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TNF-induced necroptosis is caused by
the activation of RIPK1 and the

subsequent production of reactive oxygen
species in the mitochondria, although the
intermittent molecules of the signaling
pathway responsible for this ROS-
mediated type of programmed necrosis
have not yet been identified. A recent
article by Shulga and Pastorino in the
Journal of Cell Science identifies RIPK1 as
the mediator of STAT3 Ser727 phosphor-
ylation, which leads to the translocation of
the latter into the mitochondria via its
interaction with GRIM-19, a member of
the mitochondrial complex I. Here we
discuss how the findings of the Shulga and
Pastorino study shed light onto the
involvement of STAT3 in necroptosis.

The pleiotropic effects of the proinflam-
matory cytokine tumor necrosis factor
(TNF) in activating various carious cell
death pathways implicate TNF in the
induction of a plethora of cellular pro-
cesses, including cell death and survival,
proliferation and differentiation.1 In terms
of cell survival or cell death pathways,
TNF signaling results in nuclear factor
kappa-B (NFkB) activation and survival,
apoptosis or programmed necrosis, and in
most cases these outcomes are mutually
exclusive.2 TNF can lead to the induction
of either necrotic or apoptotic pathways
via binding to the TNF-receptor 1
(TNFR1) that leads on to a cascade of
events, the final outcome of which
depends on the activation or inhibition
of caspases. Although the fact that TNF
can lead to either apoptosis or necrosis in
different cell types has been known for
some time,3 the discovery that TNF can

also induce a programmed form of
necrosis, called necroptosis, was made
more recently.4,5 Inhibition of TNF- and
Fas ligand (FasL)-induced apoptosis by
Fas-associated protein with death domain
(FADD), as well as deficiencies in caspase-
8 and FADD (or inhibition of caspase-8
by the pan-caspase inhibitor zVAD or by
viral proteins) result in necroptosis.5,6

Necroptosis requires the activation of
the serine/threonine kinase receptor-
interacting protein 1 (RIP1) and is defined
as a type of cell death that is inhibited
following ablation of RIP17-9 and this
necroptotic kinase activity of RIP1 can be
allosterically inhibited by necrostatins
without affecting the kinase-independent,
RIP1-mediated, activation of NFkB.10

RIP1 along with RIP3, TRADD and
FADD form the “necrosome” complex,
which differs from the pro-apoptotic
complex II in the lack of caspase-8.11

Both RIP1 and the related RIP3 regulate
their activation in the necroptotic process
via auto- and trans-phosphorylation and
their activity is required for the formation
of the necrosome and the execution of
necroptosis.12,13 In several cell types, the
production of reactive oxygen species
(ROS) by the mitochondrial complex I is
necessary for TNF-induced necrosis and
is regulated by RIP1 and RIP3.14,15

However, the downstream components
that link the necrosome with the metabolic
pathway have not been elucidated. The
recent study by Shulga and Pastorino
implicates the signal transducer and activ-
ator of transcription 3 (STAT3) in necro-
ptosis via its known interaction with
GRIM-19, a mitochondrial complex I
component.16 The Ser727 phosphorylation
of STAT3 leads to its translocation to the

JAK-STAT 1:3, 200–202; July/August/September 2012; G 2012 Landes Bioscience

200 JAK-STAT Volume 1 Issue 3

http://dx.doi.org/10.4161/jkst.20968
http://dx.doi.org/10.4161/jkst.20968
http://www.ncbi.nlm.nih.gov/pubmed/22393233
http://dx.doi.org/10.1242/jcs.103093
http://dx.doi.org/10.1242/jcs.103093


mitochondria, as opposed to Ser705 phos-
phorylation of STAT3 which leads to
nuclear translocation. The STAT3 Ser727
phosphorylation and its mitochondrial
translocation has now been found to be
dependent on RIP1 activity since RNA
silencing of RIP1 prevented both phos-
phorylation as well as the translocation
of STAT3 to the mitochondria, which
was associated with a reduction in ROS
production.16

STAT3 is present in the mitochondria
and its deletion leads to a decrease in the
activity of mitochondrial complexes I and
II, with reduced ROS production, indic-
ating its importance in cellular metabol-
ism.17 The most recent data both confirm
this metabolic role of STAT3 and addition-
ally link STAT3 with necroptosis. This
provides further evidence for a link between
necroptosis and energy metabolism since
STAT3 knockdown and expression of a
non-phosphorylatable STAT3 Ser727
mutant resulted in failure of GRIM-19
mitochondrial translocation and inhibition
of necroptosis. Similar results were obtained
following reduction of GRIM-19 expres-
sion.16 Furthermore, TNF-induced necrop-
totic death led to Ser727, but not Ser705,
phosphorylation of STAT3 and an increase
in ROS production.16

STAT3 has been implicated in cell
death pathways and more specifically
as an anti-apoptotic factor both in

tumorigenesis as well as in the ischemic
heart, where it acts as a cardioprotective
agent.18-20 The novelty of this study,
therefore, is the finding that STAT3 can
also function as a “pro-death” factor, albeit
in a non-apoptotic manner. The study also
suggests that RIP1 is a STAT3 kinase,
though further work, such as in vitro
kinase assays, is required to confirm this.16

The current study therefore raises some
interesting points: First, small amounts of
STAT3 are present in the mitochondria of
various organs, although, apart from the
present study, little is known about the role
of phosphorylation (or, indeed, other post-
translational modifications) in its bioener-
getic activity.17 STAT1 has also been
detected in cardiac mitochondria, and
ROS production in response to TNF-a
has been reported to be reduced in livers
from STAT1 knockout mice, although,
again, the influence of STAT 1 post-
translational modifications is unknown.21,22

The interaction of STATs (whether singly,
as homo- or heterodimers) with compo-
nents of the electron transport chain (ETC)
in modulating mitochondrial activity jus-
tifies more systematic investigation. Second,
while Shulga and Pastorino found no
evidence for STAT3 Tyr phosphorylation
in necroptosis, does Tyr phosphorylation,
with or without associated Ser phosphoryla-
tion, preferentially translocate STAT3 to the
nucleus and away from the mitochondria?

STAT3 phosphorylated only on the Ser
residue can be a nuclear protein and
therefore, does transcriptional activity con-
tribute to the effects of STAT 3 on
necroptosis? Third, what is the role of
RIP3 in the STAT3/GRIM-19-mediated
mitochondrial events during TNF-induced
necroptosis? The homotypic interaction of
RIP3 with RIP1 that leads to the formation
of the necrosome renders RIP3 an import-
ant constituent of the necroptotic mech-
anism that is recruited by RIP1 but is also
responsible for the phosphorylation of the
latter.12 Although it is known that RIP1 is
involved in TNF-induced ROS production
via recruitment of membrane-associated
NADPH oxidase, the role of RIP3 in this
process is still unknown.11,23

Therefore, this is a provocative study as
well as one that presents some novel and
unexpected observations. From the STAT3
perspective, in particular, it will be import-
ant to understand how the same protein can
inhibit apoptosis yet promote necroptosis
(Fig. 1). In a translational context, if we
attempt to activate STAT3 as an inhibitor of
apoptosis, for example, of neurons in stroke
and of cardiomyocytes in myocardial infarc-
tion, will we simultaneously promote
necroptosis with at best a neutral thera-
peutic outcome? Such considerations make
the more detailed understanding of how
STAT3 performs these antagonistic activ-
ities all the more necessary.

Figure 1. Model for a role of STAT3 in TNF-induced necroptosis according to the Shulga and Pastorino study. RIP1-mediated Ser727 phosphorylation of
STAT3 (1) and its subsequent interaction with GRIM-19 (2) lead to the mitochondrial translocation of STAT3 and GRIM-19 into the mitochondria, where
they elicit ROS production (3) and facilitate necroptosis (4) (A). Considering the new data, what are the key factors involved in STAT3 nuclear
translocation and is this activated by Tyr705 phosphorylation alone or is Ser727 phosphorylation implicated as well? And how is the inhibitory effect of
STAT3 on apoptosis linked to its induction of necroptosis (B)?
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