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A B S T R A C T

In the present study, Coconut Husk Biochar (CHB) was synthesize from widely available, locally 
sourced agro waste, coconut husk and characterized using different techniques like scanning 
electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared 
spectroscopy (FTIR) and X-ray diffraction (XRD). CHB was tested for its ability to adsorb crystal 
violet (CV), a commonly used cationic dye, from water. It was capable of adsorbing more than 98 
% of CV from water and follows Freundlich isotherm model with pseudo second order kinetics 
though the overall process was unfavourable. Moreover, separation of CHB from water after 
adsorption is a cumbersome process. Thus, unmodified CHB is not suitable for use as an adsorbent 
for CV. Magnetic nano iron oxide Biochar Composite (MBC) was synthesized by deposition of 
nano iron oxide (Fe3O4) onto its surface by co-precipitation method and characterized using SEM, 
XRD and FTIR. SEM analysis provided visual evidence of this deposition which was further 
confirmed by XRD and FTIR analysis. MBC was also effective in adsorbing more than 90 % of CV 
from aqueous solution though a decrease in adsorption capacity was observed. Adsorption data 
followed Langmuir isotherm model and pseudo second order kinetics. MBC is superparamagnetic 
and is strongly attracted to a small bar magnet, facilitating easy removal from water after CV 
adsorption.

1. Introduction

Water is connected with every form of life on earth and clean drinking water is essential to all living beings. Unfortunately, sources 
of clean drinking water are becoming scarce as they are contaminated by physical and chemical contaminants. In countries with 
rapidly developing industrial sectors, contamination by untreated or inadequately treated industrial effluent is a growing concern. 
Large scale pollution caused by industrial effluents has been documented in major river such as Ganga [1] and Narmada in India [2], 
Ravi in Pakistan [3], Buriganga and Karnaphuli river in Bangladesh [4,5] and Min River in China [6].

Industries as varied as textiles, leather, paints, photography, cosmetics, pharmaceutical products and food, use dyes to impart 
colour. Dyeing requires copious amounts of water, and the resulting discharge often has a significant dye content ranging from 1 to 15 
% [7,8]. If untreated, the dye-contaminated water eventually finds its way into natural water bodies and can remain in the 
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environment for an extended period of time. The presence of dye in water, even in small quantities, seriously affects the transparency 
and quality of water bodies such as lakes and rivers. The reduced passage of sunlight leads to lowered photosynthetic activity and 
oxygen concentration in the water thus damaging the aquatic environment. The toxicity, mutagenicity, and carcinogenicity of many of 
these dyes and their degradation products are also inimical to aquatic life [9–11].

Crystal violet (CV) (C25H30N3Cl), a triarylmethane dye, is one of the most abundantly used cationic dyes in the textiles, paint, 
medical and biotechnology industries worldwide. Due to its complex aromatic structure and synthetic origin, CV, a highly toxic dye, is 
poorly metabolized by microbial flora and persists in the environment for long periods [12–14]. Cationic dyes are also more toxic than 
anionic dyes as they interact easily with the negatively charged cell membrane [15]. It is a well-known mutagen, teratogen, carcinogen 
and causes mitotic poisoning [16]. Therefore, it is essential to remove CV from water utilizing efficient environmentally friendly, 
cost-effective technologies.

Various processes are used to remove dyes from aqueous solutions. These include filtration [17], ultrafiltration [18], photocatalytic 
degradation [19], electrochemical treatments [20], ozonation [21], electrocoagulation/flotation [22], reverse osmosis [23], microbial 
degradation [24] and adsorption [25]. Although these techniques are capable of removing dyes from water, adsorption is the most 
preferred method due to its simplicity, efficiency, affordability, minimal maintenance and absence of toxic by-products [26–30]. An 
adsorbent that is abundantly available, inexpensive and non-hazardous will considerably lower the cost of treatment of contaminated 
water [31]. Biochar, a carbon-rich material produced from organic feedstock under limited oxygen by thermal decomposition has 
recently gained considerable interest as it satisfies the above-mentioned criteria. This is especially true in the case of biochar prepared 
from inexpensive feedstock’s like agricultural waste as they are cost-effective, and economical [32,33].

Coconuts, a commercially important crop that yields oil, food, animal feed, and fiber, is widely found in Southeast Asia, the Pacific 
region, Latin America and Africa. The inedible, fibrous, rough outer shell of coconut fruit, coconut husk, is an agricultural waste that is 
voluminous and difficult to manage. Of the 8,000,000 tons produced annually, a small fraction is converted into commercially valuable 
products like coir fibre, furnishing, decorative articles, potting mixture etc. and the rest is discarded or burnt causing environmental 
problems [34–40]. Conversion of coconut husk, which is a cheap, widely available agricultural waste material, into biochar, and its use 
as an adsorbent for dyes from wastewater is thus economically feasible and environmentally sound.

The more widespread and large-scale application of biochar is limited by its small particle sizes and low density, which makes it 
difficult to separate and reuse it. Release of biochar into natural waters may cause secondary pollution by enhancing the migration and 
resuspension of pollutants in the sediments. This problem can be solved by magnetizing biochar as it can then be removed easily and 
rapidly from aqueous media by magnetic separation. This streamlines the separation process, lowers energy consumption and in-
creases reusability [40–43].

Biochar has been produced from organic matter generated during the cultivation, processing, and consumption of coconuts. 
Various parts of coconut tree like leaves, husks, fronds, and shells, have been converted into biochar and used for soil remediation and 
remediation of heavy metals, phenols and antibiotics contaminated water [44–47]. However, no attempt has yet been made to produce 
coconut husk biochar, magnetize it and use it for treatment of dye contaminated water. To the best of our knowledge, this study is the 
first to report the conversion of coconut husk to biochar and modified magnetic biochar capable of adsorbing crystal violet from water. 
The significance and relevance of the study lies in the fact that it converts a difficult to dispose of agri-waste, coconut husk, to an 
adsorbent that may aid environmental remediation by treating dye contaminated industrial effluents.

The objective of the study was to synthesize Coconut Husk Biochar (CHB) from locally sourced coconut husk by heap method and to 
characterize it using various spectroscopic and microscopic techniques. To simplify the removal of biochar following the adsorption 
process, we magnetized CHB by depositing iron oxide nanoparticles on it using the co-precipitation method. The synthesized Magnetic 
nano iron oxide Biochar Composite (MBC) was also characterized using above mentioned techniques. Adsorption studies of CHB and 
MBC were carried out to determine optimum dose and contact time of biochar and to identify the best fitting isotherm. The attraction 
of MBC to a simple bar magnet was tested and its magnetic property measured using VSM.

2. Materials and methods

2.1. Materials

All the chemicals and reagents used are of AR grade and used without further purification. Crystal Violet (C25N3H30Cl), Sodium 
chloride (NaCl), Sodium hydroxide (NaOH), Mohr’s salt (Fe(SO4) (NH4)2(SO4).6H2O) and Ferric Chloride (FeCl3.6H2O) were pur-
chased from Merck, India. Coconut husk was sourced locally from Kerala Agricultural University, Thrissur, India.

2.1.1. Preparation of coconut husk biochar
CHB was prepared by heap method [48]. The coconut husk was sourced locally, washed repeatedly with water to remove dirt and 

foreign objects and then dried in the sun. The husk was then cut into small pieces. These pieces were heaped inside a kiln specially 
fabricated for biochar production. The material inside the kiln was lit and the fire spread around to allow anaerobic burning before 
closing the lid. Smoke was allowed to escape through the vents. After the smoke escaped, the vents were closed, and the sides of the lid 
plastered using mud. The temperature of pyrolysis was 340 ◦C with a residence time of 24 h. Biochar was collected the very next day.

2.1.2. Synthesis of magnetic nano iron oxide biochar composite
Magnetic nano iron oxide Biochar Composite (MBC) was synthesized by co-precipitation method [41]. In an Erlenmeyer flask, 50 

mL of Mohr’s salt solution (0.1M) and 100 mL of Ferric chloride solution (0.1M) were taken and stirred for 1 h on a magnetic stirrer. 

T. Geetha et al.                                                                                                                                                                                                         Heliyon 10 (2024) e39450 

2 



Five grams of biochar was added to these and the stirring continued for another 30 min pH of the solution was raised to 11.5 by the 
addition of 0.1M NaOH solution. The solution was stirred continuously for another 2 h, filtered and washed repeatedly to obtain MBC.

2.2. Characterization of biochar

The bulk density and pH of CHB and MBC were determined. The bulk density was determined using equation (1) below 

Bulk density=
Mass of the dry sample(g)

Volume of dry sample (cm3)
(1) 

The pH was determined after 1 gm of sample was agitated with 20 ml of double distilled water for approximately 5 min on a 
magnetic stirrer. The BET surface area (SBET), pore size and pore volume of biochar samples was determined by N2 adsorption at 77 K 
on BELSORP-max, an automatic gas adsorption measuring unit. Prior to analysis, the samples were degassed under continuous ni-
trogen flow for 12 h at 150 ◦C. Scanning electron microscopy (SEM) was used to visualize the microstructure of CHB and MBC. The 
surface morphology was observed using Gemini SEM 300 Field Emission Scanning Electron Microscope. The functional group on the 
surface of biochar samples was determined using Fourier Transform Infrared spectroscopy (FTIR; Agilent Cary 620 FTIR Imaging 
system). The FTIR spectra were recorded in wavelengths ranging from 400 to 4000 cm− 1. The X-ray diffraction (XRD) pattern was 
collected on an X-ray diffraction system (PANALYTICAL, Aeris Research) with Copper Kα radiation (λ = 1.54060 Å) over the 2θ range 
5◦–90◦, operating at 36 kV and 36 mA using a step size of 0.04◦ and a scan speed of 36 s/step. The presence or absence of magnetic 
property was identified by its behaviour towards the bar magnet and if magnetic property was demonstrated by the sample, it was 
measured using a vibrating sample magnetometer (VSM).

2.3. Adsorption studies

2.3.1. Determining best concentration of dye solution and optimal dose of biochar
In order to establish the ideal concentration of CV for adsorption studies, we prepared CV solutions at concentrations of 50, 100, 

200, and 300 mg/L. Subsequently, 0.6 g of biochar was added to each 100 mL of the dye solution, shaken on a rotary shaker at room 
temperature for 24 h, centrifuged for 10 min at 4000 rpm, filtered and the concentration determined using a double beam UV–Visible 
Spectrophotometer (Shimadzu). The adsorption percentage of the dye was calculated using equation (1) below and the solution with 
highest value used for determining optimum dose of biochar.

To determine optimum dosage of biochar, batch adsorption experiments were conducted. Different doses of biochar viz, 0.2, 0.4, 
0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 2.0 g, were added to 100 mL of CV dye solution and shaken on a rotary shaker at room temperature for 
24 h. The solution was then centrifuged for 10 min at 4000 rpm, filtered and the concentration determined using a double beam 
UV–Visible Spectrophotometer (Shimadzu). Adsorption experiments were conducted in duplicate and the average values are reported 
here. The adsorption percentage of the dye and adsorption capacity of the adsorbent material, Qt (mg/g), was calculated using 
equations (2) and (3) below 

adsorption percentage=
(C0 − Ct) × 100

C0
(2) 

adsorption capacity (Qt)=
(C0 − Ct) × V

W
(3) 

where C0 and Ct are the concentration of the dye in mg/L at the start of the experiment and at the time of sampling. V is the volume (in 
L) of dye solution and W is the weight of the biochar.

2.3.2. Adsorption kinetics
The absorption of CV on CHB and MBC was investigated as a function of contact time at room temperature. Adsorbent dosage and 

initial dye concentration were maintained at their optimum value for this experiment. The optimum dose of each biochar was weighed 
into ten conical flasks, each containing 100 mL of crystal violet solution and then agitated on a rotary shaker for 3 h. At 5, 10, 15, 30, 
45, 60, 90, 120, 150 and 180 min respectively, the solution was centrifuged, filtered and the concentration of filtrate determined. The 
data obtained were evaluated for their fit of pseudo-first order (equation (4)) and pseudo-second order (equation (5)) models to 
understand adsorption processes, underlying mechanisms and possible rate controlling steps [49–52].

The Pseudo-first-order Kinetic Equation (Linear form) 

ln(qe − qt )= ln qe − k1t (4) 

The Pseudo-second-order Kinetic Equation (Linear form) 

t
qt
=

t
qe

+
1

k2 q2
e

(5) 

where qt (mg/g) is amount adsorbed at time t, qe(mg/g) is the amount adsorbed at equilibrium, k1 is the pseudo-first-order rate 
constant (L/min) and k2 is the pseudo-second-order rate constant (g/mg.min)
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2.3.3. Adsorption isotherm
The adsorption isotherm models described the relationship between the amount of adsorbate adsorbed on the adsorbent (Qe) and 

liquid phase concentration of adsorbate (Ce) at equilibrium conditions at a constant temperature [53]. For adsorption of dyes on to 
biochar, the two parameter isotherm models namely Freundlich, Langmuir, Temkin, Harkins Jura, Elovich and Dubinin Raduskevich 
are commonly used to explain this relationship. The Langmuir isotherm model, an empirical model, assumes that the adsorption 
surface is homogeneous and exhibits equal affinity toward the adsorbate. In this model, it is postulated that adsorbate molecules 
compete to bind with the active sites, which are specific and localized, forming a monolayer on the adsorbent’s surface with minimal 
lateral interaction among them.

On the other hand, the Freundlich isotherm model, Harkins Jura Isotherm model, Elovich isotherm model and Dubinin Raduskevic 
isotherm model, all permit multilayer adsorption. In Freundlich isotherm model the surface of adsorbate is considered heterogeneous 
in nature with varying affinity toward the adsorbent. The Harkins Jura Isotherm model takes into account the existence of pores of 
various sizes on the surface of biochar while Temkin isotherm considers both adsorbent-adsorbate interactions and the fact that the 
heat of adsorption decreases linearly with coverage. Elovich isotherm, based on kinetic principles, postulates that adsorption sites 
increase exponentially with adsorption while Dubinin Raduskevic isotherm proposes that adsorption involves pore filling, with 
Gaussian energy distribution. In this study we used the linearized form of the isotherms which were fitted to adsorption data and their 
suitability determined by comparing coefficient of regression. The Adsorption isotherms, linearized equations and their plots used in 
the study are given in Table 1 [54–58].

Where Ce (mg/L) represents concentration of dye at equilibrium, Qe (mg/g) and Qm (mg/g) are adsorption capacity of dye at 
equilibrium and saturation, respectively, KL(L/mg) is the Langmuir constant, KF (mg/g) is the Freundlich constant, and 1/n is the 
adsorption intensity factor or surface heterogeneity. A and B are the Harkins Jura isotherm constant. AT is the equilibrium binding 
energy or the optimum binding energy (L/g), R the universal gas constant and BT, the Temkin constant at temperature T (in Kelvin) 
where (J/mol) is a constant related to the heat of adsorption. Q0 is the maximum adsorption capacity (mg g− 1), and KE is the equi-
librium constant of Elovich isotherm (L mg− 1). Qs is the theoretical isotherm saturation capacity (mg/g) and ε is the Dubi-
nin–Radushkevich isotherm constant. The analysis was conducted by placing 100 mL of CV dye solution in 250 mL flasks with different 
adsorbent dosages (0.02–2 g). The adsorption capacity and equilibrium solution concentrations were then measured and the suitability 
of the isotherm investigated.

3. Results and discussions

3.1. Biochar characterization

3.1.1. Bulk density, pH and PZC
The bulk density of a biochar determines its floatability and sinkability, a crucial factor in designing commercial adsorption col-

umns. The lower limit on bulk density set by the American Water Work Association is 0.25 g/cm3 [59]. The values for both CHB and 
MBC were found to be higher than recommended (0.3204 g/cm3for CHB and 0.5946 g/cm3 for MBC) indicating its suitability as an 
absorbent in wastewater treatment. The higher bulk density value of MBC compared to CHB can be attributed to the iron oxide (Bulk 
density 5 g/cm3) that has been impregnated in biochar. The pH values of CHB and MBC were found to be 9.3 and 5.97, respectively. 
The PZC of the adsorbents gives us an insight into the charge on the surface of the adsorbent at a particular pH. When the pH of the 
medium equals that of the PZC, the surface of the adsorbent does not carry any charge [60]. The point of zero charge (PZC) was 
determined to be 8.9 for CHB and 8.5 for MBC. A similar decrease in PZC on magnetization has been previously reported by Trinh et al., 
[61]. In the case of CHB, the pH value exceeded the PZC, resulting in a negatively charged surface that facilitates the attraction of 
cationic dyes such as crystal violet. Conversely, the pH of MBC was below the PZC, leading to a positively charged surface that may 
induce electrostatic repulsion, thereby decreasing its adsorption capacity for crystal violet.

Table 1 
Adsorption isotherm, its linearized form, parameters and plot for graphical representation.

Isotherm Equation Linearized equation Plot

Freundlich
Qe = KFC

1
/n

e
ln Qe = ln KF +

1
n

ln Ce
ln Qe vs ln Ce

Langmuir Qe =
QmKLCe

1 + KLCe

1
Qe

=

(
1

QmKL

)
1
Ce

+
1

Qm

1
Qe

vs
1
Ce

Harkins Jura
Qe =

(
A

B − log Ce

)1 /2 1
Q2

e
=

B
A
−

(
1
A

)

log Ce
1

Q2
e

vs log Ce

Temkin Qe =
RT
bT

ln (ATCe) Qe =
RT
bT

ln AT +
RT
bT

ln Ce
Qe vs ln Ce

Elovich
Qe

Q0
= KECee

−

(
Qe
Q0

)

ln
(

Qe

Ce

)

= ln KEQ0 −
Qe

Q0
ln
(

Qe

Ce

)

vs Qe

Dubinin Raduskevic Qe = Qse− Kε2 ln Qe = Qs − kε2 ln Qe vs ε2
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3.1.2. Specific surface area and porosity
Specific surface area and porosity are two important physical properties that influence the adsorption capacity of biochars. The 

specific surface area of CHB obtained by N2 adsorption–desorption isotherm is 25.24 m2g-1. This value is comparable to the specific 
surface area of biochar obtained from agricultural by-products like corn straw (15.12 m2g-1) and maize straw (70 m2 g− 1) [62,63], 
higher than the specific surface area of biochar obtained from Eucalyptus sawdust (1.57 m2g − 1) and durian wood (2.5 m2g–1) [64,65] 
and lower than the specific surface area of biochar obtained from Coconut shell (279 m2g–1), and from pulp and paper sludge (174.29 
m2/g) [66,67]. Upon magnetization the value increased exponentially to 1162.75 m2g − 1. This dramatic increase in surface area may 
be attributed to the deposition of nano iron oxide onto the surface of biochar (Fig (a and b)). A similar increase of surface area on 
deposition of nanoparticles onto biochar matrix has been previously reported in literature [43,68].

Occurrences and diversity of pores in biomass is due to the loss of water and releases of volatile constituents from the carbon matrix 
during pyrolysis. The size of pores often ranges from nanometers to micrometers in scale and can be divided into three groups: mi-
cropores (<2 nm), mesopores (2–50 nm), and macropores (>50 nm) [69,70]. From BET and BJH data it can be concluded that pores in 
both biochar are a mixture of meso and macropores spanning the nano-region (1–100 nm). The BJH plot of CHB and MBC are shown in 
Fig. 1(b and c). The average pore diameter and total pore volume was quantified to be 20.47 nm and 0.023372 cm3g-1 for CHB. For 
MBC the average pore diameter was found to be significantly lower (2.26 nm) but total pore volume was higher (0.08234 cm3 g− 1). 
This may be credited to the presence of micropores in MBC which was not observed in CHB. The reduced average pore diameter of MBC 
may account for its lower adsorption capacity, despite its higher specific surface area and pore volume, as the average pore diameter 
(2.26 nm) closely approximates the molecular size of crystal violet (1.4 × 1.4 nm).

3.1.3. SEM analysis
The SEM images of the prepared CHB and MBC samples at different magnifications are shown in Fig. 2. It is clear from the SEM 

image (a) that the particles of CHB are small though heterogeneous in size (2–32 μm). Particles are of an irregular shape with uneven 
edges and a rough and porous surface.

A closer look at biochar surface shows micro, meso and macropores on the surface of biochar (image b). SEM image (c) shows that 
the surface of MBC is covered with nano iron oxide. The nano iron oxide particles are observed to be deposited in an irregular manner.

3.1.4. Fourier Transform Infrared spectroscopy (FTIR)Analysis
FTIR spectroscopy was used to identify various functional groups on the surface of the biochar and to confirm the formation of iron 

oxide. For both CHB and MBC, a strong broad band at around 3400 cm− 1 (Fig. 3.) may be assigned to stretching vibration of the 
hydroxyl group (-OH) probably originating from the moisture content of the biochar or from alcoholic or phenolic (-OH) groups on the 
surface of biochar. Both the biochar shows a doublet at 2339 and 2360 cm− 1 corresponding to presence of CO2 in the micropores at a 
concentration higher than atmospheric concentration [71,72]. A broad peak at 2000 cm− 1 could be due to the C-H or C=C stretch of 
the aromatic rings [73]. The weak band at 1752 cm− 1 is due to the in-phase aromatic C=C stretching vibrations [74] and the band at 
1718 cm− 1 due to C=O stretching peak of carbonyl group [75]. The peak at 1575 cm− 1 and the one at 1382 cm− 1 are due to the 
asymmetric and symmetric C-O vibration band of carboxylic acid group on the surface of biochar [76]. The strong broad peak at 

Fig. 1. BET nitrogen adsorption-desorption isotherm of (a) Coconut husk biochar and (b) Magnetic nano iron oxide biochar composite; BJH pore 
size distribution curve of (c) Coconut husk biochar and (d) Magnetic nano iron oxide biochar composite.
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around 1100 cm− 1 may be due to C-O-C symmetrical stretching, characteristic of cellulose and hemicellulose. The multiple peaks 
observed in the region between 700 and 900 cm− 1 may be assigned to out of plane vibration of aromatic C-H bonds [77,78].

In the case of magnetic biochar, the emergence of an additional strong peak at 584 cm− 1 was observed. This peak corresponds to the 
Fe–O bond of iron oxide (Fe3O4) suggesting the formation and loading of iron oxide onto biochar [79,80]. Spectral analysis of CHB 
suggests the presence of oxygen containing groups like -COOH and -OH on the surface. It is possible that iron oxide may be anchored to 
the surface of biochar by binding with these groups through electrostatic interactions or by covalent bonding [81].

3.1.5. X-ray diffraction (XRD) analysis
The XRD pattern of CHB (Fig. 4) is characterised by diffuse, broad bands indicative of short-range order in biochar, while the sharp 

and narrow peaks are due to highly crystalline phases with high degree of long-range order [80]. The broad peak centered at around 2θ 
value is 23.5 and indexed as C (002) diffraction peak indicating amorphous carbon structure with randomly oriented aromatic sheets. 
Sharp peaks were observed at 2θ values 28.3, 40.5, 50.2, 66.3 and 73.6 respectively and can be assigned to KCl (Sylvite). This may 
correspond to the ash and tarry material trapped within the pores of the biochar sample [82,83].

The Powder X Ray Diffraction pattern of MBC was performed to confirm the loading of nano iron oxide onto biochar. The XRD 
pattern of MBC (Fig. 5) shows five peaks at 2θ values of 30.3496, 35.7027 (100 % intensity), 43.3332, 57.2826 and 62.9045.

The pattern matches that of iron oxide particles corresponding to Fe3O4 (Reference no. 01-075-1609) thus confirming the synthesis 
and loading of iron oxide onto biochar. To determine the crystallite size of loaded nano iron oxide, peak broadening of the most intense 
peak was used and the average size of the Fe3O4 particle was found to be 28 nm. This confirms that the MBC synthesized is a 

Fig. 2. (a and b) SEM image of Coconut husk biochar and (c) Magnetic nano iron oxide biochar composite.

Fig. 3. Fourier Transform Infrared spectra of Coconut Husk Biochar and Magnetic nano iron oxide Biochar Composite.
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nanocomposite.

3.1.6. Vibrating sample magnetometer (VSM) analysis
The magnetic behaviour of the prepared MBC was verified using an external magnet. The particles are strongly attracted to the 

external bar magnet. In an aqueous environment, this strong magnetic response facilitates the separation of MBC particles after 
adsorption as they rapidly accumulate under the influence of magnetic field, as illustrated in Fig. 6(a) [84]. The magnetic property of 
the material is investigated further using vibrating sample magnetometer (VSM) analysis and the magnetization curve is shown in 
Fig. 6(b). The curve indicates that the MBC demonstrates superparamagnetic behaviour characterized by the absence of a hysteresis 
loop [85] with a saturation magnetization value is 26.4 emu/gm.

4. Adsorption studies

4.1. Adsorption studies of CHB and MBC

A preliminary study was conducted to determine the optimal concentration of the dye for adsorption studies. The optimal CV 
concentration was determined to be 200 mg/L for CHB and 100 mg/L for MBC, respectively. CHB was capable of adsorbing 98 % of CV 
from water. The percentage of CV removed was directly proportional to the quantity of adsorbent used, as an increased adsorbent 
quantity offers a greater surface area, thereby enhancing dye adsorption. This trend persisted until an optimum value beyond which 
there was no concomitant increase in dye removal. Moreover, a small decrease in the ability of biochar to remove dye was also noticed. 

Fig. 4. X ray Diffraction pattern of Coconut Husk Biochar.

Fig. 5. X ray Diffraction pattern of Magnetic nano iron oxide Biochar Composite.
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This decrease may be attributed to the aggregation of the adsorbent at high concentration and consequent decrease in surface area 
[86]. A linear relationship between percentage of CV removed and quantity of absorbent was also true in the case of MBC. It was 
capable of removing 90 % of the dye from water. The optimum dose of biochar was determined to be 0.7 g/L for CHB and 2.0 g/L for 
MBC (Fig. 7).

The interaction between adsorbent and adsorbate may involve ionic interactions, electron donor acceptor interactions, hydrogen 
bonds, π-π attractions and van der Waals interactions. Presence of oxygen containing functional groups like -OH, Fe-O, -COOH on the 
surface of biochar may facilitate hydrogen bonds and π-π attractions with CV. Further discussion on the mechanism of adsorption of CV 
onto CHB and MBC is given in greater details later in the manuscript.

4.2. Adsorption kinetics

The adsorption of crystal violet (CV) onto biochar increased over time. For CHB, the equilibrium was quickly attained within 10 
min of contact, whereas the equilibrium time for the magnetized biochar composite (MBC) was observed to be 3 h. In both cases, the 
initial adsorption of CV was rapid, followed by slower rate of adsorption and a subsequent equilibrium stage. The initial rapid 
adsorption could be attributed to the availability of large number of adsorption sites for CV. Over time, the adsorption sites become 
occupied and the rate of adsorption progressively decreases, eventually reaching equilibrium [87].

The pseudo-first order and pseudo-second-order kinetic model equations were applied on the adsorption data obtained from the 
experiments (Fig. 8). In both instances, the data was more suitable for pseudo second order kinetic model than pseudo first order 
kinetic model. The experimental qe value was found to be closely aligned to the calculated qe value derived from the pseudo-second 
order kinetic model further supporting its suitability to the system (Table 2).

Fig. 6. (a) Magnetic separation of Magnetic nano iron oxide biochar composite in aqueous environment using a simple bar magnet and (b) its 
VSM image.

Fig. 7. Effect of adsorbent dosage on the retention percentage of crystal violet at 25 ◦C with a contact time of 180 min on Coconut husk biochar 
(initial crystal violet concentration of 200 mg/L) and Magnetic nano iron oxide biochar composite (initial crystal violet concentration of 100 mg/L). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The observed maximum adsorption capacity of CHB, 25.5 mg/g, compares well with previously reported materials for crystal violet 
adsorption listed in Table 3. This comparison indicates that the adsorption capacity of CHB is higher than that of biochar prepared from 
sugarcane and Gliricidia sepium wood and comparable to that of biochar prepared from sugarcane filter mud, date palm petioles, 
chinnar leaf and palm kernel shell. However, on magnetization by impregnating with iron oxide, there is a noticeable decrease in 
adsorption capacity.

4.3. Adsorption isotherm

Crystal violet adsorption by CHB follows the Freundlich isotherm model better than Langmuir, Harkins Jura, Elovich, Temkin and 
Dubinin Raduskevic model as its coefficient of determination was the highest (Table 4 and Fig. 9). Freundlich isotherm model describes 
a reversible multilayer adsorption on to a heterogeneous substance with non-uniform distribution of affinity across the surface of 
biochar. As the surface of biochar is heterogeneous in nature and encompasses pores of various sizes including meso and macropores, it 
is understandable that Freundlich isotherm model provided the most accurate fit. The presence of various functional groups on the 
surface of biochar may account for the presence of adsorption sites of varying affinities and strength [88,89]. The 1/n value of the 
Freundlich isotherm was greater than 1(1.5969) which suggests that the adsorption process is unfavourable and the bonds between 
adsorbate and adsorbent are weak. Thus, the use of CHB to adsorb dye from wastewater may not be feasible without further modi-
fication as the adsorbed crystal violet may easily be desorbed back. Moreover, the separation of biochar from aqueous medium after 
the completion of adsorption is both difficult and time consuming.

To address both challenges simultaneously, we modified CHB by depositing nano iron oxide particle on to its surface. The data from 
adsorption studies on MBC was found to be more suited to the Langmuir isotherm model than that of Freundlich, Harkins Jura, Temkin, 
Elovich and Dubinin Raduskevic models (Table 3 and Fig. 9).

The stability constant of the Langmuir model was 0.000029, indicating that the adsorption process was highly favourable (0 < RL <

1). The Langmuir model assumes that all the sites for adsorption are homogeneous, possess equal energy, and support the formation of 
a monolayer on the adsorbent surface. In contrast, the Freundlich isotherm model allows for multilayer adsorption. The dense 
deposition of nano iron oxide on the biochar surface may have significantly altered its structure, making the adsorption process highly 
favourable. This shift from a multilayer to a monolayer adsorption model also accounts for the reduced Qmax value of MBC compared to 
CHB [98,99].

4.4. Adsorption mechanism

The interaction between biochar and cationic dyes like crystal violet may include both physisorption and chemisorption. The Van- 
der-Waals forces of attraction, hydrogen bonds, π–π electron donor acceptor interactions, all contribute to the physisorption of CV. 
Chemisorption, on the other hand predominantly utilizes the electrostatic interactions between the negatively charged biochar surface 
and positively charged CV molecule. The FTIR spectra of CHB indicate the presence of various functional groups, such as hydroxyl 
groups, carbonyl groups, carboxylic groups, and aromatic rings, on the surface of the biochar. The amine group of CV may form 
hydrogen bond with hydroxyl and carboxylic acid group on biochar surface. The role of surface functional groups like hydroxyl groups 
in regulating the absorption of contaminants have been reported in previous studies [100]. The protonated amine group of CV may also 
be electrostatically attracted towards either the carboxylate anion or the phenoxide anion on biochar surface. The size of CV (1.4 nm ×
1.4 nm) allows it to easily enter into pores and interact with the inner surface are. The adsorption of crystal violet on biochar may also 
be facilitated by π–π interactions between aromatic ring on the biochar surface and the benzene ring of crystal violet (Fig. 10) [91,
101–103].

Electrostatic attraction between iron oxide loaded on biochar and chloride ion of CV may aid in adsorption of the dye on to MBC. 
Interactions between iron oxide loaded biochar and cationic dyes have also been reported in previous studies, supporting the suggested 
mechanism [97,104].The deposition of Fe2O3 onto biochar led to a rapid increase in the surface area of MBC compared to CHB. This 
increase in surface area was accompanied by a significant decrease in pore size probably due to the deposition of iron oxide on the rims. 

Fig. 8. Kinetics modelling using pseudo-second order models for Coconut Husk Biochar and Magnetic nano iron oxide Biochar Composite.
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The consequent narrowing of the pores may render a portion of the previously accessible inner surface area unreachable for CV, 
leading to a decrease in adsorption capacity. Furthermore, the surface of MBC being negatively charged in aqueous medium may 
experience electrostatic repulsion to crystal violet, thus lowering its adsorption capacity. Data from adsorption isotherms suggest that 
unlike CHB, where adsorption of CV involves multiple layers, a monolayer is formed on the surface MBC, consequently adsorption 
capacity may be further reduced. A reduction of adsorption capacity of biochar on impregnation with iron oxide has been previously 
reported by Huang et al. [105].

5. Conclusion

This study converted widely available locally sourced agro waste-coconut husk into biochar (CHB). CHB was irregular in shape with 
uneven edges and a rough and porous surface. Adsorption of CV on to CHB followed Freundlich isotherm model with pseudo second 
order kinetics and an adsorption maximum of 25.15 mg/g. The process was very rapid initially though a decrease was observed over 
time probably due to aggregation and the overall process was unfavourable. Moreover, separation of CHB from water was difficult. 
Thus, unmodified CHB was not suitable for use as an adsorbent for CV. The surface of CHB was modified by deposition of nano iron 
oxide (Fe3O4) on the biochar thus synthesizing MBC. Impregnation with iron oxide increased the bulk density, lowers the pH and 
average pore diameter of biochar but increases its specific surface area and pore volume. MBC was effective in adsorbing more than 90 
% of CV from aqueous solution and followed Langmuir isotherm model with pseudo second order kinetics. It was superparamagnetic 
and strongly attached to a simple bar magnet which facilitated easy removal from aqueous solution after dye adsorption. This was the 
first study that demonstrated conversion of coconut husk, an agro-waste, to a magnetic biochar capable of efficiently removing crystal 
violet from wastewater. However, the magnetization process resulted in a reduction in adsorption capacity. Further research is 

Table 2 
Comparison of correlation coefficient, Exp.Qe, Cal. Qe and equilibrium time of CHB and MBC.

R2 Exp. Qmax. (mg/g) Cal. Qmax. (mg/g) Equilibrium Time

CHB 0.9999 25.15 22.42 10 mints
MBC 0.9975 3.67 3.63 3 h

Fig. 9. The linear fitting of (a) Freundlich adsorption isotherm of Coconut husk biochar (b) Langmuir adsorption isotherm of Magnetic nano iron 
oxide biochar composite.

Table 3 
Comparison of maximum adsorption capacity of biochar produced from different agro-waste towards crystal violet dye.

S. 
No

Adsorbent Temperature 
(oc)

Surface area 
(m2/g)

Pore Volume 
(cm3/g)

Maximum adsorption capacity 
(mg/g)

Reference

1. Sugarcane bagasse biochar 650 – – 2.94 [90]
2. Gliricidia sepium (Wood) biochar 700 808 0.890 9.24 [91]
3. Sugarcane Filter mud biochar 400 19.80 0.087 25.51 [92]
4. Date palm petioles biochar 700 640 0.403 24.36 [93]
5. Chinar leaf (Platanus orientalis) biochar – – – 30.1 [94]
6. Palm Kernel Shell 350 16.04 0.02 24.45 [95]
7. Coconut Husk Biochar -CHB 340 25.24 0.023 25.15 This study
8. Lemon wood biochar (Fe3O4 modified - 

magnetic)
700 38.69 0.111 35.31 [96]

9. Iron oxide impregnated acid treated 
cornstalk biochar

400 – – 99.38 [97]

10. Magnetic nano iron oxide biochar 
composite - MBC

340 1162.3 0.082 3.63 This study
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required to optimize the modification of MBC enhance its adsorption capacity without compromising its magnetic properties.
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Table 4 
Comparison of Correlation Coefficients and parameters of different isotherms of CHB and MBC.

Isotherm R2 Parameter Value

CHB Freundlich 0.89405 n 0.626
Kf 2.158

Langmuir 0.86068 Rl 0.396
Kl 0.014

Harkins Jura 0.8577 A 657.9
B 1.322

Temkin 0.68574 KT 0.184
BT 241.800

Elovich 0.7743 Qmax 401.6
KE 0.0025

Dubinin Raduskevic 0.46862 KDR 0.0000073
Qs 5.426
E 0.304

MBC Freundlich 0.91745 n 0.95429
 Kf 1.353

Langmuir 0.95673 Rl 0.000029
 Kl 689.569

Harkins Jura 0.80965 A 12.56439
 B 1.46676

Temkin 0.69385 AT 0.15891
 BT 11.81549

Elovich 0.29393 Qmax 75.41478
 KE 0.0065349

Dubinin Raduskevic 0.56698 KDR 0.0000109381
 Qs 2.63517
 E 0.4355927

Fig. 10. Possible mechanisms for crystal violet adsorption over coconut husk biochar with (a) hydrogen bonding; (b) π-π interaction and (c) 
electrostatic attraction. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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