	documented	using	 a	Gel	 Logic	200	 (Kodak,	
Rochester,	NY,	USA).	 Individuals	were	genotyped	using	a	220K	tar-
get,	bi-	allelic	SNP	Affymetrix	Axiom	array	developed	by	the	Centre	for	
Integrative	Genetics	 (CiGene,	Ås,	Norway).	These	SNPs	were	a	sub-
set	of	those	in	the	930K	XHD	Ssal	array	(dbSNP	accession	numbers	
ss1867919552–ss1868858426).

Ten fish were genotyped twice to assess genotyping error rate. 
Loci	 with	 inconsistent	 calls	 among	 replicates	 were	 removed	 from	
the	data	 set.	 Loci	were	 then	 filtered	 in	PLINK	v.	1.07	 (Purcell	 et	al.,	
2007)	 for	global	minor	allele	 frequency	 (MAF)	below	5%.	One	 locus	
was	 also	 removed	 for	 having	more	 than	 5%	missing	 data	 across	 all	
sites. Pairwise population FST	 (Weir	&	Cockerham,	1984)	was	calcu-
lated	 using	Arlequin	 v	 3.5.2.2	 (Excoffier,	 Laval,	 &	 Schneider,	 2005).	
Additional	 missing	 genotype	 data,	 consisting	 of	 0.08%	 of	 the	 data,	
were imputed using the function rfImpute in the RandomForest pack-
age,	using	5,000	trees	with	all	other	parameters	set	to	default.

We	 further	 reduced	our	panel	 for	downstream	 feature	 selection	
by	removing	redundant	SNPs	and	SNPs	in	linkage	disequilibrium	using	
the	genepop_toploci	function	in	the	R	package	Genepopedit	(Stanley,	
Jeffery,	Wringe,	DiBacco,	&	Bradbury,	2016)	at	an	R2 threshold of 0.2 
and a minimum global FST	of	0.05.	Although	this	is	a	highly	stringent	
approach,	reductions	in	the	data	set	are	helpful	both	to	reduce	com-
putational load and to increase consistency of markers across subsets 
(and	 therefore	 confidence	 in	 the	 importance	 of	 selected	 SNPs).	 As	
evidence	suggests	that	under	linkage	disequilibrium,	RF	performance	
may	 be	 reduced,	 redundancy	 in	 the	 data	 set	 should	 be	 considered	
prior	 to	or	during	 the	 feature	 selection	process	 (Meng,	Yu,	Cupples,	
Farrer,	&	Lunetta,	2009;	Toloşi	&	Lengauer,	2011).

Chinook	 salmon	data	 contained	10,944	SNPs	 identified	 through	
Sbf1	restriction-	site-	association	DNA	(RAD)	sequencing	for	265	adult	
individuals from five locations: four populations in coastal western 
Alaska	and	one	in	Yukon	River	(Figure	1b).	SNPs	were	removed	from	an	
original	pool	of	42,351	putative	loci,	if	genotyped	in	<80%	of	individ-
uals,	and	were	reduced	to	one	SNP	per	RAD	tag	(Larson	et	al.,	2014a).	
Further,	SNPs	were	filtered	for	linkage	disequilibrium,	evidence	of	pa-
ralogous	sequences,	deviation	from	Hardy–Weinberg	equilibrium	and	
MAFs	of	<0.05	(Larson	et	al.,	2014a).	Data	were	imputed	and	filtered	
for FST and redundancy as described above.

2.2 | Marker selection

Ideally,	assignment	analysis	with	 loci	selected	for	population	assign-
ment	 would	 implement	 a	 training/holdout	 approach,	 such	 that	 the	
individuals used for marker selection would be different from those 
used	 for	 assignment	 analysis	 (Anderson,	 2010).	 Although	 upward	
grading	bias	 (over-	estimations	of	assignment	accuracy)	 is	effectively	
diminished	by	this	approach,	a	completely	 independent	training	and	
holdout set is often unfeasible due to limitations in sample size. To 
overcome	 this,	 Anderson	 (2010)	 proposes	 a	 leave-	one-	out	 strategy	

River name Sample size Site ID Latitude (N) Longitude (W)

Cape Caribou River 21 CB 53°32′48,8″ 60°36′27,0″

Caroline Brook 20 CL 53°15,232′ 60°31,899′

Peters River 21 PR1 53°20′10,4″ 60°47′15,3″

PR2 53°20,345′ 60°37,293′

Red	Wine	River 22 RW1 53°52,764′ 61°27,976′

RW2 53°52,928′ 61°28,730′

Susan River 22 SR1 53°44,365′ 61°3,275′

SR2 53°44,184′ 61°02,216′

Crooked River 21 CR 53°50,991′ 60°48,863′

Kenamu	River 22 KE 52°50,952′ 60°08,279′

Main Brook River 21 MB 54°04,355′ 57°52,374′

Mulligan River 17 MU 53°52,138′ 60°05,392′

Sebaskachu River 22 SK1 53°47,397′ 60°08,523′

SK2 53°46,10′ 60°10,575′

Traverspine River 22 TR 53°08,853′ 60°27,769′

TABLE  1 Site locations and sample size 
for	all	study	collections	of	juvenile	salmon,	
sampled in 2013 and 2014
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(a)

(b)
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where	a	subset	of	 individuals	 (training	set)	are	used	for	 locus	selec-
tion,	and	all	individuals	are	used	to	establish	a	baseline	for	assignment.	
However,	 self-	assignment	 accuracy	 is	 calculated	 based	 solely	 upon	
the	assignment	of	the	individuals	in	the	holdout	set.	As	such,	all	loci	
were	selected	using	a	subset	of	individuals.	For	both	data	sets,	one-	
third	of	 the	 individuals	 from	each	 site	 (approximately	7	 for	Atlantic	
data	and	19	for	Chinook	data)	were	randomly	selected	for	all	methods	
of locus selection.

2.3 | RF- based SNP selection

2.3.1 | Background

For	RF	classification,	measures	of	importance	of	each	feature	can	be	
calculated based on the reduction in accuracy of the model when the 
feature	in	question	(i.e.,	SNP)	 is	not	included	in	a	subset	of	features	
within	a	tree	(Breiman,	2001).	Decision	trees	based	on	subsets	lacking	
highly informative features will have a higher error or reduced classifi-
cation	accuracy	to	a	known	class	(i.e.,	river)	when	an	important	feature	
is	removed,	compared	to	an	irrelevant	marker,	the	removal	of	which	
will result in no reduction in model accuracy. This difference in model 
accuracy,	averaged	across	decision	trees	with	and	without	the	locus	
in	question	is	termed	the	mean	decrease	in	accuracy	(MDA).	We	used	
this measurement to rank loci based on importance in assignment 
(classification).	Features,	or	SNPs,	with	a	relatively	high	MDA	will	be	
deemed	 highly	 important	 for	 accurate	 classification.	 As	 the	 actual	
MDA	value	indicates	relative	importance	in	the	per	cent	decrease	in	
accuracy	to	the	model,	a	strict	cut-	off	threshold	will	vary	for	each	data	
set,	depending	on	how	well	the	population	can	be	inferred	by	a	SNP.

Regularized random forest and GRRF are variations on the RF algo-
rithm	designed	to	address	issues	with	RF,	and	to	optimize	features	for	
selection	(Deng	&	Runger,	2013).	RRF	uses	a	customizable	parameter,	
the penalty coefficient (λ),	which	penalizes	 features	at	a	node	when	
making a classification decision. To be selected for importance and in-
cluded	in	the	selected	panel,	a	feature	must	be	more	informative	than	
the other features in the subset considered at a node as well as those 
already	selected	for	importance,	despite	this	penalty.	As	such,	RRF	is	
a more stringent application of RF and influences the selected feature 
set	(panel)	size.	A	larger	λ	(approaching	1)	leads	to	a	smaller	penalty,	
resulting in a larger selected panel. Using the minimum regularization 
(λ	=	1)	a	 feature	must	 still	be	more	 informative	 than	 the	already	se-
lected	features	to	be	included	in	the	subset.	Although	this	additional	
component	to	the	RF	algorithm	provides	a	more	stringent	approach,	
the efficacy of RF and RRF may be limited by the number of nodes 
within the forest that consider a feature for importance to the model. 
That	is,	as	a	 locus	may	not	be	present	in	many	nodes,	 it	may	not	be	
considered for importance often enough to truly inform the selection 
process,	a	problem	referred	to	as	node	sparsity	(Deng	&	Runger,	2013).

Guided regularized random forest addresses node sparsity using 
an	 input	 of	 importance	 measures	 (from	 a	 previous	 RF	 run,	 for	 in-
stance)	 to	 weigh	 each	 feature.	 This	 customizes	 the	 algorithm	 such	
that the penalty coefficient applied to features of presumably greater 
importance is less than that applied to features of less importance. 
GRRF	uses	an	alternative	parameter,	gamma	(γ),	to	control	the	weight	
of	 the	 importance	score	applied	 to	each	 feature.	A	 larger	value	of	γ 
	(approaching	1)	 leads	 to	a	smaller	overall	λ and will therefore result  
in a smaller feature set.

2.3.2 | Algorithm application

Data were formatted using a custom R script such that individuals at 
a	given	locus	were	assigned	0,	0.5	or	1,	for	an	individual	that	is	ho-
mozygous	for	the	minor	allele,	heterozygous	or	homozygous	for	the	
major	allele,	respectively.	We	ran	RF	using	the	R	package	random-
Forest	(Liaw	&	Wiener,	2002)	on	our	filtered	data	sets.	To	determine	
our appropriate ntree	parameter	(number	of	trees),	we	ran	RF	using	
125,	250,	500,	1,000,	2,000,	4,000	and	8,000	trees,	10	times	each.	
As	out-	of-	bag	error	stabilized	at	approximately	2,000	trees	for	both	
Atlantic	and	Chinook	data,	we	accepted	this	as	suitable	for	our	anal-
ysis	(Fig.	S2)	 (Boulesteix,	Janitza,	Kruppa,	&	König,	2012).	The	mtry 
parameter	(the	number	of	features	considered	at	a	node)	was	tested	
at	default	(the	square	root	of	the	number	of	features),	half	default	
and	 twice	default,	 as	 suggested	by	Liaw	and	Wiener	 (2002).	Error	
was	lowest	at	twice	default	for	both	Atlantic	and	Chinook	data	and	
was	therefore	used	as	such	for	our	analyses.	We	used	a	minimum	
node	size	(minimum	size	of	terminal	nodes	or	leaves)	of	five,	allow-
ing	 larger	trees	to	be	grown	(see	randomForest	R	documentation),	
with	all	other	parameters	set	to	default	(Liaw	&	Wiener,	2002).

For	 feature	selection,	we	used	 five	 runs	of	RF,	 resulting	 in	 five	
separate	lists	of	SNPs	ranked	by	MDA.	Panels	of	various	sizes	were	
created	by	identifying	SNPs	present	in	all	five	lists	at	10	ranking	lev-
els.	These	 levels	were	 selected	 to	 create	 panels	 of	 40–700	 SNPs,	
after ensuring that each list contained only features with a positive 
MDA.	For	example,	SNPs	consistently	ranked	within	the	top	800	loci	
in	all	five	lists	were	aggregated	to	form	a	consensus	panel	of	67	SNPs	
(Table	2).

Regularized random forests and GRRFs were run using the R pack-
age	RRF	 (Deng	&	Runger,	2013).	Both	methods	were	 run	using	 the	
same	parameters	as	those	used	for	RF	(described	above).	We	tested	
10 parameter values for the penalty coefficient (λ)	 running	RRF	and	
10 parameter values for gamma (γ)	 when	 running	 GRRF	 (Table	2).	
Parameters were selected to encompass a range of regularization pen-
alties and to ensure a diversity of panel sizes for individual assignment. 
A	vector	of	importance	measures	(MDA	scores)	determined	by	a	single	
RF	run	for	feature	(SNP)	rank	was	applied	for	feature	weight	in	GRRF,	
as described above.

F IGURE  1 Sampling	locations	of	(a)	Atlantic	salmon	(Salmo salar)	from	Lake	Melville,	Labrador,	Canada	and	(b)	Chinook	salmon	(Oncorhynchus 
tshawytscha)	from	western	Alaska	and	the	Yukon	River.	See	Table	1	for	site	coordinates,	site	ID	and	sample	size	for	Atlantic	salmon	sampling.	
Coordinates	for	Chinook	salmon	sampling	sites	were	obtained	from	Larson	et	al.	(2014a).	Maps	were	created	using	ArcGIS	(ESRI,	2011)
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2.4 | FST- based SNP selection

We	tested	FST	as	a	method	of	SNP	selection	using	panels	of	loci	ranked	
by global FST calculated using the R package Genepopedit (Stanley 
et	al.,	2016).	To	assess	the	assignment	power	of	various	panel	sizes	of	

SNPs	ranked	by	FST,	we	created	panels	of	size	equal	to	those	estab-
lished	using	GRRF	for	cross-	method	comparison	(Table	2).	To	visualize	
the	overlap	of	SNPs	selected	across	all	methods,	Venn	diagrams	were	
created	for	the	largest	panels	across	all	SNP	selection	methods	using	
Venny	2.1	(Oliveros,	2007–2015).

Method Parameter for selection
Parameter 
value

Panel size 
Atlantic 
Salmon

Panel size 
Chinook 
Salmon

FST Top ranked – 60 47

– 85 65

– 104 88

– 130 112

– 184 134

– 266 182

– 344 240

– 508 384

– 519 454

– 670 509

RF Within	(×)	rank	across	all	5	runs – (800)	66 (400)	41

– (825)	90 (600)	74

– (850)	110 (700)	91

– (875)	135 (850)	125

– (900)	157 (950)	167

– (950)	201 (1,000)	216

– (1,050)	298 (1,100)	277

– (1,200)	435 (1,250)	341

– (1,400)	605 (1,400)	437

– (1,500)	697 (1,500)	519

RRF Penalty coefficient (λ) 0.75 51 47

0.8 83 71

0.825 114 94

0.85 140 110

0.875 180 150

0.9 275 191

0.925 336 260

0.95 515 364

0.975 604 470

0.99 710 528

GRRF Weight	of	penalty	(γ) 0.25 60 47

0.2 85 65

0.175 104 88

0.15 130 112

0.125 184 134

0.1 266 182

0.075 344 240

0.05 508 384

0.025 519 454

0.01 670 509

TABLE  2 Properties of panels selected 
for	assignment	analysis	by	SNP	selection	
method (FST	rank,	random	forest	(RF),	
regularized	random	forest	(RRF)	and	guided	
regularized	random	forest	(GRRF)	(See	
Section	“2”).	As	RF	rank	was	selected	to	
create	panels	of	target	size,	panel	size	
column	indicates	“(Rank)	panel	size”	for	
RF-	selected	panels.	See	Fig.	S3	for	
intersections	of	SNPs	across	methods
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2.5 | Individual assignment

The	R	package	Assigner	(Gosselin,	Benestan,	&	Bernatchez,	2015)	was	
used	 to	 implement	 “gsi_sim”	 (Anderson,	Waples,	&	Kalinowski,	 2008),	
to	conduct	assignment	analysis.	Assigner	is	a	package	developed	to	run	
filtering	procedures	and	conduct	assignment	and	mixture	analysis	with	
NGS	data.	By	limiting	the	training	set	used	for	marker	selection	to	a	sub-
set	of	 individuals	as	described	above,	and	 implementing	a	LOO	cross-	
validation	method,	gsi_sim	controls	for	high	grading	bias	within	power	
analysis without reducing the sample size of the data set. Gsi_sim creates 
simulations of individual genotypes through bootstrap sampling and as-
signs these individuals to a population based on the true baseline cal-
culated across all individuals. This is particularly useful for studies with 
relatively	low	sample	sizes	and	for	fine-	scale	studies,	where	genetic	dif-
ferences	in	populations	are	expected	to	be	small.	Whitelists,	or	lists	of	loci	
to	be	considered	for	assignment,	were	created	from	each	SNP	selection	
method	using	custom	R	scripts	for	input	into	Assigner.	Although	all	indi-
viduals	were	used	to	create	the	baseline	for	gsi_sim,	only	the	assignment	
of	the	holdout	individuals	was	used	to	assess	self-	assignment	accuracy.

Significance	 of	 SNP	 selection	 method	 was	 determined	 by	 an	
ANOVA	comparing	second	degree	polynomial	models	with	and	with-
out	accounting	for	the	SNP	selection	term.	We	investigated	consistent	
patterns	of	 incorrect	assignment	across	putative	populations	 (rivers)	
by	 observing	 assignment	 matrix	 heatmaps	 of	 the	 smallest	 panels	
across	all	SNP	selection	methods.	We	also	compared	pairwise	popu-
lation FST values to discrepancies in pairwise mismatches (the number 
of	individuals	incorrectly	assigned	across	paired	populations)	between	
FST	 rank	and	GRRF	selection	methods,	 to	further	assess	the	optimal	
application	of	each	method.	That	is,	for	a	given	pair	of	putative	pop-
ulations,	the	proportion	of	individuals	that	were	incorrectly	assigned	
from	one	study	site	to	the	other	when	using	GRRF	for	SNP	selection	
was subtracted from the proportion of individuals incorrectly assigned 
(within	that	pair	of	sites)	using	FST rank. This allowed us to visualize a 
preferred method for sites at a given pairwise FST.

3  | RESULTS

3.1 | Genotyping and panel characteristics

Of	the	original	220K	SNPs	genotyped	for	Atlantic	salmon,	276	were	
called inconsistently across samples. Overall genotyping accuracy was 
>99.8%.	After	removing	these	loci	and	filtering	for	MAF,	93,058	SNPs	
remained	in	the	Atlantic	salmon	data	set	for	further	selection.	Average	
global,	 locus-	specific	 FST	 (mean:	 0.059,	 range:	 0–0.58)	 and	 pairwise	
population FST	ranking	across	the	whole	panel	(Fig.	S1,	Table	S1)	indi-
cated	relatively	low	genetic	differentiation.	After	controlling	for	linkage	
disequilibrium	and	covariance	in	the	panel	across	all	chromosomes,	and	
filtering at a global FST	of	0.05,	8,434	nonredundant	loci	remained	in	
the	panel,	with	FST	 frequency	distribution	similar	to	that	observed	 in	
the	unfiltered	data	set	(Fig.	S1).	For	FST-	based	pairwise	comparisons	
of	populations,	see	Table	S1.	The	10,944	SNP	panel	accessed	for	this	
study	 (Larson	 et	al.,	 2014b)	was	 reduced	 to	2,178	SNPs	 after	 filter-
ing at a global FST of 0.05 and linkage threshold of 0.2. For pairwise 
population FST,	see	Larson	et	al.	(2014a).	The	size	of	the	panel	ranged	
from	51	to	697	SNPs	and	41	to	528	SNPs	for	the	Atlantic	salmon	and	
Chinook	salmon	data	sets,	respectively	(Table	2).	Although	SNPs	were	
most	 often	 selected	 by	 only	 a	 single	 selection	method,	 some	 SNPs	
were	identified	by	more	than	one	method	(Fig.	S3).	A	total	of	17	and	
32	SNPs	were	selected	by	all	four	SNP	selection	methods	for	Atlantic	
and	 Chinook	 salmon,	 respectively.	 Overlap	 in	 SNPs	 occurred	 more	
often	with	Chinook	salmon	data,	likely	a	result	of	the	smaller	panel	size	
(2,178	SNPs)	relative	to	the	8,434	SNPs	in	the	Atlantic	salmon	panel.

3.2 | Panel performance

3.2.1 | Atlantic salmon data

Across	 panel	 sizes,	 we	 found	 that	 panels	 selected	 by	 FST ranking 
had	the	lowest	self-	assignment	accuracy	on	average	(mean	=	79.4%,	
SE	=	1.8)	 (Figure	2a).	 Self-	assignment	 accuracy	 for	 panels	 selected	

F IGURE  2 Average,	overall	self-	
assignment	accuracy	of	identified	SNP	
panels	(50–700	SNPs)	for	(a)	Atlantic	
salmon	and	(b)	Chinook	salmon	(Larson	
et	al.,	2014a)	calculated	across	sampling	
sites.	SNP	selection	method	(FST	rank,	RF,	
RRF	and	GRRF)	is	indicated	by	colour	(see	
Section	“2”	for	more	information)
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using	RF,	RRF	and	GRRF	performed	better	overall	(RF:	mean	=	81.8%,	
SE	=	1.8;	 RRF:	mean	=	81.5,	 SE	=	2.6;	 GRRF:	mean	=	82.1,	 SE	=	2.5).	
An	ANOVA	comparing	the	fit	of	polynomial	models	with	and	without	
considering	SNP	 selection	method	 indicated	 a	marginal	 significance	
(F28,37	=	2.54,	 p	<	.05).	 However,	 this	 difference	 varied	 with	 panel	
size.	In	the	smallest	panel	sizes	(50–100	SNPs),	FST-	ranked	panels	had	
better	or	comparable	self-	assignment	accuracy	with	RF-	based	panels	
(Figure	2a).	 In	 small-		 to	 medium-	sized	 panels	 (101–200	 SNPs),	 RF-	
selected	panels	performed	best	(up	to	7.8	percentage	points	for	pan-
els	of	comparable	size),	while	GRRF-	selected	panels	most	often	had	
the	highest	self-	assignment	accuracy	in	larger	panels	(>200	SNPs).	In	
all	cases,	save	for	the	three	smallest	panel	sizes	(60,	85	and	104	SNPs),	
GRRF-	selected	panels	outperformed	FST-	selected	panels	of	the	same	
size	by	a	margin	of	3.2	to	4.9	percentage	points.	For	smaller	panels,	
RF-	selected	 panels	 outperformed	 FST-	selected	 panels	 by	 up	 to	 5%,	
although	the	highest	accuracy	of	the	smallest	panel	was	70.64%,	ob-
served in the FST-	selected	panel.	A	threshold	of	90%	accuracy	overall	
was achieved only with the largest panels created using GRRF and 
RRF,	which	contained	670	and	710	SNPs,	respectively.

We	 also	 investigated	 how	 self-	assignment	 varied	 across	 sites	
(Figure	3a).	 Many	 sites	 showed	 consistently	 high	 (above	 90%)	 self-	
assignment	regardless	of	SNP	selection	method,	whereas	others	had	
a	higher	 frequency	of	mis-	assignment.	 In	 these	 latter	 sites	 (Caroline	

River	and	Traverspine	River;	Red	Wine	River	and	Crooked	River),	the	
margin in performance between FST	and	RF-	selected	panels	widened,	
in	some	cases	by	up	to	40	percentage	points,	as	seen	in	Caroline	River	
(Figure	3a).	Some	study	sites	show	a	higher	self-	assignment	accuracy	
with FST-	based	methods	and	some	with	RF-	based	methods	(Figure	3a).	
To	understand	these	patterns,	we	compared	pairwise	population	FST 
values with the difference in the proportion of mismatches across 
paired sites between FST	and	the	best	performing	RF-	based	method	
overall,	GRRF	(Fig.	S4).	While	we	expected	that	populations	with	a	low	
pairwise FST	value	may	tend	to	be	more	successful	with	one	SNP	selec-
tion	method	over	another,	we	did	not	find	consistency	across	panels.	
As	 pairwise	 FST	 values	 increased,	 these	 differences	 shifted	 towards	
zero,	but	at	low	pairwise	FST	values,	there	was	no	tendency	for	more	
mismatches	to	occur	in	one	method	over	another	(Fig.	S4a).

To	 identify	 patterns	 of	 mis-	assignment,	 we	 created	 heatmaps	
demonstrating	mis-	assignment	 from	Assigner	outputs	 from	the	best	
performing method of the smallest panels (FST	 and	 RF	 for	 Atlantic	
and	 Chinook	 data,	 respectively)	 (Figure	4).	 We	 also	 inspected	
mis-	assignment	 across	 all	 methods	 to	 ensure	 consistency	 in	 ob-
served	patterns	(Fig.	S5).	From	this,	we	observed	a	high	rate	of	mis-	
assignment	between	Red	Wine	River	and	Crooked	River,	and	between	
Caroline	 River,	 Traverspine	 River	 and,	 to	 a	 lesser	 degree,	 Kenamu	
River.	Regardless	of	the	method	of	SNP	selection,	we	observed	that	

F IGURE  3 Self-	assignment	accuracy	of	identified	SNP	panels	(50–700	SNPs)	across	all	sampling	sites	as	indicated	by	site	ID	(see	Table	1)	for	
(a)	Atlantic	salmon	and	(b)	Chinook	salmon	(Larson	et	al.,	2014a).	SNP	selection	method	(FST	rank,	RF,	RRF	and	GRRF)	is	indicated	by	colour	(see	
Section	“2”	for	more	information)
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incorrectly	 assigned	 individuals	 from	Red	Wine	River	 frequently	 as-
signed	 to	 Crooked	 River	 (30.0%	 of	 all	 individuals),	 and	 vice	 versa	
(35.7%	of	all	individuals).	Incorrectly	assigned	individuals	from	Caroline	
River	were	often	assigned	to	Traverspine	River	(30.7%	of	individuals).	
Although	 individuals	 from	 Traverspine	 River	 generally	 self-	assigned	
well,	incorrectly	assigned	individuals	often	assigned	to	Caroline	River	
(13.3%	of	 all	 individuals)	 (Figure	4a).	Up	 to	 10%	of	 individuals	 from	
Traverspine	River	and	Caroline	River	incorrectly	assigned	to	Kenamu	
River,	while	incorrectly	assigned	individuals	from	Kenamu	River	most	
often	assigned	 to	Traverspine	River	or	Caroline	River	 (up	 to	13.3%).	
We	 also	 observed	 consistent	 self-	assignment	 of	 81%	 of	 individuals	
in	Peter’s	River	(Figure	3a).	Regardless	of	panel	selection	method,	the	
same	four	individuals	mis-	assigned	to	Crooked	River,	Red	Wine	River	
or	Kenamu	River	(Figure	4,	Fig.	S5).	These	consistent	patterns	in	mis-	
assignment	between	geographically	proximate	sites	(Fig.	S1a)	illustrate	
the difficulty with population assignment at the finest spatial scales. 
Although	 there	 appears	 to	be	 some	 level	 of	 genetic	divergence	be-
tween	individuals	at	each	of	these	sites,	either	computational	methods	
are	limited	in	their	ability	to	detect	and	fully	discern	these	populations,	
or they are in fact genetically and behaviourally the same population 
with higher genetic diversity than nearby populations.

3.2.2 | Chinook salmon data

Similar	 to	 our	 findings	 with	 the	 Atlantic	 salmon	 data,	 we	 found	
consistently	 higher	 self-	assignment	 accuracy	 with	 RF-	based	 selec-
tion	 methods	 (RF:	 mean	=	82.7%,	 SE	=	2.16;	 RRF:	 mean	=	80.7%,	
SE	=	1.84;	GRRF:	mean	=	81.5%,	SE	=	2.5)	 compared	 to	FST-	selected	
panels	(mean	=	75.4%,	SE	=	2.18)	(Figure	2b)	for	the	Chinook	salmon	
data	set.	SNP	selection	method	was	found	to	have	a	significant	effect	
on the polynomial model (F28,37	=	4.08,	p	=	.001).	 As	 observed	with	
the	Atlantic	salmon	data,	smaller-		to	medium-	sized	panels	(up	to	200	
SNPs)	performed	best	with	RF	SNP	selection	(up	to	11.2	percentage	
points	for	panels	of	comparable	size),	while	GRRF	had	the	highest	self-	
assignment	accuracy	of	the	larger	panels.	However,	unlike	the	Atlantic	
salmon	data,	FST-	selected	panels	showed	reduced	self-	assignment	ac-
curacy	at	both	small	and	large	panel	sizes.	GRRF-	selected	panels	out-
performed FST-	selected	panels	of	the	same	size	by	a	margin	of	1	to	
9.8	percentage	points.	A	90%	self-	assignment	accuracy	threshold	was	
reached	with	the	largest	panels	of	all	RF-	based	selection	methods,	and	
with	a	panel	of	384	SNPs	selected	by	GRRF	at	92.4%	overall	accuracy.

Self-	assignment	 accuracy	 decreased	 (Figure	3b)	 and	 mis-	
assignment	 increased	 (Figure	4b)	 among	 closely	 associated	 sites	
(Anvik	River,	Koktuli	River	and	Kogrukluk	River)	with	reduced	pairwise	
FST	values	(Larson	et	al.,	2014a).	Larson	et	al.	(2014a)	found	the	lowest	
genetic	divergence	between	these	three	rivers,	particularly	between	
Kogrukluk	 River	 and	 Koktuli	 River,	 as	 these	 rivers	 had	 the	 lowest	
pairwise FST	 (0.003)	and	highest	occurrence	of	overlap	 in	a	principal	
component	 analysis	 (PCA).	 Accordingly,	 we	 found	 the	 highest	 rate	
of	 incorrect	assignment	occur	between	 these	 two	rivers	 (Figure	4b).	
Although	 FST-	selected	 panels	 most	 often	 had	 the	 lowest	 accuracy,	
this	was	not	 consistent	 across	 all	 sites.	As	with	 the	Atlantic	 salmon	
data,	we	 investigated	 the	 relationship	 between	 pairwise	 population	
FST values and the difference in the number of mismatches occurring 
between a given pair of populations when using FST values versus the 
best	performing	method	overall,	RF.	Although	higher	pairwise	FST is 
associated	with	reduced	differences	between	these	approaches,	there	
is no indication that outperformance of a particular method is associ-
ated with FST	(Fig.	S4).

4  | DISCUSSION

Genetic assignment of individuals is becoming central to wildlife man-
agement	and	conservation	in	many	taxa	(Reiss,	Hoarau,	Dickey-	Collas,	
&	Wolff,	2009).	 Large	genomic	data	 sets	offer	opportunities	 for	 in-
creasing	assignment	power	but	accurate,	practical	assignment	requires	
a	reduced	panel	for	efficient	and	cost-	effective	analysis	(Martinsohn,	
Ogden,	&	Consortium,	2009).	While	 a	 variety	of	methods	 currently	
exist	for	the	identification	of	targeted	panels	of	markers	for	popula-
tion	assignment,	many	are	limited	by	computational	load,	and	naïve	al-
gorithms	for	ranking	and	selecting	SNPs.	Machine-	learning	algorithms	
have the potential to address these limitations for wide applicability 
and	success	in	molecular	ecological	studies.	Here,	we	demonstrate	the	
use	of	RF	for	selecting	SNPs	for	genetic	population	assignment.

Overall,	in	both	Atlantic	salmon	and	Chinook	salmon,	we	achieved	
self-	assignment	accuracy	above	90%	for	most	populations	using	tar-
geted	panels	of	loci,	comparable	to	or	higher	than	that	of	broadscale	
(Bradbury,	 Hamilton,	 Dempson,	 et	al.,	 2015;	 Bradbury,	 Hamilton,	
Rafferty,	 et	al.,	 2015;	 Bradbury	 et	al.,	 2016;	 Moore	 et	al.,	 2014;	
Ozerov	et	al.,	2013)		and	fine-	scale	(Vähä,	Erkinaro,	Fålkegard,	Orell,	&	
Niemelä,	2016)	mixed-	stock	analyses.	Machine-	learning	algorithms	in	

F IGURE  4 Assignment	matrix	heatmaps	
indicating per cent assignment calculated 
across the best performing panel of the 
smallest	panels	(Figure	3).	Assignment	as	
determined	by	(a)	FST	for	Atlantic	salmon	
and	(b)	RF	for	Chinook	salmon	(Larson	
et	al.,	2014a).	Colour	intensity	indicates	the	
probability of an individual from a reference 
population	(rows)	being	assigned	to	a	given	
population	(columns),	where	red	indicates	
the highest probability and blue the lowest CB CL PR RW SR CR KE M
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contrast to FST	rank	allow	SNPs	to	be	selected	based	on	their	relevance	
directly	to	the	study	question,	be	it	correlation	with	a	phenotype	(for	
example,	Brieuc	et	al.,	2015)	or	classification	to	a	reference	population.	
Machine-	learning	techniques	also	consider	the	 importance	of	 loci	 in	
combinations	with	other	loci,	in	contrast	to	loci	selected	based	solely	
on individual importance. If combinations of markers perform better 
than	expected	given	the	individual	characteristics	of	each	marker,	then	
machine-	learning	methods	might	select	relevant	markers	that	would	
otherwise	go	undetected.	For	phenotype–genotype	studies,	 this	ap-
proach is more likely to consider and identify important loci involved in 
polygenic	traits,	which	may	otherwise	be	discarded.	In	a	SNP	selection	
study	targeting	disease	indicators	(Shah	&	Kusiak,	2004),	a	set	of	172	
SNPs	was	reduced	by	85%	with	little	cost	to	the	performance	of	the	
assignment	model.	It	is	not	surprising	then	that	machine-	learning	algo-
rithms may increase the accuracy of population assignment.

4.1 | Atlantic salmon data

In	the	Atlantic	salmon	data	set,	we	observed	an	improvement	of	up	
to	40	percentage	points	within	a	given	site	and	up	to	7.8	percentage	
points	in	overall	assignment	accuracy,	compared	to	FST-	selected	pan-
els	of	similar	size.	This	improvement	in	self-	assignment	accuracy	was	
most	apparent	in	larger	panel	sizes.	In	the	three	smallest	panel	sizes,	
FST-	selected	panels	had	comparable	accuracy	to	those	selected	using	
RF	methods.	We	observed	 frequent	 and	 consistent	mis-	assignment	
in	 particular	 sites	 across	 SNP	 selection	 methods	 (Figures	3a	 and	
4a).	Caroline	River	and	Traverspine	River,	as	well	as	Red	Wine	River	
and	 Crooked	 River,	 showed	 higher	 levels	 of	 mis-	assignment	 with	
each	 other	 than	 most	 other	 rivers,	 although	 self-	assignment	 was	
still	higher	than	would	be	expected	if	 individuals	were	randomly	as-
signed	to	one	of	these	two	paired	sites	(i.e.,	50%).	This	reduction	in	
self-	assignment	accuracy	likely	reflects	close	genetic	relationships	or	
admixing	 between	 these	 neighbouring	 populations	within	 the	 same	
river	tributary.	Alternatively,	this	may	indicate	multiple	spawning	sites	
(rivers)	for	the	same	population.	Pairwise	FST values were considerably 
lower	for	these	pairs	of	rivers,	indicating	relatively	low	genetic	diver-
gence	(Table	S1).	We	also	observed	that	assignment	accuracy	within	
Peter’s	 River	 rarely	 deviated	 from	 81%.	 Across	 all	 runs,	 individuals	
from	Peter’s	River	sampled	from	the	site	closest	to	the	river	mouth	
(Figure	1a)	 were	 incorrectly	 assigned	 to	 Red	 Wine	 River,	 Crooked	
River	or	Susan	River.	We	suspect	that	there	may	be	genetic	structur-
ing	occurring	within	Peter’s	River	or	that	these	individuals	are	prog-
eny of recent migrants from one or more of these populations. More 
samples to detect population structure within these rivers may indi-
cate the presence of distinct upstream and downstream populations 
within	Peter’s	River,	or	other	rivers	with	natural	barriers	 influencing	
within-	stream	 population	 structure.	 Although	 our	 study	 revealed	
clear	patterns	of	mis-	assignment	 in	pairs,	 it	 is	 likely	that	patterns	of	
incorrect	assignment	in	other	natural	systems	may	be	more	complex	
(Vähä	et	al.,	2016),	particularly	when	assigning	 to	a	greater	number	
of	sites	(Moore	et	al.,	2014)	or	if	the	subpopulations	in	question	are	
less	genetically	divergent.	For	such	studies,	GRRF	or	other	modified	
machine-	learning	approaches	may	be	well	suited	to	SNP	selection	for	

accurate	overall	assignment	accuracy,	as	shown	by	the	successful	ap-
plication in the present study.

4.2 | Chinook salmon data

In	Chinook	salmon,	our	applications	of	RF-	based	methods	to	a	large	
(10,944	SNPs),	published	data	set	(Larson	et	al.,	2014a),	provided	fur-
ther	evidence	of	the	usefulness	of	RF	feature	selection.	RF-	selected	
panels	had	consistently	higher	self-	assignment	accuracy	compared	to	
those selected by FST	 ranking.	Using	a	panel	of	39	SNPs	developed	
from	expressed	sequence	tags,	Larson	et	al.	(2014a)	obtained	an	over-
all	accuracy	of	54.4%	using	a	LOO	approach,	comparable	to	our	small-
est FST-	ranked	panel	of	47	SNPs,	with	an	overall	accuracy	of	60.6%	
(Figure	2b).	However,	the	smallest	RF-	based	panels	resulted	in	overall	
self-	assignment	accuracy	of	71.6%,	70.0%	and	68.6%	for	RF,	RRF	and	
GRRF,	respectively	(Figure	2b).	Self-	assignment	accuracy	of	the	larg-
est	panel	 (509	SNPs)	using	GRRF	was	comparable	 to	 that	achieved	
using	all	10,944	SNPs	(Larson	et	al.,	2014a)	(92.0%	and	96.4%,	for	the	
509	SNP	panel	and	10,944	SNP	panel,	respectively).	Comparable	self-	
assignment	accuracy	(above	90%)	was	reached	using	a	panel	of	500	
multi-	SNP	(haplotype)	 loci	 (McKinney,	Seeb,	&	Seeb,	2017)	selected	
based on FST rank with individuals assigned using GSI_sim. In this 
study,	McKinney	et	al.	(2017)	combined	Koktuli	River	and	Kogrukluk	
River	 into	 a	 single	group	 for	mixture	 analysis	 and	 individual	 assign-
ment.	 That	we	 achieved	 a	 similar	 level	 of	 self-	assignment	 accuracy	
with	single-	SNP	panels	of	equal	or	lesser	size	without	combining	sam-
pling	locations	speaks	to	the	predictive	power	of	RF-	based	methods	
for	marker	selection.	Populations	with	the	lowest	self-	assignment	ac-
curacy	(Anvik	River,	Kogrukluk	River	and	Koktuli	River)	(Figure	3b	and	
4b)	were	consistent	with	those	found	to	be	the	least	divergent,	with	
the	lowest	pairwise	FST	(0.003–0.006)	and	high	degree	of	overlap	in	a	
PCA	analysis	(Larson	et	al.,	2014a).	While	FST-	selected	panels	had	the	
lowest	accuracy	for	Kogrukluk	River	and	Koktuli	River,	this	disparity	
was	reduced	in	Anvik	River.

4.3 | Overall findings

Random forest methods often outperformed the FST-	based	method;	
however,	the	Atlantic	and	Chinook	salmon	data	showed	discrepancies	
in	the	optimal	method	of	SNP	selection	for	each	site.	By	comparing	
pairwise FST with the difference in the number of mismatches be-
tween	paired	populations	when	using	the	best	RF-	based	method	and	
FST	for	SNP	selection,	we	hoped	to	elucidate	these	findings.	However,	
we did not find strong evidence that either of these methods performs 
better	under	certain	conditions	of	population	divergence	(Fig.	S4).

Across	 all	 analyses,	 we	 often	 observed	 fluctuations	 in	 self-	
assignment accuracy. There are many instances of accuracy de-
creasing	 with	 increasing	 panel	 size,	 even	 when	 markers	 were	
selected	 using	 the	 same	method	 (Figures	3	 and	4).	Using	 a	 simu-
lated	baseline	based	on	a	subset	of	SNPs	for	individual	assignment	
leaves room for noise and minor fluctuations depending on the 
SNPs	used	for	assignment.	Increasing	panel	size	would	not	always	
increase	accuracy	if	less-	informative	SNPs	are	also	included	in	the	
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panel.	Although	 our	methods	 aim	 to	 select	 the	most	 informative	
SNPs,	those	selected	for	classification	based	on	the	training	set	of	
individuals may not be informative for assignment when applied to 
the holdout individuals.

Although	there	was	little	difference	observed	between	the	three	
RF-	based	methods,	 in	both	data	sets	RF-	selected	panels	had	higher	
assignment	 accuracy	 in	 small-		 to	medium-	sized	 panels,	while	GRRF	
often	outperformed	other	SNP	selection	methods	in	the	largest	pan-
els. This reduction in RF accuracy may be due to our applications of 
the	RF	approach.	As	we	aggregated	SNPs	across	five	lists	ranked	by	
MDA,	loci	common	across	all	lists	at	a	lower	rank	may	not	be	any	more	
informative than those already included in the smaller panels and will 
therefore	contribute	little	to	assignment	accuracy.	Conversely,	GRRF	
continues	to	apply	a	penalty	to	SNPs	regardless	of	panel	size	and	thus	
selects	SNPs	 that	continue	 to	contribute	 to	 the	overall	 informative-
ness	of	the	panel.	We	tested	RRF	and	GRRF	in	addition	to	the	basic	RF	
approach to address the possible risk of node sparsity and to demon-
strate the potential benefits of more stringent approaches. The easy 
implementation and customizable parameters for panel size selection 
speak to the usability of these algorithms for subset selection. One ad-
ditional	benefit	of	GRRF	is	the	customizable	weighting	of	loci.	We	ap-
plied importance scores from a previous RF run to apply a nonuniform 
weight	to	the	error	penalty	for	each	SNP.	However,	these	scores	could	
reflect	additional	information,	such	as	location	within	known	genes	or	
importance to a phenotypic trait to allow for functional importance 
of	loci	to	be	considered	in	the	SNP	selection	process.	As	such,	we	be-
lieve the comparison of all three approaches informs future use across 
genetic-	based	disciplines.

Sampling juveniles at spawning sites of anadromous fish increases 
the	possibility	of	 including	 siblings	within	 the	 sample.	Although	 this	
might	 inflate	 our	 estimates	 of	 self-	assignment	 accuracy	 for	Atlantic	
salmon,	purging	the	data	set	of	siblings	may	actually	reduce	popula-
tion	estimates,	depending	on	the	severity	of	sibling	removal	(Waples	
&	Anderson,	2017).	The	ideal	threshold	to	remove	individuals	can	be	
difficult to determine and varies for different systems and data sets 
(Waples	 &	Anderson,	 2017).	 Further,	 this	 bias	would	 be	 consistent	
across	SNP	selection	methods	and	does	not	detract	from	the	benefits	
of	machine-	learning	methods	 for	 SNP	 selection.	The	 improved	 self-	
assignment accuracy obtained with RF methods for a larger sample 
of	adult	Chinook	salmon	(Larson	et	al.,	2014a)	demonstrates	a	wider	
range of the applicability of this approach.

We	applied	RF	feature	selection	to	populations	under	a	hierarchi-
cal genetic structure. Further tests of these methods may reveal that 
the applicability of RF is limited to highly structured populations under 
this	type	of	hierarchical	model.	However,	we	demonstrate	that	within	
these populations of low differentiation (low pairwise FST),	 there	 is	
potential to develop these methods for further research. The resolu-
tion	 achieved	using	 a	 single,	 small	 panel	 of	 SNPs	 for	 river-	scale	 as-
signment offers new opportunities to improve fisheries management 
techniques.	Ozerov	et	al.	(2013)	found	that	to	distinguish	populations	
of	Atlantic	salmon	to	a	comparable	(90%)	accuracy,	different	sets	of	up	
to	150	SNPs	were	required	to	classify	mixtures	of	individuals,	depend-
ing	on	the	populations	in	question.	Although	it	is	possible	that	there	

is	some	upward	grading	bias	 in	our	study,	we	applied	the	combined	
training-	holdout	and	LOO	method	proposed	by	Anderson	 (2010)	 to	
reduce	overestimation	of	self-	assignment	accuracy	that	might	other-
wise occur with relatively low sample sizes.

As	we	 investigated	 overall	 assignment	 using	 a	 single	 panel	 at	 a	
time,	we	cannot	be	 sure	how	each	SNP	 in	 the	 subset	distinguishes	
individuals within a river. The low degree of overlap across RF runs 
(Table	2,	Fig.	 S3)	 indicates	high	variation	 in	 the	RF	 ranking	process.	
This	is	expected	due	to	the	randomness	associated	with	considering	
subsets	of	features	within	each	tree,	but	may	be	 indicative	of	noise	
that	must	be	filtered	by	the	RF	algorithm.	Although	the	proportion	of	
SNPs	present	in	all	five	runs	increases	with	increasing	rank	(Table	2),	
an adapted algorithm to increase consistency may also improve re-
sults.	Though	outside	of	the	scope	of	the	present	study,	investigating	
the potential for a deterministic approach could provide insight into 
the underlying genetic differentiation between certain populations 
and the process of feature ranking in RF. Our findings support the use 
of stringent applications of RF for feature selection in a wildlife man-
agement	 context,	 such	 that	 a	 reduced	panel	may	be	established	 to	
allow	for	individual	assignment	to	natal	rivers.	With	this	improvement	
in	accuracy,	these	methods	could	be	used	to	inform	management	pol-
icies	 to	 reduce	exploitation	of	particular	 subpopulations.	This	 study	
highlights	 the	 need	 for	 further	 investigation	 of	 machine-	learning	
techniques,	such	as	RF,	that	may	be	valuable	for	a	range	of	ecological	
studies.

5  | SUMMARY

Large	genomic	data	sets	offer	new	potential	for	resolving	population	
structure	and	 improving	assignment	power	and	accuracy.	However,	
the identification of informative panels of loci from these large data 
sets	remains	a	challenge.	Here,	we	apply	a	machine-	learning	approach,	
RF and variations of RF as a useful method of feature selection across 
large	SNP	panels.	These	methods	may	be	used	for	further	application	
towards selecting relevant panels for monitoring stock and assessing 
wildlife management strategies.
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