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Abstract: The poly(A) tail at the 3′ end of mRNAs determines their stability, translational efficiency,
and fate. The shortening of the poly(A) tail, and its efficient removal, triggers the degradation of
mRNAs, thus, regulating gene expression. The process is catalyzed by a family of enzymes, known
as deadenylases. As the dysregulation of gene expression is a hallmark of cancer, understanding
the role of deadenylases has gained additional interest. Herein, the genetic association network
shows that CNOT6 and CNOT7 are the most prevalent and most interconnected nodes in the
equilibrated diagram. Subsequent silencing and transcriptomic analysis identifies transcripts possibly
regulated by specific deadenylases. Furthermore, several gene ontologies are enriched by common
deregulated genes. Given the potential concerted action and overlapping functions of deadenylases,
we examined the effect of silencing a deadenylase on the remaining ones. Our results suggest that
specific deadenylases target unique subsets of mRNAs, whilst at the same time, multiple deadenylases
may affect the same mRNAs with overlapping functions.
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1. Introduction

The poly(A) tail is a key element that determines mRNA stability and is central to
the regulation of gene expression. The shortening and removal of the tail by specific 3′

exoribonucleases, known as deadenylases, is the first and rate-limiting step of mRNA
degradation [1,2]. At least 10 deadenylases were characterized in humans, classified into
two families; DEDD (after the conserved Asp and Glu residues in the active site) and
the EEP (exonuclease–endonuclease–phosphatase) [1]. Deadenylases may act in multi-
subunit complexes, such as the carbon catabolite repressor protein 4 (CCR4)-negative on
TATA (NOT) complex (CCR4–NOT or CNOT) [3], in heterocomplexes, including the Pan2–
Pan3 complex consisting of a 1:2 stoichiometry [4,5], and oligomeric, such as the poly(A)-
specific ribonuclease (PARN) [6,7]. The CCR4–NOT complex is the dominant deadenylase
complex in humans and flies. It consists of two deadenylases (CCR4 and CAF1) and
non-catalytic subunits, including the conserved NOT1, NOT2, NOT3, and CAF40 [3]. The
complex is characterized by the presence of one deadenylase from each family; CNOT7 or
CNOT8 (DEDD), and CNOT6 or CNOT6L (EEP), respectively. The presence of multiple
deadenylases raises several questions: whether they act on specific mRNA subsets, or
multiple deadenylases target the same mRNA, with discrete but overlapping functions [1].
These suggest that the control of mRNA turnover is dictated by the regulation of the
activity of these enzymes, as well as by factors that recruit deadenylases in their targets,
including proteins and microRNAs [2]. Further, it was proposed that deadenylases act in
concert; PAN2 deadenylase initiates the shortening of a reporter β-globin mRNA in mouse
NIH3T3 fibroblasts poly(A) tail to roughly half the length, while CNOT6 (Ccr4a) completes
the removal, triggering the degradation of the entire mRNA [8]. Another question is the
timing of the deadenylation and subsequent degradation; several microRNAs that recruit
deadenylases to target RNAs for degradation are rhythmic, yet the knowledge on the
time-dependent activation of deadenylases, and mRNA degradation under time-keeping
phenomena, is very limited and only one circadian deadenylase has been characterized so
far [9].

Several studies highlight the role of deadenylases in cancer, when gene expression is
dysregulated [10–12]. Thus, CNOT6L modulates the levels of p27Kip1, a tumor suppressor
that also functions as an oncogene [12–14]. CNOT7 and the subsequent transcriptional
decay were proposed to determine progression, further suggesting that targeting the
deadenylase activity might propose novel therapy [15]. PARN is activated by the tumor
suppressor BARD1 and may, in turn, act as tumor suppressor, destabilizing c-fos, c-jun,
IL-8, uPA, VEGF, and TNF-alpha mRNAs [16–20], while in concert with the miR-125b that
regulates the levels of p53 mRNA [21]. In line with the latter, the depletion of PARN in cells
of gastric cancer origin is associated with increased levels of p53 [22].

Regarding the levels of deadenylases in cancer, it is shown that in acute types of
leukemia (AML, ALL), the levels of both PARN and CNOT6 increase compared to non-
malignant clinical samples, while the opposite is the case for CNOT6L and CNOT7 [23].
SNPs in the CNOT6 gene are significantly associated with B-cell ALL susceptibility [24], and
a significant loss in the CNOT6L copy number is reported in human colon adenocarcinoma
samples [25]. The expression of CNOT8 is elevated in primary colorectal carcinoma and
metastatic legions compared to the normal mucosa [26]. Regarding lung cancer, it is
reported that in clinical samples from SCC, the expression of PARN, CNOT6, and Nocturnin
is associated with overall survival, while CNOT6 overexpression is a strong indicator
against metastasis, thus highlighting deadenylases as promising survival and prognostic
factors in lung cancer [27]. Of note, Nocturnin (NOC) is now considered as a phosphatase,
instead of a deadenylase [28]. The previous observations imply that deadenylases both
regulate the stability of important cancer-related mRNAs, and that their levels vary in
cancer subtypes, suggesting that they might be used as biomarkers, with diagnostic and
prognostic values.

In this work, based on our previous study of deadenylases in SCC, we investigated the
impact of PARN and the members of the CNOT complex, CNOT6, CNOT6L, CNOT7, and
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CNOT8 on gene expression. We designed a genetic association network, silenced each one
of these enzymes in two cell lines (NCI-H520 of SCC origin and HEp-2 cells used in studies
on lung cancer, and analyzed the changes in gene expression with cDNA microarrays. We
extended the analysis into a third cell line, MCF7, previously used to study the impact of
CNOT deadenylases on global gene expression. Several transcripts and gene ontologies are
regulated by specific deadenylases, while CNOT8 is not expressed in NCI-H520 cells. We
also examined the impact of silencing a deadenylase on the expression levels of the other
enzymes. Our results suggest that specific deadenylases target unique subsets of mRNAs,
while at the same time multiple deadenylases act on the same mRNA with overlapping
functions. A deadenylase affects the levels of the other enzymes, and may also compensate
for members that are not expressed.

2. Results
2.1. Genetic Association Studies for CNOT6, CNOT6L CNOT7, CNOT8, and PARN

The previous observations on the emerging role of deadenylases in gene expression
in cancer highlight the need for the investigation of genetic interplay of key genes in the
disease. Similar gene expression patterns [29], the interaction between gene products of
known genes [30], and similar phylogenetic profiles [31] are indications of similar functions
of these genes. The existing algorithms used for predicting gene function mainly use
the guilt-by-association principle. Their application involves adding related genes to a
“seed-list” of functionally known genes. These algorithms typically compute a “functional
correlation network” to represent each dataset, where each node corresponds to proteins or
genes, and the ends are weighted according to co-functionality data. The kernels used by
support vector machines (SVMs) [32,33], functional association networks [34], and protein-
protein association maps [35] are three types of functional association networks. Individual
association networks are often combined to create a complex association network that
summarizes all indications of co-functionality. The predictions of these algorithms are
quite accurate in the case of non-annotated genes, since using multiple complementary
data sources means they are able to accurately predict previously annotated gene functions
blind [36]. In the case of the genes in this study, namely, CNOT6, CNOT6L CNOT7, CNOT8,
and PARN, the genetic network returns quite intriguing associations.

The guilt-by-association genetic networks, despite their advantages, are not yet widely
used for gene annotation or new hypotheses about gene function. Centrally managed
web-based “prediction servers” are an effective strategy for ensuring access to available pre-
dictions, since collecting large numbers of heterogeneous data sources, creating functional
association networks to represent these sources, and mapping gene identifiers between
networks is a complex process. However, most predictive servers promote speed while
sacrificing accuracy, and their predictions are stored in static databases that can easily
become outdated [37,38].

Label propagation algorithms, such as the Gaussian field label propagation algo-
rithm [39], are used to predict gene function from the complex network. Like most predic-
tion algorithms, these algorithms rate each node on the network at a so-called “discrete
value”, which is a threshold for making predictions, as it reflects the calculated degree
of correlation that the node has in the seed list, which determines the given function. In
addition to the Gaussian field tag diffusion algorithm, there is a wide variety of label
propagation algorithms, such as those based on functional flow [40] or Markov random
fields [41].

Based on the previous study, the genetic association network for the CNOT6, CNOT6L
CNOT7, CNOT8, and PARN genes was designed. The aim was to exploit both the large
amount of data, and the variety of genetic and proteomic data, to predict the functions of
known genes by in silico techniques. The genetic network was constructed with GeneMA-
NIA, and demonstrates that the CNOT deadenylases form an association network, while
PARN seems to associate with CNOT8 (Figure 1). The designed genetic network provides
invaluable information on the crosstalk and interplay between those genes. Depending on
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the mode of association of the abovementioned genes (co-expression, pathway, physical
contact, or co-localization), the number of lines/interactions between sets of genes pin-
points the significance of each node (gene) on the constructed network. However, since
this is a computational approach, the unique interplay and crosstalk amongst the CNOT6,
CNOT6L, CNOT7, CNOT8, and PARN genes is confirmed and further investigated. Based
on the findings of the genetic network, it is noticeable that CNOT6 and CNOT7 are the most
prevalent and most interconnected nodes in the equilibrated diagram. In this direction,
a microarray analysis was sought to corroborate the expression levels and interactions
observed in our in silico study.
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Figure 1. Genetic association network for CNOT6, CNOT6L CNOT7, CNOT8, PARN deadenylases.
The genetic network shows the most frequent neighboring genes. Every gene is represented as a node
(query genes are in grey color). Genes are linked by associated networks that include co-expression,
physical contact, co-localization, genetic interactions, pathways, and shared protein domains. Lines
represent the abovementioned different interactions between the gene nodes.

2.2. Each Deadenylase Has a Limited Number of Specific Target Transcripts

According to the genetic network, we examined the association between CNOT dead-
enylases and the impact on gene expression in two cell lines of different cancer origin,
NCI-H520, of squamous cell lung carcinoma, and HEp-2, originally derived from human
epidermoid (Hep) carcinoma of the larynx [42,43]. NCI-H520 (H520) cells were isolated
from the lung tissue of a male squamous cell carcinoma patient. Genetic alterations, in-
cluding the mutation of the epidermal growth factor receptor, or v-Ki-ras2 kirsten rat
sarcoma viral oncogene homolog, and the fusion of anaplastic lymphoma kinase (ALK),
RET proto-oncogene (RET), or v-ros UR2 sarcoma virus oncogene homolog 1 (ROS1),
occur in non-small cell lung cancers [44]. A search conducted in the Expasy database
for mutations in NCI-H520 rendered three mutated genes: ATM, CDKN2A, and TP53
(https://web.expasy.org/cellosaurus/CVCL_1566) (accessed on 5 April 2022). We ex-
tended our search for mutations in COSMIC (Catalogue Of Somatic Mutations In Cancer;
https://cancer.sanger.ac.uk/cosmic (accessed on 10 February 2022) [45]. The search of the
COSMIC Cell Line Gene Mutation Profiles dataset rendered at least 445 mutated genes

https://web.expasy.org/cellosaurus/CVCL_1566
https://cancer.sanger.ac.uk/cosmic
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from NCI-H520 cells; https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=908443
(accessed on 10 February 2022) [46]. The sequencing of the p53 cDNA for HEp-2 shows no
mutations, while the cells produced HPV 18/E6-inactivated protein [47].

The combination of the observations on gene expression alterations in SCC upon
silencing of the deadenylases of the CCR4-NOT complex with previous results of PARN
silencing [27] reveal transcripts that are differentially expressed upon deadenylase silencing.
Subsequently, we performed genome-wide expression analysis to identify possible target
transcripts upon a shRNA mediated knockdown of CNOT6, CNOT6L, CNOT7, PARN,
and NOC. NOC was originally described as a deadenylase, yet it is currently considered
as a phosphatase [28]. Nevertheless, we included NOC in our analysis, as it was studied
in the regulation of several biological processes and gene expression studies, including
lung cancer [27,48,49]. CNOT8 expression is not detectable in NCI-H520 cells by RT-qPCR,
and was not included in our analysis. Upon the silencing of CNOT6, CNOT6L, CNOT7,
PARN, and NOC in NCI-H520 cells, we detect 582, 379, 360, 323, and 313 transcripts be-
ing upregulated more than two-fold (fold-change 2; FC ≥ 2.0), respectively (Figure 2A,
Table S1). In addition, only some mRNAs show decreased levels in CNOT6, whereas 114,
135, 85, and 171 mRNAs decrease in CNOT6L, CNOT7, PARN, and NOC in NCI-H520
knockdown (KD) cells, respectively, compared to their controls (Figure 2B, Table S1). We
also detect 23 upregulated genes and 33 downregulated genes, common across all 5 dead-
enylases knockdown experiments (Figure 2A,B). The transcripts that are deregulated upon
the silencing of only one deadenylase are possible exclusive targets of that deadenylase.
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(B) Venn diagrams showing downregulated transcripts of CNOT6, CNOT6L, CNOT7, PARN, and
NOC KD in in NCI-H520 cells. (C) Venn diagrams showing upregulated transcripts of CNOT6,
CNOT7, CNOT8, PARN, and NOC KD in HEp-2 cells. (D) Venn diagrams showing downregulated
transcripts of CNOT6, CNOT7, CNOT8, PARN, and NOC KD in HEp-2 cells. The numbers represent
differentially expressed transcripts, the levels of which are altered by FC ≥ 2.0 upon silencing of the
indicated deadenylase.

To obtain more insight into the molecular functions and biological processes of the
identified differentially expressed transcripts, we performed over-representation analysis
(ORA) of gene ontology (GO) categories using the ConsensusPathDB-human online tool
(http://consensuspathdb.org/ (accessed on 21 March 2021) [50,51]. The analysis of the com-
mon upregulated transcripts reveals 30 enriched GOs, while of the common downregulated
transcripts reveals 21 enriched GOs (Table S2).

We have previously shown that PARN and NOC affect diverse mRNA populations
in different cell lines [27]. Thus, HEp-2 cells were treated with shRNAs targeting CNOT6,
CNOT7, CNOT8, PARN, and NOC. CNOT6L is not efficiently silenced in HEp-2 cells, and,
thus, its impact is not examined. Microarray analysis results in 1406 upregulated transcripts,
with only 6 transcripts common among deadenylases. Further, among 3037 downregulated
transcripts, 80 are common (Figure 2C,D, Table S3). Following deadenylases silencing, only
3 GOs are predicted to be enriched by the common upregulated transcripts, and 18 GOs by
the common downregulated transcripts (Table S4).

Taken together, the silencing of deadenylases in two cell lines of different cancer
origin (NCI-H520 and HEp-2) affects different groups of transcripts with very few genes
in common, suggesting a discrete role for each enzyme in different cancer types. It seems
that the levels and the stability of the majority of transcripts are meticulously controlled, as
very few transcripts are regulated by a single deadenylase.

2.3. Deadenylase Silencing–Comparison with MCF7 Cell Line

To extend the previous analysis, we included data from silencing of CNOT6, CNOT6L,
CNOT7, and CNOT8 from another cell line, namely, MCF7 (derived from pleural effu-
sion of breast carcinoma), based on previous studies [52,53]. In the studies of Aslam
and coworkers, and Mittal and coworkers, the analysis is based on 1.5-fold changes
(FC ≥ 1.5) of the levels of transcripts. To acquire comparable results, we modified our
analysis on NCI-H520 and HEp-2 cells, calculating alterations in the transcript levels by
FC ≥ 1.5. Upon the silencing of CNOT6 in NCI-H520 and HEp-2, and compared to the
silencing of CNOT6/CNOT6L in MCF-7 cells, we found 45 common upregulated genes
between NCI-H520 and HEp-2, 2 between CNOT6 KD NCI-H520 and CNOT6/CNOT6L
KD MCF7 cells (GPR81, DCLK1), and 5 between HEp-2 and CNOT6/CNOT6L KD MCF7
cells (LMO3, MUCL1, SLITRK6, GALNT12, and F7). We find only three common down
regulated genes in NCI-H520 and HEp-2 cells (LYPD1, GPR153, and RBM24). Our anal-
ysis also reveals only two common upregulated genes in CNOT6L KD NCI-H520 and
CNOT6/CNOT6L KD MCF7 cells (CXCL17, GPR81), but no common downregulated
transcripts among CNOT6L KD NCI-H520, HEp-2, and MCF7 cells. CNOT7 KD in HEp-2
results in 23 common upregulated with NCI-H520, and 15 in CNOT7/CNOT8 KD MCF-7
cells, while CNOT7 KD in NCI-H520 reveals only 5 common upregulated genes compared
to CNOT7/CNOT8 KD MCF-7 cells (GRHL3, BLNK, MAP2, IL4R, and COL27A1). Less
common downregulated transcripts are found upon CNOT7 silencing between HEp-2 and
NCI-H520, and HEp-2 and CNOT7/CNOT8 KD MCF-7 cells. Only 13 common upregu-
lated, and 6 downregulated, genes are found between HEp-2 and CNOT7/CNOT8 KD
MCF7 cells (Table S5). We do not identify any common deregulated transcripts among
the three cells lines. The results of the upregulated and downregulated transcripts of the
above-mentioned silencing experiments are summarized in the Venn diagrams presented
in Figure 3. Taken together, these results suggest that a very limited number of transcripts
are commonly affected among three cell lines, while the absence of any common target

http://consensuspathdb.org/
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suggests that deadenylases target specific transcripts, likely through differential regulation
and recruitment in a tissue-dependent manner.
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HEp-2, and MCF7 cells. (A–C) Venn diagrams showing upregulated transcripts after silencing of
CNOT6 and CNOT6L, CNOT7 and CNOT8 in NCI-H520, HEp-2, and MCF7 cells. (A) Silencing
of CNOT6 and CNOT6L in NCI-H520, HEp-2, and MCF7 cells, and in combination with CNOT6L
(C6 + C6L) in MCF7 cells. (B) Silencing of CNOT7 in NCI-H520, HEp-2, and MCF7 cells and in
combination with CNOT8 (C7 + C8) in MCF7 cells. (C) Silencing of CNOT8 in HEp-2 and MCF7
cells, and in combination with CNOT7 (C7 + C8) in MCF7 cells. (D–F). Venn diagrams showing
downregulated transcripts after silencing of CNOT6, CNOT6L, CNOT7, and CNOT8 in NCI-H520,
HEp-2, and MCF7 cells. (D) Silencing of CNOT6 and CNOT6L in NCI-H520, HEp-2, and MCF7 cells,
and in combination (C6 + C6L) in MCF7 cells. (E) Silencing of CNOT7 in NCI-H520, HEp-2, and MCF7
cells, and in combination with CNOT8 (C7 + C8) in MCF7 cells. (F) Silencing of CNOT8 in HEp-2
and MCF7 cells, and in combination with CNOT7 (C7 + C8) in MCF7 cells. The numbers represent
differentially expressed transcripts, the levels of which are altered by FC ≥ 1.5 upon silencing of the
indicated deadenylase. The data for transcripts from MCF7 cells are from the studies of Aslam et al.
and Mittal et al. [52,53]. Asl, Aslam; Mit, Mittal; Asl/Mit, Aslam/Mittal, respectively. C6, CNOT6;
C6L, CNOT6L; C7, CNOT7; C8, CNOT8.

2.4. Non-Coding RNA Genes Affected by Deadenylases

Several of the genes affected by the silencing of deadenylases presented above en-
code for non-coding RNAs. In NCI-H520 cells, BPESC1 lncRNA, GSTTP2 non-coding
RNA, LOC348021 (LINC00442) long intergenic non-coding RNA, LOC400940 lncRNA,
LOC541471 lncRNA, and XLOC 005143 are all downregulated upon the silencing of dead-
enylases and NOC. Several non-coding RNAs are upregulated upon PARN silencing, in-
cluding LOC100129858, LOC100131738, LOC100216545, XLOC011185, and NCRNA00311.



Molecules 2022, 27, 3102 8 of 18

Furthermore, upregulated non-coding RNAs include LOC401134 and XLOC012046 when
the CNOT6L expression is impaired, and NCRNA00315 upon CNOT7 silencing. The re-
sults are summarized in Figure 4 and Table S6. In HEp-2 cells, LOC100190938, C9orf70,
REG1P, C15orf50, NCRNA00202, LOC440461, LOC285733 non-coding RNAs, and FLJ90680
miscRNA are all downregulated upon silencing of the deadenylases and NOC. Only three
non-coding RNAs are upregulated upon the silencing of deadenylases; MGC16384, NEAT1,
and MALAT1. The Table S7 summarizes the results of silencing in HEp-2 cells, which are
also depicted in the heat map in Figure 4. Overall, the silencing of the examined deadeny-
lases impairs the expression of non-coding RNA genes, while a limited number of these
seem to represent common targets of the enzymes.
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2.5. The Silencing of One Deadenylase Affects the Levels of Other Deadenylases

Finally, as it was proposed that deadenylases may have overlapping functions and
their action is concerted [1,8,54], we examined whether the silencing of a single deadenylase
affects the levels of other deadenylases. Hence, PARN, CNOT6, CNOT7, or CNOT6L, were
knocked down one at a time in NCI-H520 cells, and the levels of the remaining deadenylase
mRNAs were determined with RT-qPCR. CNOT6 silencing results in upregulation of
PARN. CNOT6 itself shows increased levels upon CNOT6L or CNOT7 KD. PARN seems
to upregulate the expression of the other deadenylases, except the expression of CNOT6.
For all the other conditions examined, the analysis demonstrates that the expression of the
remaining deadenylases is unaffected (Figure 5A). We were not able to detect any CNOT8
expression in NCI-H520 cells.
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Figure 5. The silencing of a deadenylase affects the expression of other deadenylases. The levels of
deadenylases were measured with RT-qPCR analysis following silencing of one deadenylase at a
time in NCI-H520 (A) and in HEp-2 cells (B). The levels of the silenced enzyme are indicated with a
red-outlined white column. MSH, control levels from cells transfected with non-targeting shRNA.
* p ≤ 0.05; ** p ≤ 0.01.
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In HEp-2 cells, CNOT6L levels increase upon CNOT7, PARN, or NOC silencing. We
observe CNOT6 and CNOT7 upregulation following CNOT8 silencing, while CNOT7 KD
results in increased NOC levels. In contrast to NCI-H520 cells, PARN is not affected by the
silencing of the other deadenylases (Figure 5B).

Previous studies report that the knockdown of CNOT6 is (partially) compensated
by CNOT6L, as well as CNOT7 by CNOT8 in MCF7, cells due to their high sequence
similarity [52,53]. Herein, we observe that CNOT7 affects CNOT8 expression and vice
versa, possibly acting in a negative feedback regulatory loop. Unexpectedly, the silenc-
ing of CNOT6L increases CNOT6 levels, whilst CNOT6L expression is unaffected upon
CNOT6 KD.

Conclusively, it seems that certain deadenylases modulate the expression of the major-
ity of the other deadenylase, such is the case for CNOT7, while others, such as CNOT6, have
minor impact. Further, each deadenylase is differently affected by the other deadenylase
between the two cell types, implying tissue-specificity regulation.

3. Discussion

Worldwide, lung cancer is the most common cause of major cancer incidence and
mortality, primarily because it is detected in an advanced stage for both sexes. The search
for biomarkers for diagnosis, prognosis, and therapeutic purposes is of primary importance.
In this direction, any strategy to improve prediction, treatment outcome, and early detection
and classification has to focus on the mechanisms of development and progression of the
disease. In this work, we studied the impact of deadenylases on gene expression in cells of
lung cancer origin.

In this work, we investigated the impact of several deadenylases on gene expression
in cell lines of cancer origin. We designed a genetic association network for PARN, and
the deadenylases of the CNOT complex, CNOT6, CNOT6L, CNOT7, and CNOT8. CNOT6
and CNOT7 are the most prevalent and most interconnected nodes in the equilibrated
diagram (Figure 1). Our transcriptomic analysis identifies transcripts possibly regulated
by specific deadenylases, whilst a limited number of genes are commonly regulated by all
the deadenylases examined. The common deregulated transcripts are involved in several
pathways and biological processes, including synaptic signaling, transmembrane transport,
detection of chemical stimulus, and cell death. We extended the analysis to a third cell
line, MCF7, from a different cancer type, that was previously used to study the impact of
deadenylase impact on global gene expression [52,53]. An important observation of this
analysis is that no transcript seems to be commonly affected by the examined deadenylases
in all three lines. This is in line with previous suggestions on the tissue-specific regulation
of genes, at least in the case of CNOT6L [13,53], although not all deadenylases were studied
and other explanations cannot be excluded.

We investigated whether one deadenylase affects the levels of other deadenylases. We
silenced each of the studied deadenylases in turn, and measured the mRNA levels of the
remaining enzymes. The results suggest that in NCI-H520 cells, deadenylases compensate
for a silenced enzyme, as observed by the changes in their expression; as previously
mentioned, two deadenylases, one each from the DEDD and EEP families, are present
in the CCR4-NOT complex; CNOT7 or CNOT8 (DEDD), and CNOT6 or CNOT6L (EEP),
respectively. CNOT8 is expressed in HEp-2 cells, but we are not able to detect it in NCI-
H520 cells, possibly reflecting very low levels of expression. Moreover, this observation
suggests that CNOT7 is the main DEDD deadenylase present in the CCR4-NOT complex
in this cell type, possibly as a result of different expression regulation and compensation
for the non-expressed CNOT8. According to the genetic network, CNOT6 and CNOT7 are
the most prevalent and most interconnected nodes. Indeed, CNOT7 KD affects CNOT6
expression in NCI-H520 cells. PARN KD affects CNOT6L expression in both cell lines, while
this was not observed in silico. Whether this implies a consequence of the dysregulated
gene expression in cancer needs to be investigated further.
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It was shown that PARN targets a discrete set of mRNAs in mouse fibroblasts, many
of which encode for the factors required in cell migration and adhesion, while analogous
observations are reported in cell lines of cancer origin [27,55]. Furthermore, PARN is
involved in the maturation of many non-coding RNAs, including small nucleolar RNAs
(snoRNAs), small Cajal body-specific RNAs (scaRNAs), the telomerase RNA component,
Y RNAs, microRNA-451, and microRNA-122 [56–62]. Nevertheless, in another report it is
suggested that PARN and TOE1 (a deadenylase located mainly in the Cajal bodies) mediate
the maturation of non-coding RNAs (ncRNAs) instead of modulating the length of mRNA
poly(A) tails, and they act redundantly on scaRNAs in HeLa cells [54]. These reports
suggest that PARN destabilizes both specific mRNA and miRNAs subsets. In line with the
previous studies, our results show that PARN is associated with alterations in the levels of
mRNAs (Figure 2), as well as with lncRNAs (Figure 4).

The members of the CNOT family were also investigated for their roles in gene
expression. CNOT6 (Ccr4a) and CNOT6L (Ccr4b) have distinct roles in cell survival, the
formation of P-bodies, and regulating gene expression in MCF7 cells. The knockdown of
CNOT6 and/or CNOT6L reduced cell proliferation and cell survival, while gene expression
profiling reveals that the enzymes regulate distinct gene sets associated with breast cancer
cell proliferation, apoptosis, and the inhibition of tumor development [53]. The depletion
of CNOT6L in cancer MCF7 cells and mouse NIH3T3 cells impairs cell proliferation, but
highlights differences in the expression of specific genes assuming cell type-specific roles
for the CNOT6 and CNOT6L [13,53]. Further studies from the Winkler lab, on the impact of
CNOT7 and/or CNOT8 on gene expression profiles in KD MCF7 cells, highlight the partial
redundancy between these two subunits of the CCR4-NOT complex, and the regulation of
several genes contributing to cell proliferation [52].

The Table S8 summarizes the top up- and downregulated transcripts upon silencing.
Of these transcripts, several commonly regulated samples are further discussed. In NCI-
H520 cells, CIDEA (cell death-inducing factor DFFA-like effector A) is among the commonly
upregulated transcripts that appears to be affected, with a high FC score for all silenced
deadenylases of the CNOT family (Table S8). CIDEA is involved in apoptosis, while
mice lacking functional CIDEA are resistant to obesity and diabetes; CIDEA mRNA is
expressed in the white human fat cells and in brown mouse adipocytes, and low adipose
CIDEA expression is associated with metabolic syndrome. Interestingly, the silencing of
CIDEA stimulated lipolysis and increased TNF-alpha secretion, revealing a role of the
factor in the regulation of lipolysis regulation and metabolic complications of obesity in
humans, possibly mediated by cross-talk between CIDEA and TNF-alpha [63,64]. Among
the factors studied in this work, NOC has an established role in obesity; mice lacking
NOC are resistant to diet-reduced obesity, accompanied by deficits in lipid metabolism,
as well as by changes in glucose and insulin sensitivity [65]. Interestingly, CIDEA is not
among the top affected factors upon NOC silencing (Table S8). Taken together with the
fact that NOC is considered a phosphatase, and has limited impact on the expression
of deadenylases (Figure 5), it should be interesting to investigate for any overlapping
activity of other deadenylase that destabilizes CIDEA mRNA. On the other hand, in
NCI-H520 cells, SULT1C4 (sulfotransferase 1C4) transcript is among the downregulated
factors, with the highest FC score. SULTs catalyze the conjugation of a sulfonate moiety
on a substrate, including hormones, neurotransmitters, sterols, and xenobiotics. They are
classified into six gene families, and of the four, only two are present in humans; SULT1 and
SULT2 family genes are expressed in the liver [66]. SULT1C4 belongs to the SULT1 family
utilizing 3′-phospho-5′-adenylyl sulfate (PAPS) as a donor to sulfate conjugation of phenolic
compounds. SULT1C4 mRNA is abundant in prenatal human liver specimens, but SULT1C4
protein is barely detectable [67]. SULT1C4 seems to occur in two transcript variants in
human liver, TV1 (full-length) and TV2 (lacking exons 3 and 4), and the discordance
between mRNA and protein levels is attributed to the inability of the more abundant TV2
to produce stable protein [68]. In our analysis, we find that the SULT1C4 transcript is
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downregulated by all silenced deadenylases and NOC, suggesting common regulatory
elements and mechanisms that determine its stability.

Of the deregulated transcripts with the highest FC scores in HEp-2 cells, MALAT1
from the up-, as well as HS6ST3, TM4SF20, and PLCL1 from the downregulated transcripts
are discussed.

MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), also known as
nuclear paraspeckle assembly transcript 2 NEAT2 [69], is a long non-coding RNA. A cleav-
age and polyadenylation signal at the MALAT1 locus generates a ~7.4 kb polyadenylated
product in human, yet the latter represents less than 1% of the total transcripts in the
cell [70]. That is because the mature 3′ end of MALAT1 is mostly generated several hundred
nucleotides upstream of the poly(A) site. Despite the distinct generation of its 3′ end,
which differentiates it from the canonical polyadenylation processing, the mature MALAT1
transcript does have a short 3′ end adenylate tract (<20 nt) [70]. MALAT1 is dysregulated in
many cancers, including non-small cell lung cancer [71,72] and modulates cell proliferation,
apoptosis, migration, and invasion. In particular, in NSCLC, MALAT1 is involved in STAT3,
SRSF7, and PBOV1 (prostate and breast cancer overexpressed 1) pathways; MALAT1 affects
the levels of miR-124, miR-374b-5p, and miR-28-5p, which in turn, target STAT3, SRSF7,
and PBOV1 mRNAs [72–74], respectively. In our results, the MALAT1 transcript shows
an increased FC score in all three CNOT deadenylases and NOC in HEp-2 cells. How
each deadenylase singularly, or in concert, modulates the levels of MALAT1 mRNA, and
any potential impact on pathways such as the above-mentioned STAT3, SRSF, and PBOV1
pathways, remain to be investigated.

HS6ST3 belongs to the above-mentioned SULT enzymes, in particular in the SULT6
family, which catalyzes the transfer of a sulfate group from PAPS to N-sulfoglucosamine
(position 6) of heparan sulfate (HS). Sulfation has a major effect on the chemical and
functional homeostasis of substrate chemicals. SULTs are widely expressed in metabolically
active or hormonally responsive tissue, while alterations of SULTs are frequently observed
in cancer [75]. HS6ST3 is strongly downregulated upon the silencing of all five factors in
HEp-2 cells. As mentioned above, SULT1C4, another member of the SULT family, is strongly
downregulated in NCI-H520 cells by all silenced deadenylases (Table S8), suggesting that
members of the SULTs are common targets of deadenylases. Further research on regulatory
factors, such as cis-elements on SULT transcripts and/or miRNAs, may reveal whether
specific deadenylases destabilize selected SULT mRNAs, or if they have overlapping
functions [1].

Our analyses in NCI-H520 and HEp-2 cells reveal several GOs enriched upon CNOT6,
CNOT6L, CNOT7, and CNOT8 silencing, and a very limited number of transcripts com-
monly affected between two cell lines. Moreover, the observation that the examined dead-
enylases share no common targets between NCI-H50, HEp-2, and MCF7 cells imply that
these enzymes target specific pathways, likely through differential regulation/expression
and recruitment by specific factors in a tissue-dependent manner. Although CNOT6 and
CNOT6L, and CNOT7 and CNOT8 have overlapping roles, due to a high similarity in
their amino acid sequences [52], they play distinct roles [76–78]. Moreover, CNOT6/6L and
CNOT7/8 have distinct biochemical functions in the complex [79,80].

4. Materials and Methods
4.1. Genetic Network

The genetic network for Caf1, Ccr4, CNOT6, CNOT6L CNOT7, CNOT8, and PARN
was drawn using the GeneMANIA server, and by selecting all possible network inter-
actions available. GeneMANIA is an online genetic network design and drawing tool,
which enables the construction of gene interaction networks based on the relationships
between genes, co-expression, physical interaction, and their potential functions as de-
fined in the GeneMANIA server. The GeneMANIA label propagation algorithm uses a
fast heuristic algorithm, the Gaussian field label propagation algorithm, which is derived
from ridge regression, and differs in weighting compared to previous algorithms. This



Molecules 2022, 27, 3102 13 of 18

algorithm optimizes the network weights and calculates the discriminant values separately,
thus, having the advantage of performing the computationally intensive label propaga-
tion only once. This algorithm’s difference lies in cases of prediction problems of the
gene function, where the number of positive labeled genes is almost always only a very
small percentage of the total number of genes. The GeneMANIA label propagation algo-
rithm defines the unlabeled nodes’ initial bias as the average bias of the labeled nodes:
n+ − n−/n+ + n−, where n+ is the number of positive, and n− the number of negative,
examples. This way of defining these label biases provides an improvement in the accuracy
of predictions in these cases. Generally, this algorithm combines multiple input data sources
fast enough to be employed on a web server, for integrating multiple functional association
networks, and predicting gene function, from a single process-specific network using label
propagation [37,38].

4.2. Cell Culture and Transfection

NCI-H520 and HEp-2 cell lines (ATCC) were cultured in RPMI-1640 and MEM, respec-
tively (Biosera, Boussens, France), supplemented with 10% fetal bovine serum (FBS, Biosera)
and 1% antibiotics (penicillin/streptomycin; Biosera), and were incubated at 37 ◦C in a 5%
CO2 atmosphere. Cells were transfected with shRNAs against deadenylases control, using
cationic liposomes (Xfect; Clontech, Mountain View, CA, USA), as previously described.
All shRNAs were from Sigma-Aldrich (MISSION® shRNA; Merck KGaA, Darmstadt, Ger-
many). The following shRNA plasmids were used to silence the respective deadenylases:
PARN (NM_002582), CNOT6 (NM_15455), CNOT6L (NM_012118), CNOT7 (NM_013354),
CNOT8 (NM_004779), NOCTURNIN (NM_012118), and non-targeting control (SHC016).
Twelve hours later, cells were selected with puromycin (6 µg/mL). All cell lines used in the
study tested negative for mycoplasma.

4.3. RNA Extraction, Reverse Transcription, and qRT-PCR

Total RNA was isolated using the TRI Reagent® Protocol (Sigma-Aldrich). RNA
quantity and quality were determined using spectrophotometry (BioPhotometer Plus,
Eppendorf, Wien, Austria). One microgram of the total RNA was reverse-transcribed
using the PrimeScript RT-PCR kit (Clontech, Mountain View, CA, USA), according to the
manufacturer’s instructions. The reaction mixture was incubated for 50 min at 42 ◦C,
and terminated for 15 min at 70 ◦C. Quantitative polymerase chain reaction (qPCR) was
performed on cDNA using KAPA SYBR Fast Universal qPCR kit (KAPA Biosystems, Cape
Town, South Africa), and carried out in the Mx3005PTM real-time PCR system (Stratagene;
Agilent Technologies Inc., Santa Clara, CA, USA) using the following conditions: 1 cycle at
95 ◦C for 3 min, followed by 40 cycles at 95 ◦C for 3 s, 60 ◦C for 30 s, and 72 ◦C for 11 s, and
a final dissociation cycle at 95 ◦C for 60 s, and a progressive rise from 55 ◦C to 95 ◦C. The
primer sequences used for the deadenylases were the ones previously described [11,23,27].

4.4. DNA Microarrays

Comprehensive gene expression analysis was performed at NIMGenetics (Madrid,
Spain). Samples of NCI-H520 and HEp-2 cells upon deadenylase silencing were hybridized
to microarrays SurePrint G3 Human GE 60 K Microarray, and Whole Human Genome
Agilent 4 × 44 K oligo Microarray (Agilent Technologies, Inc., Santa Clara, CA, USA).
To exclude any possible transcripts affected by the transfection procedure itself, we used
non-target shRNA (Sigma), pLKO.1 empty vector (Sigma), and wild-type cells as controls
of expression. Raw microarray data files are available in the GEO database with accession
numbers GSE67536 and GSE67598 [50,51].

4.5. Bioinformatics Analysis

Venn diagrams were generated using the online freely available software “Venn Dia-
grams” (http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 21 March 2021).
Venn diagrams included deregulated transcripts in NCI-H520 and HEp-2 cells upon dead-

http://bioinformatics.psb.ugent.be/webtools/Venn/
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enylases silencing, and the deregulated transcripts in MCF7 cells upon deadenylases
silencing (E-MEXP-2926 and E-MEXP-2218) [52,53]. Gene ontology (GO) analysis was
conducted using the ConsensusPathDB-human (http://consensuspathdb.org/) (accessed
on 21 March 2021). A heat map of non-coding RNA transcripts affected by deadenylases
(FC ≥ 2.0) was generated using GraphPad Prism (v8, La Jolla, CA, USA).

4.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism (v8, La Jolla, CA, USA).
Relative gene expression was normalized to non-targeting shRNA. One-sample t test was
used and the values p≤ 0.001 (***), p≤ 0.01 (**), and p≤ 0.05 (*) were considered significant.
All experiments were performed at least three times.

5. Conclusions

Conclusively, we designed a genetic network to exploit the variety of data associated
with deadenylases, which highlighted the prevalence of CNOT6 and CNOT7. The subse-
quent microarray analysis data upon the silencing of specific deadenylases in two cell lines,
NCI-H520 and HEp-2, as well as comparison with published data from MCF7 cells, show
that specific deadenylases target unique subsets of mRNAs, while the levels of several
mRNAs are altered in common by multiple deadenylases, thus implying overlapping
functions for the enzymes. The silencing of each deadenylase affects the expression of other
deadenylases. Together with the previous observations, as well as the fact that CNOT8
is not detected in one of the examined cell lines, our study supports the suggestion that
deadenylases have overlapping roles in a tissue-specific manner; the absence of a deadeny-
lase is compensated by other enzymes to mediate destabilization of RNAs. Finally, several
non-coding RNA genes are affected, either specifically or in common, by the deadenylases
examined, thus expanding the involvement of deadenylases beyond mRNA turnover. The
data presented here encourages the study of the role of deadenylases in other cancer types,
such as small-cell lung cancer, and their potential as biomarkers on clinical practice towards
new targeted therapies in the future.
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and CNOT7 silencing in NCI-H520 cells, Table S3: Upregulated and downregulated transcripts
(FC ≥ 2.0) upon silencing of CNOT6, CNOT7, CNOT8, PARN, and NOC in HEp-2cells, Table S4:
Over-representation analysis of common differentially overexpressed and downregulated transcripts
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