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Abstract: To study the thermal decomposition behavior of 4,4′-azobis(1,2,4-triazole) (ATRZ), the
non-isothermal thermal decomposition kinetics of ATRZ were studied using the thermogravimetric–
differential scanning calorimetry (TG–DSC) method. The TG–DSC of ATRZ was analyzed at heating
rates of 5, 10, 15, and 20 K·min−1 in an argon atmosphere. The thermal decomposition kinetic
parameters at peak temperature (Tp), such as apparent activation energy (Ea) and pre-exponential
factor (lgA) of ATRZ, were calculated using the Kissinger, Ozawa, and Satava–Sestak methods.
Ea and lgA calculated using the Kissinger, Ozawa, and Satava–Sestak methods are very close, at
780.2 kJ·mol−1/70.5 s−1, 751.1 kJ·mol−1/71.8 s−1, and 762.1 kJ·mol−1/71.8 s−1, respectively. Using a
combination of three methods, the reaction mechanism function g(α) of ATRZ was obtained. The
results show that the decomposition temperature of ATRZ is about 310 ◦C, and the decomposition
is rapidly exothermic. The pyrolysis path of ATRZ was investigated through a pyrolysis-gas chro-
matography mass spectrometry (PY-GC/MS) experiment. ATRZ has three different decomposition
paths and finally generates N2, HC-N-CH, N≡C-N, and HC=N-C≡N. The laser ignition combustion
duration of ATRZ was 0.5033 s and the peak temperature was 1913 ◦C. The laser ignition combustion
duration of ATRZ+CL-20 was 1.0277 s and the peak temperature was 2105 ◦C. The rapid energy
release rate of ATRZ promotes the combustion energy release of CL-20.

Keywords: ATRZ; thermal analysis; thermal properties; combustion

1. Introduction

In recent years, more and more attention has been paid to the theoretical calcula-
tion, synthesis, and application of polynitrogen compounds [1–4], especially nitrogen-rich
heterocyclic-based energetic compounds. Nitrogen-rich heterocyclic-based energetic com-
pounds such as tetrazole, triazole, pyrazole, imidazole, and oxadiazole are very promising
candidates [5,6]. Singly or doubly bonded polynitrogen compounds can decompose into
dinitrogen (N2), with an extremely large and rapid energy release, which makes them
attractive as potential explosives or propellants [7–9]. Single- and double-bond nitrogen
systems have a higher heat of formation. It has also been found that the heat of formation
of systems with continuous nitrogen atoms is higher than that of cyclic polynitrogen com-
pounds with a discontinuous nitrogen distribution [10]. 4,4′-azobis(1,2,4-triazole) (ATRZ)
is a polynitrogen compound with a high nitrogen content [11]. Related research work has
been carried out on ATRZ, including molecular dynamics calculations of its thermal decom-
position properties, while thermodynamic methods have been used to study its thermal
decomposition properties and the use of ATRZ as a high-energy-density metal–organic
framework [12–15]. In addition, nitrogen-rich salts based on polyamino-substituted N,N′-
azo-1,2,4-triazole are also a new family of high-performance energetic materials [16]. The
thermal decomposition behavior of explosives, including their kinetics, mechanisms, and
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interactions with additives, has attracted much attention, since it directly determines the
thermal stability of explosive-based composite energetic materials when exposed to exter-
nal stimuli [17–19]. Combustion is a type of reaction with a faster rate of energy release
than thermal decomposition. The thermal analysis and combustion behaviors of new
polynitrogen compounds is of great significance for the qualitative description of their
reaction laws in the combustion process, the establishment of mathematical models, the
calculation of their kinetic and thermodynamic parameters, and the development and
application of new polynitrogen compounds.

The weight percentage of N element in the ATRZ molecule is 68.29%, and the molecule
contains C-N bonds, N-N bonds, and N=N bonds, which have high theoretical energy
storage. The crystal morphology and element distribution of ATRZ have been characterized.
To study the thermal stability of ATRZ, the non-isothermal thermal decomposition process
of ATRZ was analyzed through thermogravimetric (TG) analysis and differential scanning
calorimetry (DSC) in this study. The activation energy (Ea) and pre-exponential factor
(lgA) of its thermal decomposition reaction process were obtained, laying a foundation
for its application in explosives. In order to explore the reaction mechanism of ATRZ in
a rapidly heating environment, the thermal pyrolysis process of ATRZ was investigated
using pyrolysis-gas chromatography mass spectrometry (PY-GC/MS). The combustion
duration and temperature of ATRZ were studied through laser ignition. The effects of
the rapid energy release property of ATRZ on the combustion of 2,4,6,8,10,12-hexanitro-
2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) were investigated.

2. Results and Discussion
2.1. Morphology Characterization of ATRZ

ATRZ is composed of two triazole rings and azo bonds and has a symmetric coplanar
molecular structure. Its molecular structure is shown in Figure 1. ATRZ has an excellent
nitrogen content, with a theoretical content of 68.29% and a carbon content of 29.27%. The
ATRZ molecule contains one N=N double bond, four N-N single bonds, and four C=N
double bonds, which have a high energy storage in theory. Additionally, the molecule does
not contain the nitro group, which has a better safety profile.
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Figure 1. Molecular structure of ATRZ.

The crystal morphology of ATRZ is shown in Figure 2a–d. The crystal morphology
of ATRZ features an irregular block structure, and its length is roughly 150–300 µm. The
long to short axis ratio of ATRZ crystal is about 2.0. There are no obvious crystal defects
on the surface of ATRZ crystal. Within the visual range, it can be seen that about 80% are
large-sized crystals of ATRZ, while the rest are crystal debris of ATRZ.

The part shown in Figure 3a was selected for element distribution analysis. Figure 3b–d
show the surface element distributions of ATRZ. The mass percentage of N element was
65.24% and the mass percentage of C element was 33.13%, which is in agreement with the
theoretical calculation value.
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2.2. Thermal Decomposition Kinetics of ATRZ

The heat flow and thermo-gravimetric curves of ATRZ and CL-20 at different heating
rates are shown in Figure 4. The results show that the decompositions are exothermic
processes at the experimental temperatures. With the increase in the heating rate, the
thermal decomposition peak temperature (Tp) of ATRZ gradually increased, the Tp was
stable at around 310 ◦C, and the Tp of CL-20 was around 240 ◦C. At every heating rate,
the Tp of ATRZ was higher than that of CL-20. As shown in Figure 2c,d, the weight loss
of ATRZ was between 94.62 and 97.22%, while the weight loss of CL-10 was between
82.96 and 88.07%. The thermal decomposition reaction of ATRZ involves the cleavage of
its intermolecular N-N single bond and N=N double bond, and no intramolecular redox
reaction occurs. The thermal decomposition of traditional ammonium nitrate explosives
is mainly an intramolecular redox reaction, and the presence of nitro groups also greatly
increases the sensitivity of CL-20.
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Figure 4. TG–DSC curves of ATRZ and CL-20 at different heating rates. DSC curve of ATRZ (a), DSC
curve of CL-20 (b), TG curve of ATRZ (c) and TG curve of CL-20 (d).

The kinetic parameters of ATRZ and Cl-20 at Tp were fitted and calculated by Kissinger’s
Equation (1) [18].
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β
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AKR
EK
− EK

R
1
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where T is the reaction thermodynamic temperature, R is the gas molar constant
(8.314 J·mol−1·K−1), EK is the apparent activation energy, AK is the pre-exponential factor,
and β is the heating rate.

Figure 5 shows that the thermal decomposition kinetic curves of ATRZ and CL-20
fitted by the Kissinger method have a good degree of fit. The Tp values at different heating
rates and kinetics of ATRZ and CL-20 are listed in Table 1. From the original data shown in
Table 1, the values of EK and lgAK obtained by the Kissinger method are listed. ATRZ had
a higher EK than CL-20, indicating that ATRZ has a better thermal stability than CL-20 at
different heating rates. Additionally, the lgAK of ATRZ was also greater than that of CL-20,
indicating that ATRZ has a higher energy release rate. The main reason for this is that the
energy release form of ATRZ is the breaking of the intramolecular N-N single bond and
N=N double bond.
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CL-20 (b).

Table 1. Peak temperatures and kinetics parameters of different pyrolysis systems obtained
by Kissinger.

Samples β/K·min−1 Tp (◦C) EK (kJ/mol) lgAK (s−1)

ATRZ

5 306.1

780.2 70.5
10 309.3
15 310.1
20 310.9

CL-20

5 235.4

239.3 24.3
10 241.9
15 245.8
20 247.3

According to Equation (1), a linear plot of ln(β/Tp
2) against 1000/T at the same

fractional conversion was drawn, as shown in Figure 6. Figure 7 shows the variation in EK
with the degrees of reaction determined by Kissinger. It can be seen from Figure 7 that the
thermal decomposition process of ATRZ can be roughly divided into two stages. The first
stage was before the reaction depth of 0.6. At this time, the Ek was high, the decomposition
was relatively slow, and it was in the endothermic stage. The second stage was the rapid
decomposition stage, which released a lot of heat and produced a lot of gas. This was also
verified by the TG–DSC curve. The reaction depth at the peak temperature was between
0.6 and 0.7, and the apparent activation energy at this time also corresponded.
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The Ozawa method and the Satava-Sestak method were used to further study the ther-
mal decomposition process of ATRZ. Ozawa’s Equation (2) and Satava-Sestak’s Equation (3)
are as follows:

lgβ = lg[
AoEo

Rg(α)
]− 2.315− 0.4567

Eo

RT
(2)

ln g(α) = ln
ASES

Rβ
− 5.330− 1.0516

ES
RT

(3)

Using the Satava–Sestak method, the 30 mechanism functions given in Table 2 were
used to determine a linear relationship between lng(α) and 1/T. Then, the apparent activa-
tion energy ES and pre-exponential factor AS were obtained from the slope. According to
the calculation results, we selected the AS corresponding to the activation energy ES in the
range of 0 < ES < 400 kJ·mol−1. Compared with the activation energy obtained by the Ozawa
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method, the obtained activation energy satisfied the condition |(EO − ES)/EO| ≤ 0.1. Ad-
ditionally, compared with the lnAK obtained by the Kissinger method, the lnAS was in the
form |(lnAS − lnAK)/lnAS| ≤ 0.46. Only the integral function g(α) satisfying both condi-
tions can be the integral form of the reaction mechanism function of thermal decomposition.

Table 2. The functional expressions of 30 kinetic models g(α).

No. g(α)

1 α2

2 α + (1− α) ln(1− α)

3 (1− 2
3 α)− (1− α)

2
3

4–5 [1− (1− α)
1
3 ]

n
(n = 2, 1

2 )

6 [1− (1− α)
1
2 ]

1
2

7 [(1− α)
1
3 − 1]

2

8 [1/(1 + α)
1
3 − 1]

2

9 − ln(1− α)
10–16 [− ln(1− α)]n(n = 2

3 , 1
2 , 1

3 , 4, 1
4 , 2, 3)

17–22 1− (1− α)n(n = 1
2 , 3, 2, 4, 1

3 , 1
4 )

23–27 αn(n = 1, 3
2 , 1

2 , 1
3 , 1

4 )

28 (1− α)−1

29 (1− α)−1 − 1
30 (1− α)−

1
2

Through calculation and screening, No. 3 in Table 2 was obtained as the mechanism
function corresponding to g(α). According to Equation (2), a linear plot of lgβ against
1000/T at the same fractional conversion can be drawn as Figure 8. Figure 9 shows the
variation in EO with the degrees of reaction by Ozawa.

g(α) = (1− 2
3

α)− (1− α)
2
3 (4)

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 8. EO analysis diagram of ATRZ created by the Ozawa method. 

 
Figure 9. The EO curves of pyrolysis vs. degree of reaction created by the Ozawa method. 

According to the g(α) obtained by computational screening, the apparent activation 
energy and pre-exponential factor at the peak temperature were calculated using the 
Ozawa method and the Satava–Sestak method, respectively, as shown in Table 3. The ap-
parent activation energy and the pre-exponential factor at the peak temperature calcu-
lated by the three methods were relatively close, and the calculated results were accurate. 

Table 3. Ea and lgA calculated by the three methods. 

Methods Ozawa Satava–Sestak Kissinger 
Ea (kJ/mol) 751.1 762.1 780.2 

lgA (s−1) 71.8 71.1 70.5 

2.3. Thermal Pyrolysis Analysis of ATRZ 
PY-GC/MS was used to investigate the decomposition processes and pyrolysis prod-

ucts of ATRZ. The decomposition path and mechanism of ATRZ were analyzed. Figure 
10a shows the total ion fragmentation chromatogram of ATRZ. ATRZ mainly showed 
chromatographic peaks at retention times of 1.46, 1.61, 1.67, and 1.75 min, with the most 
abundant being at 1.61 and 1.67 min. The mass spectra corresponding to the four chroma-
tographic peaks are shown in Figure 10b–e, respectively. 

Figure 8. EO analysis diagram of ATRZ created by the Ozawa method.



Int. J. Mol. Sci. 2022, 23, 11313 8 of 13

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 8. EO analysis diagram of ATRZ created by the Ozawa method. 

 
Figure 9. The EO curves of pyrolysis vs. degree of reaction created by the Ozawa method. 

According to the g(α) obtained by computational screening, the apparent activation 
energy and pre-exponential factor at the peak temperature were calculated using the 
Ozawa method and the Satava–Sestak method, respectively, as shown in Table 3. The ap-
parent activation energy and the pre-exponential factor at the peak temperature calcu-
lated by the three methods were relatively close, and the calculated results were accurate. 

Table 3. Ea and lgA calculated by the three methods. 

Methods Ozawa Satava–Sestak Kissinger 
Ea (kJ/mol) 751.1 762.1 780.2 

lgA (s−1) 71.8 71.1 70.5 

2.3. Thermal Pyrolysis Analysis of ATRZ 
PY-GC/MS was used to investigate the decomposition processes and pyrolysis prod-

ucts of ATRZ. The decomposition path and mechanism of ATRZ were analyzed. Figure 
10a shows the total ion fragmentation chromatogram of ATRZ. ATRZ mainly showed 
chromatographic peaks at retention times of 1.46, 1.61, 1.67, and 1.75 min, with the most 
abundant being at 1.61 and 1.67 min. The mass spectra corresponding to the four chroma-
tographic peaks are shown in Figure 10b–e, respectively. 

Figure 9. The EO curves of pyrolysis vs. degree of reaction created by the Ozawa method.

According to the g(α) obtained by computational screening, the apparent activation
energy and pre-exponential factor at the peak temperature were calculated using the Ozawa
method and the Satava–Sestak method, respectively, as shown in Table 3. The apparent
activation energy and the pre-exponential factor at the peak temperature calculated by the
three methods were relatively close, and the calculated results were accurate.

Table 3. Ea and lgA calculated by the three methods.

Methods Ozawa Satava–Sestak Kissinger

Ea (kJ/mol) 751.1 762.1 780.2
lgA (s−1) 71.8 71.1 70.5

2.3. Thermal Pyrolysis Analysis of ATRZ

PY-GC/MS was used to investigate the decomposition processes and pyrolysis prod-
ucts of ATRZ. The decomposition path and mechanism of ATRZ were analyzed. Figure 10a
shows the total ion fragmentation chromatogram of ATRZ. ATRZ mainly showed chromato-
graphic peaks at retention times of 1.46, 1.61, 1.67, and 1.75 min, with the most abundant
being at 1.61 and 1.67 min. The mass spectra corresponding to the four chromatographic
peaks are shown in Figure 10b–e, respectively.

According to the total ion fragmentation chromatogram of ATRZ shown in Figure 10
and the corresponding mass spectra of the chromatographic peaks of the four main retention
times, the pyrolysis path of ATRZ was inferred, as shown in Figure 11. ATRZ was initially
decomposed into intermediate (1) and N2. Intermediate (1) was then mainly decomposed
to product (7) and N2, with the accompanying production of intermediates (2) and (5).
Intermediates (2) and (5) decomposed in reverse to intermediate (1). The triazole ring
in intermediate (2) was gradually opened, accompanied by the stepwise generation of
intermediates (3) and (4). Finally, intermediate (4) decomposed into the final products (8)
and (9). The four C=N double bonds on the triazole ring in intermediate (5) were cleaved
to form intermediate (6) and N2. Intermediate (6) eventually decomposed to product (7).
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2.4. Combustion Measurements

Figure 12a shows the combustion state of ATRZ and ATRZ+CL-20 burning in the
air. The flame range of ATRZ+CL-20 was wider than that of ATRZ. Figure 12b shows
the temperature change with time during the combustion of ATRZ and ATRZ+CL-20.
ATRZ+CL-20 had a longer combustion duration and higher peak temperature than ATRZ.
In the middle of the combustion process, ATRZ had an obvious temperature reduction
stage, which may be the reason why the peak temperature of ATRZ was lower than that of
ATRZ+CL-20. The combustion duration of ATRZ was 0.5033 s, while that of ATRZ+CL-20
was 1.0277 s. This shows that the rapid combustion energy release of ATRZ promoted the
combustion energy release of CL-20.
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3. Materials and Methods

ATRZ was prepared by Beijing Institute of Technology and had a purity of 97%. CL-20
was obtained from Liaoning Qing Yang Special Chemical Co., Ltd. (Liaoyang, China).
ATRZ and CL-20 were dried in a vacuum oven at 50 ◦C for 48 h before use to avoid the
influence of water on the test. ATRZ and CL-20 were evenly mixed using the mechanical
mixing method at a mass ratio of 3:2.

A scanning electron microscope (SEM, S-4700 Hitachi, Tokyo, Japan) was used to ex-
plore the crystal morphology of the ATRZ, and the element distribution of the ATRZ was de-
termined by an energy dispersive spectrometer (EDS) equipped on a SEM device. TG–DSC
(STA 449F3, Netzsch, Serb, Germany) was used to analyze the thermal performance of
ATRZ and CL-20. The TG–DSC test was carried out in an open crucible with an argon atmo-
sphere and a 20 mL·min−1 gas flow rate, and the heating rates were 5 K·min−1, 10 K·min−1,
15 K·min−1, and 20 K·min−1, respectively. Coupling pyrolysis-gas chromatography mass
spectrometry (PY-GC/MS) spectra were recorded by the EGA/PY-3030D apparatus and
Shimadzu 2010 GC/MS apparatus (Shimadzu, Kyoto, Japan). About 2 mg of sample was
placed in a quartz capillary tube of pyroprobe and the whole assembly was kept in the
pyrolyzer for thermal decomposition at 400 ◦C for 12 s. The pyrolyzer was connected to
gas chromatography. Helium was used as the carrier gas at a flow rate of 1 mL·min−1 with
a back-up pressure of 10 psi. An Elite-5 capillary column (30 mm × 0.25 mm × 0.25 mm)
was employed for the study, with cross-bonded diphenyl-5% and dimethyl polysiloxane-
95% used as a stationary phase. Quadrupole mass spectrometer hyphenated with GC was
used to record the mass spectra of the corresponding chromatogram. Afterwards, ~20 mg
ATRZ and ATRZ+CL-20 were ignited by the CO2 laser with a power of 50 W and duration
of 500 ms, and a highspeed camera (Qianyanlang X113, Hefei, China) was used to record
the ignition and combustion processes at a speed of 10,000 fps. The sample was weighed for
each experiment and uniformly placed in the groove. The schematic diagram of the groove
is shown in Figure 13. The dimensions of the groove were 50.0 mm × 5.0 mm × 3.0 mm.
The sample was pressed using a bar to ensure that its upper face was flat; the sample height
was 2.00 mm.
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4. Conclusions

The crystal morphology, non-isothermal thermal decomposition kinetics, and combus-
tion behaviors of ATRZ are demonstrated in this work. The crystal morphology of ATRZ is
an irregular long rod, and the length is about 150 µm. With the increase in the heating rate,
the Tp of ATRZ gradually increased, and the Tp is stable at around 310 ◦C. Compared with
CL-20, ATRZ has a higher thermal decomposition temperature. The thermal decomposition
reaction of ATRZ involves the cleavage of the intermolecular N-N single bond and N=N
double bond, and no intramolecular redox reaction occurs. The thermal decomposition of
traditional ammonium nitrate explosives is mainly an intramolecular redox reaction, and
the presence of nitro groups also greatly increases the sensitivity of CL-20. The E and lgA of
ATRZ are higher than those of CL-20, which indicates that ATRZ has a better thermal sta-
bility and faster energy release rate. The pyrolysis path of ATRZ was investigated through
a pyrolysis-gas chromatography mass spectrometry (PY-GC/MS) experiment. ATRZ has
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three different decomposition paths and finally generates N2, HC-N-CH, N≡C-N, and
HC=N-C≡N. The rapid combustion energy release rate of ATRZ can stimulate and promote
the combustion of CL-20. The combustion duration and flame temperature of ATRZ+CL-20
are significantly higher than those of ATRZ.
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Abbreviations

ATRZ 4,4′-azobis(1,2,4-triazole)
TG Thermogravimetric
DSC Differential scanning calorimetry
PY-GC/MS Pyrolysis-gas chromatography mass spectrometry
Tp Peak temperature
β Heating rate
α Extent of conversion
Ea Activation energy
EK Activation energy for the Kissinger method
EO Activation energy for the Ozawa method
ES Activation energy for the Satava–Sestak method
lgA Pre-exponential factor
lgAK Pre-exponential factor for the Kissinger method
lgAO Pre-exponential factor for the Ozawa method
lgAS Pre-exponential factor for the Satava–Sestak method
CL-20 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
SEM Scanning electron microscope
EDS Energy dispersive spectrometer
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