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Purpose. This study was designed to clarify the prognostic value of tumor microenvironment score and abnormal genomic
alterations in TME for breast cancer patients. Method. The TCGA-BRCA data were downloaded from TCGA and analyzed
with R software. The results from analyses were further validated using the dataset from GSE96058, GSE124647, and
GSE25066. Results. After analyzing the TCGA data and verifying it with the GEO data, we developed a TMEscore model based
on the TME infiltration pattern and validated it in 3273 breast cancer patients. The results suggested that our TMEscore model
has high prognostic value. TME features with the TMEscore model can help to predict breast cancer patients’ response to
immunotherapy and provide new strategies for breast cancer treatment. Signature 24 was first found in breast cancer. In focal
SCNAs, a total of 95 amplified genes and 169 deletion genes in the TMEscore high group were found to be significantly related
to the prognosis of breast cancer patients, while 61 amplified genes and 174 deletion genes in the TMEscore low group were
identified. LRRC48, CFAP69, and cg25726128 were first discovered and reported to be related to the survival of breast cancer
patients. We identified specific mutation signatures that correlate with TMEscore and prognosis. Conclusion. TMEscore model
has high predictive value regarding prognosis and patients’ response to immunotherapy. Signature 24 was first found in breast
cancer. Specific mutation signatures that correlate with TMEscore and prognosis might be used for providing additional
indicators for disease evaluation.

1. Introduction

The ever-increasing wealth of accessible sequencing data has
enabled deeper analysis of the genetic alterations underlying
cancer [1–8], and reanalysis of the existing online data has
become a common method for cancer research [9, 10]. The

tumor microenvironment (TME) [11, 12], especially the
immune tumor microenvironment (iTME) [13], has been
reported to play an important role in tumor progression,
metastasis, prognosis, and immunotherapies [14]. Reanalysis
of existing tumor samples and TME datasets has increased
our knowledge of intercellular interactions and genomic
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abnormalities in tumorigenesis, enabling researchers to
identify effective targets for clinical treatment [10, 15, 16].
In iTME, the diagnosed TME context was associated with
immune response and chemotherapy benefits [17, 18]. Fur-
thermore, alteration of immune-related indicators, such as
CD4+, CD8+, macrophage, and infiltrating levels, has a sig-
nificant impact on the prognosis of various tumors including
breast cancer [19–22].

Through the analysis of immune cell interactions,
genome, and transcriptome alterations in the breast cancer
microenvironment, it also suggested that abnormal alter-
ations in TME have important effects on the occurrence,
development, metastasis, immunotherapy, and prognosis
[23–27]. In order to better understand abnormal alterations
in TME among breast cancer patients, we reanalyzed pub-
lished datasets to deconvolve (CIBERSORT) and determine
the TME profile of breast cancer samples [28]. Moreover,
we correlated the TME phenotypes with genomic character-
istics and pathologic features of breast cancer, thereby pro-
viding a new model for breast cancer prognosis.

2. Materials and Methods

2.1. Published Datasets. Datasets GSE96058, GSE124647,
and GSE25066 were downloaded from GEO (https://www
.ncbi.nlm.nih.gov/geo/), while the data of TCGA-BRCA
(RNA-seq, miRNA expression data, methylation, and clini-
cal data) were downloaded from the UCSC Xena browser
(https://xenabrowser.net/datapages/). Mutation data of
TCGA-BRCA were downloaded by R TCGAbiolinks. The
raw data related to Affymetrix were checked for background
adjustment in the Affy software package by the RMA algo-
rithm [29]. The raw data related to Illumina were processed
by the Lumi software package.

After removing duplicate data, 3273 samples of
GSE96058 with information of RNA-seq expression and
clinical data were obtained and used for downstream analy-
sis. Data of GSE124647 (140 samples) and GSE25066 (508
samples) were used for validation. Genome-Wide Human
SNP 6.0 copy number segment data of TCGA-BRCA were
downloaded from Firebrowse (http://firebrowse.org/) and
processed using GISTIC 2.0. After removing duplicated data
and samples without survival information, 1057 tran-
scriptome samples were validated for TMEscore [10].
Among these 1057 samples, 1039 samples had CNV data,
1042 samples had SNP data, 1038 samples had miRNA data,
and 760 samples had methylation data. The basic character-
istics of the above 4 datasets are displayed in (Supplementary
Table 1).

2.2. Comprehensive Analysis for TME

2.2.1. Proportion of Infiltrating Cell Evaluation and TME
Cluster Identification. The CIBERSORT algorithm and leu-
kocyte signature matrix (LM22) gene signature were used
for calculating immune cell infiltration of 22 human
immune cell phenotypes [28, 30]. CIBERSORT was consid-
ered as a deconvolution algorithm that used a set of gene
expression values to calculate a minimal representation for

each cell type [30]. Based on these values, support vector
regression could be used to infer the cell type ratio for data
from large tumor samples with mixed cell types [30]. We
used standard annotation files to prepare gene expression
profiles and uploaded the data to the CIBERSORT web por-
tal (http://cibersort.stanford.edu/). Then, we used LM22 sig-
natures and 1,000 permutations to run the algorithm. By
applying the microenvironmental cell population counting
method to evaluate the proportion of stromal cells, the abso-
lute abundance of eight immune cells and two stromal cell
populations in heterogeneous tissues from transcriptome
data was quantitatively analyzed [10, 30].

2.2.2. Unsupervised Clustering to Identify TME Patterns and
Tumor Sample Classification. From the immune cell propor-
tion data analyzed by CIBERSORT [28, 30], elbow (the error
of the squares sum within the WSSE group, this method was
used to find the optimal number of clusters by finding the
“elbow point”) (Figure 1(a)) and gap statics (the point where
k drops fastest the k value corresponding to the maximum
gap value) were applied to evaluate the best number of the
categories k value, and ConsensusClusterPlus R package
was used for classification to obtain TME cluster (k-means,
Euclidean, and ward.D) [31–33]. In order to obtain stable
classification, the above procedure was repeated for 1000
times. Then, TME clusters were combined with survival data
to clarify whether this classification was related to survival
(Figures 1(b) and 1(c)).

2.2.3. TME Scoring according to the Differentially Expressed
Genes (DEG) among TME Clusters. Based on the above
results, different TME clusters were mapped to the RNA-
seq data and screened for DEG in different samples by R
limma package (P < 0:05 and jlog2FCj > log2 (1.5)) [34].
The Benjamini–Hochberg correction was used to adjust P
value for multiple testing [35]. After selecting category-
specific differential genes, redundant genes were removed
by random forest method [36]. Signature genes were
obtained and functional enrichment analysis was applied to
annotate the mainly enriched pathways. Genes were divided
into two categories by the Cox regression model according
to the coefficient values (positive or negative). Referring to
gene expression grade index (GGI) score, TMEscore was cal-
culated by the following formula [37]:

TMEscore =〠log2 X + 1ð Þ−〠log2 Y + 1ð Þ, ð1Þ

where X is the positive expression value of the Cox coeffi-
cient responding to a gene set and Y is the expression value
of the Cox coefficient involving gene set. The samples were
then divided into TMEscore high and TMEscore low groups
based on the median.

Based on the above results, other data, such as TCGA
and GEO, could be applied to verify this model. Then, TME-
score would be divided into TMEscore high and low groups
according to the median, and the correlation between the
two groups and prognosis would be analyzed. In the end,
the correlation between the top 10 differentially expressed
genes (DEG) and the prognosis was validated by online
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3BioMed Research International



TMEcluster1 TMEcluster2 TMEcluster3

Mast cells activated
Mast cells resting

Dendritic cells resting

NK cells resting

NK cells activated

Dendritic cells activated

T cells gamma delta

T cells CD4 naive
T cells CD8

T cells CD4 memory activated
T cells CD4 memory resting

T cells folicular helper
T cells regulatory (tregs)

B cells naive

Eosinophils

Plasma cells

Neutrophils

B cells memory Monocytes

Macrophages M2

Macrophages M0
Macrophages M1

1.00

0.75

0.50

0.25

0.00

Ce
ll 

fra
ct

io
n

(d)

Figure 1: Continued.

4 BioMed Research International



database analysis, which would be displayed as the Kaplan-
Meier curves.

2.3. Analysis of TCGA-BRCA Mutation Spectrum

2.3.1. SNP-Related Mutation Spectrum Analysis. By taking
intersections between the mutation data and RNA-seq data
from TCGA-BRCA, 1042 samples were obtained to analyze
the SNP spectrum using R Maftools (https://bioconductor
.org/packages/release/bioc/html/maftools.html) and Somatic
Signatures packages (https://bioconductor.org/packages/
release/bioc/html/SomaticSignatures.html). The Spearman
rank correlation was utilized to evaluate the relationship
between TMEscore and mutation load of tumor subtype.
Pancancer survival analysis of mutational genes was put into
practice by starbase online (http://starbase.sysu.edu.cn/
panGeneSurvivalExp.php).

2.3.2. Copy Number Variant (CNV) Analysis. According to
the intersection of the processed SNP6 copy number seg-

ment data of breast cancer samples downloaded from the
website (http://firebrowse.org/) and the RNA-seq data sam-
ples used above, 1,039 samples were obtained. The common
CNV area in all samples, including the chromosome arm-
level CNV and the smallest common area between samples,
were detected by the Genomic Identification of Significant
Targets in Cancer (GISTIC) method according to the
SNP6 copy number segment data. The parameters of the
GISTIC method were set as follows: Q ≤ 0:05 is considered
as a significant alteration standard; a confidence level of
0.95 was used to determine the peak interval; the area range
greater than 0.98 of the chromosome arm length was used as
the standard for analyzing the chromosome arm-level varia-
tion. The above analyses were performed through the corre-
sponding MutSigCV module in the online analysis tool Gene
Pattern (https://cloud.genepattern.org/gp/pages/index.jsf)
developed by Broad Research Institute.

2.3.3. Tumor Purity and Ploidy Analysis. Tumor purity and
ploidy analysis were carried out by R “ABSOLUTE” package

Log-rank test p < 0.0001
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Figure 1: The pattern classification of tumor microenvironment (TME). (a) Optimal number of clusters: K value calculated by the elbow
method and gap statics algorithm. The ordinate axis represents total within sum of square; the abscissa axis represents the number of
clusters K . (b) Consensus matrix heat map (K = 3): ConsensusClusterPlus was used for unsupervised class discovery (1000 iterations, k =
1 : 10). The optimal k value of 3 was determined using the elbow method and gap statics, combined with the correlation between the
final classification and survival. (c) The distribution ratio of all kinds of immune cells in different TME clusters. (d) Clustering heat map
of the distribution ratio of all kinds of immune cells in different TME clusters. (e) Survival analysis for different TME clusters: the red
curve represents the TME cluster 1, the blue curve represents the TME cluster 2, and the yellow curve represents the TME cluster 3. The
ordinate axis represents the probability of survival, and the abscissa axis represents the survival days.
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(https://software.broadinstitute.org/cancer/cga/absolute_
download). By leveraging copy number and mutation data,
ABSOLUTE was able to estimate the purity and ploidy of
samples.

2.4. Comprehensive Analysis

2.4.1. TME and Gene Expression Correlation Analysis. Gene
expression profile (mRNA and miRNA) was used to identify
genes specifically expressed in different subgroups. Later,
functional enrichment analysis of specifically expressed
genes was performed to elucidate the differences in the bio-
logical functions of different TME subgroups [20].

2.4.2. Prognostic Evaluation of TME Cluster and TMEscore.
The differentially expressed genes (DEG), miRNAs, andmeth-
ylation sites were firstly identified between TMEscore sub-
groups (TMEscore high vs. low). After combining clinical
data, survival analysis of these DEG, miRNAs, and methyla-
tion sites was further performed to determine whether they
were related to clinical outcomes [34]. The molecular and clin-
ical characteristics of different TME model subgroups were
described through multidimensional data, and then, they were
used for constructing the landscape map of the studied tumor.

2.4.3. Exploring the Relationship between TMEscore and the
Prognosis of Immune Checkpoint Inhibitor (ICI) Treatment.
TMB is a feature that is known to be significantly related
to immunotherapy and can be used to predict the efficacy
of immunotherapy [38]. ROC was used to evaluate the pre-
dictability of TMB, TME group, and TMB+TME group
regarding the effect of immunotherapy. The prognostic sig-
nificance of the TME cluster and TMEscore was evaluated
by the Kaplan-Meier curves and Cox proportional hazard
regression models. The prognostic value of the TMEscore
was further validated in several datasets with different bio-
logical or therapeutic background, including TCGA-BRCA,
GSE124647 (metastatic breast cancer receiving endocrine
therapy), and GSE25066 (patients receiving neoadjuvant
taxane-anthracycline chemotherapy). TIDE (http://tide.dfci
.harvard.edu/) was used for evaluating the clinical effects of
ICI therapy whereby a higher tumor TIDE score was related
to a poorer responsiveness to ICI and prognosis.

3. Results

3.1. The Breast Cancer TME Landscape. We used CIBER-
SORT to estimate the abundances of 22 immune cell types
(memory B cells, activated dendritic cells, M0 macrophages,
etc.) in 3273 different breast cancer RNA-seq datasets (S
Figure 1A) and correlated the immune cell profile with
survival (S Figure 1B). The basic information of 22 kinds
of immune cells in 3273 samples are provided in
Supplementary table 1. Next, we used
ConsensusClusterPlus for unsupervised class discovery
(1000 iterations, k = 1 : 10). The optimal k value of 3 was
determined using the elbow method and gap statics,
combined with the correlation between the final
classification and survival (Figures 1(a)–1(e) and Methods).

According to the above TME classification (k = 3;
Figure 1(b)), we performed gene expression analysis using
limma and identified 552 differentially expressed genes
(DEGs) (P < 0:05, jlog2FCj > log2 (1.5)). Unsupervised clus-
tering then classified the differentially expressed genes into
three groups (S Figure 2A). Functional enrichment analysis
on 177 nonredundant genes using R ClusterProfiler
revealed that this gene set was significantly enriched in
immune-related pathways such as lymphocyte migration,
lymphocyte chemotaxis, and leukocyte chemotaxis (S
Figure 2B). A Cox regression model was used to determine
the relationship between DEGs and the survival of samples.
Next, genes were divided into 2 categories according to
their coefficient values, and samples were divided into two
groups based on calculated high or low TMEscores.

We found that the samples in the high TMEscore group
had a good prognosis, while samples in the low TMEscore
group had a poor prognosis (S Figure 2C). This finding
indicated that clustering samples based on their immune
cell profile combined with a TMEscore could predict the
prognosis of breast cancer patients.

We next evaluated the TMEscore model using datasets
representing metastatic breast cancer (TCGA-BRCA), breast
cancer receiving endocrine therapy (GSE124647), and breast
cancer receiving neoadjuvant taxane-anthracycline chemo-
therapy (GSE25066) (S Figure 3A-D). We found that the
calculated TMEscore could effectively predict the prognosis
in these samples. Namely, there is a significant negative
correlation between TMEscore and mutational load of
metastatic breast cancer samples (Spearman coefficient R =
−0:44, P < 2:2 × 10−16) (Figures 2(a) and 2(b)). TCGA-
BRCA was grouped and evaluated according to luminal A,
luminal B, basal, and Her-2. The TMEscores between
different subtypes were significantly different. The
TMEscores of basal and Her 2 were significantly lower
than the others, and luminal B was the second highest,
while luminal A was the highest (Figure 2(c)). The overall
survival cure is displayed in (Figure 2(d)); the stratified
analysis results are shown in (Figures 2(e) and 2(f)).

3.2. Breast Cancer Mutational Analysis

3.2.1. Overview of Mutations. We performed statistical analy-
sis on the mutational data of 1039 tumor samples (TCGA-
BRCA), including the type of mutation annotation, the pro-
portion of different types of base changes, and top 10mutation
genes (Figure 3(a)). Missense mutation was the major muta-
tion type in BRCA, and the major source of mutations was
SNPs (mostly C>T), followed by indels. In these tumor sam-
ples, the top 10 mutated genes included PIK3CA, MUC4,
and TTN (Figures 3(b) and 3(c)). According to the tumor
mutation burden (TMB) score’s high/low groups of BRCA
samples, the distribution of mutations and mutation annota-
tions of 24 (the union of the top 20 of each mutation) genes
are listed in Figures 3 B1 and 3 B2. The frequency distribution
of common gene mutations is shown in Figure 3(c).

3.2.2. Mutation Spectrum Analysis. By annotating the bases
immediately upstream or downstream each mutation site,
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Figure 2: Evaluation of TMEscore model and analysis of its correlation with mutation load. (a) The meta-analysis results of TMEscore
model in different datasets: training set, testing set, TCGA, TCGA different stages, metastatic breast cancer, and prognosis evaluation of
drug treatment. (b) Correlation analysis between TMEscore and mutation loads in different subtypes (basal, Her 2, Lum A, Lum B, and
normal): the ordinate axis represents total mutations, and the abscissa axis represents TMEscore. (c) TMEscore box plots in different
subtypes (basal, Her 2, Lum A, and Lum B). (d) Survival analysis results in four different subtypes of breast cancer (basal, Her 2, Lum A,
and Lum B): the ordinate axis represents the probability of survival, and the abscissa axis represents the survival days. Different colors
represent different subtypes. (e) Survival analysis of luminal A subtype after grouping according to TMEscore: the ordinate axis
represents the probability of survival, and the abscissa axis represents the survival days. Different colors represent different TMEscore
subgroups (high TMEscore and low). (f) Survival analysis of luminal B subtype after grouping according to TMEscore: the ordinate axis
represents the probability of survival, and the abscissa axis represents the survival days. Different colors represent different TMEscore
subgroups (high TMEscore and low).
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we identified 96 mutation contexts and counted their fre-
quencies in the BRCA tumor samples (S Figure 4A and
4B). In order to determine the relationship between the
mutation frequency distribution of BRCA tumor samples
and the signature included in COSMIC, we performed
nonnegative matrix decomposition of the frequency matrix
with 1042 samples in rows and 96 mutation types in
columns. After extracting mutational characteristics of 3
somatic point mutations, the similarity between the
extracted features and the signature collected by cosmic
was analyzed. Through analysis, we found that the
mutational spectrum of the high TMEscore group was
mainly related to Signature 2, Signature 10, and Signature
30 (S Figure 4C), while the low TMEscore group was
mainly related to Signature 2, Signature 3, and Signature 6
(S Figure 4D).

3.2.3. Analysis of Copy Number Variation (CNV). Two sets
of BRCA samples were analyzed by GISTIC software. In
the high TMEscore group, 1q allelic amplification and 16q
allelic deletion were the most significant alterations
(Figure 4(a)), while 1q allelic amplification and 17p allelic
deletion were the most significant alterations in the low
TMEscore group.

Additionally, a total of 41 amplifications and 12 copy
number deletions were detected among tumor samples in
the high TMEscore group (Figure 4(b)). Among them,
11q13.3 was the most significant in the amplified region,
while 11q23.1 was the most significant in the deletion
region. In the low TMEscore group, 41 amplification and
24 deletions were found. The most significant amplification
region was located at 8q24.21; and the most significant dele-
tion region was located at 8p23.2 (Figure 4(c)).

We then applied Pancancer survival analysis of genes
across 32 types of cancers in both high and low TMEscore
groups (Methods http://starbase.sysu.edu.cn/
panGeneSurvivalExp.php). A total of 95 amplified genes
and 169 deletion genes in the high TMEscore group and
while 61 amplified genes and 174 deletion genes in the low
TMEscore group were found to be significantly related to
the prognosis of breast cancer patients (Tables 1 and 2; S
Figure 5). In the high TMEscore group, the chromosomal
locus with the highest number of amplified genes was
located at 8q24.21 (n = 16; S Figure 5A1), and the highest
number of deleted genes was located at 1p36.11 (n = 52; S
Figure 5A2). However, in the low TMEscore group, the
chromosomal locus with the highest number of amplified
genes was found at 10p14 (n = 11, S Figure 5B1), and the
highest number of deleted genes was found at 1p36.13 and
3p14.2 (n = 36; S Figure 5B2).

Based on the CNV information of each tumor sample,
the tumor purity and ploidy was evaluated by ABSOLUTE
software (Figure 4(e)). Tumor purity ranged from 0.16 to
1, and tumor cell genome ploidy ranged from 1.54 to 9.79,
suggesting that genome disorder was common during
tumorigenesis. Moreover, we noted a significant difference
in the ploidy of the tumors in the high/low TMEscore
groups (t-test, P = 2:337e − 08, and P = 0:03075;
Figure 4(d)).

3.3. miRNA, mRNA, and Methylation Analysis

3.3.1. miRNA Differential Expression Analysis. Samples with
high or low TMEscores were further analyzed using limma
to identify differentially expressed miRNAs (adj:P < 0:05, j
log 2FCj > 1), followed by functional annotation (Methods).
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Figure 3: Overview of mutations in 1039 TCGA-BRCA samples. (a) Tumor mutation profile. A1: variant classification of 1039 tumor
samples. Missense mutations were the main mutation type in BRCA. A2: variant type of 1039 tumor samples. The source of mutations
was mainly SNPs (mostly C>T) followed by indels. A3: SNV class of 1039 tumor samples. A4: variants per sample among 1039 tumor
samples. A5: variant classification summary of 1039 tumor samples. A6: top 10 mutated genes in 1039 tumor samples. MUC4 was the
most common mutated gene, followed by TTN. (b) Gene mutation distribution and phenotype in different TMEscore groups. B1: the
distribution of mutations and mutation annotations of 24 genes in TMEscore high group. B2: the distribution of mutations and
mutation annotations of 24 genes in TMEscore low group. (c) The frequency distribution of common gene mutations. Among them, the
mutation rates of PIK3CA, TP53, KMT2C, GATA3, and MUC4 in the two subgroups have statistically significant differences.
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We detected 29 differentially expressed miRNAs, including
hsa-miR-19a-3p, that were related to cancer and immune
pathways (Figure 5(a)). Importantly, hsa-mir-19a-3p, hsa-
mir-30a-3p, and hsa-mir-9-5p have been validated to be sig-
nificantly correlated with the survival of breast cancer
patients (http://starbase.sysu.edu.cn/panMirSurvivalExp
.php#).

3.3.2. mRNA Differential Expression Analysis. Gene expres-
sion analysis comparing samples with high and low TME-
scores (adj:P < 0:05, jlog 2FCj > 1) followed by functional
annotation (Methods) identified 782 differentially expressed
genes (DEGs). Notably, DEGs were mainly upregulated in

the samples with high TMEscores (Figures 5(b) and 5(c)).
Most DEGs were enriched in the cell cycle, cell division,
and other related pathways, indicating that the major biolog-
ical differences between two sets of samples lie in cell prolif-
eration (Figures 5(d) and 5(e)).

3.3.3. Analysis of Differences in the Expression of Methylation
Sites. In order to explore differences in the methylome of
breast cancer samples, we downloaded TCGA-BRCA meth-
ylation chip data and analyzed 760 samples with signifi-
cantly high or low TMEscores (adj:P < 0:05, absolute
difference value > 0:15, Methods, Figure 6(a)). Identifying
miRNAs, mRNAs, and methylation sites that were
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Figure 4: The analysis results of CNV. (a) The occurrence of chromosome arm-level amplification and deletion in different TMEscore
groups: the abscissa axis represents the chromosome locus, and the ordinate axis represents the frequency of copy number alterations.
Red represents the high TMEscore group, and the other one represents the low TMEscore group. ∗ represents statistical differences in
frequency between the two groups. (b) Distribution of copy number amplification and deletion regions in high TMEscore group: 11q13.3
was the most significant in the amplified region, and 11q23.1 was the most significant in the deletion region. (c) Distribution of copy
number amplification and deletion regions in TMEscore_low group: the most significant amplification region was located at 8q24.21,
and the most significant deletion region was located at 8p23.2. (d) Ploidy analysis results in high and low TMEscore groups: ∗ represents
statistical differences in frequency between the two groups. (e) Purity analysis results in high and low TMEscore groups: ∗∗ represents
statistical differences in frequency between the two groups.
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Table 1: The distribution of genes that are significantly related to the survival of breast cancer patients in different chromosomes (high
TMEscore group).

Type Cytoband q value
Residual
q value

Wide peak
boundaries

Genes in wide peak (pancancer survival analysis of genes, log-rank
P < 0:05)

Amplification

11q13.2 5.19E-30 1.26E-14
chr11:67149025-

67239409
CARNS1, TBC1D10C

8q24.21 3.57E-14 1.77E-10
chr8:112209072-

132893892

NDUFB9, TAF2, EIF3H, ZHX1, MRPL13, GSDMC, DSCC1,
DERL1, UTP23, C8orf76, NSMCE2, LINC00536, MAL2, TMEM65,

FAM84B, and FAM91A1

1q32.1 4.94E-13 1.37E-07
chr1:200049409-

207682721
C4BPA, CACNA1S, MYBPH, PIGR, BTG2, IL24, UBE2T, LGR6,

and SYT2

12q15 6.45E-05 6.45E-05
chr12:68571667-

71730803
CCT2, IL26

19q13.43 0.0004018 0.0004018
chr19:57711362-

58759151
ZNF586, ZNF552, ZNF671, ZNF587, ZSCAN1, and ZNF773

8q21.13 2.72E-09 0.0013026
chr8:80930566-

81905402
TPD52

15q26.3 0.0015596 0.0015596
chr15:97773672-

99710785
IGF1R

1q42.3 1.62E-08 0.0045109
chr1:224184822-

249250621
KCNK1, GPR137B, CDC42BPA, DEGS1, KMO, EXO1, PGBD5,

and LINC00184

11q13.4 3.32E-15 0.010598
chr11:75104213-

75489974
KLHL35

11q12.2 0.0050379 0.025986
chr11:60965301-

61392747
CPSF7

20q13.31 7.78E-09 0.10561
chr20:55905630-

56139966
MTRNR2L3

20q13.32 5.47E-08 0.12447
chr20:57697096-

58759307
SYCP2, ZNF831, and C20orf197

6p24.1 0.13739 0.13739
chr6:8334749-
26341802

HIST1H1T, MAK, CD83, ELOVL2, MRS2, and MBOAT1

20q13.33 1.50E-06 0.16137
chr20:60450310-

63025520
OPRL1, PTK6, OSBPL2, DIDO1, RTEL1, and SLC17A9

16p13.3 0.21045 0.21045 chr16:1-11927917
hsa-mir-940, ABAT, OR1F1, SRL, HBM, IGFALS, SOCS1,
RHBDL1, RAB26, SNORD60, TBC1D24, ROGDI, PRSS27,

C16orf89, and BCAR4

1q21.3 3.75E-05 0.21456
chr1:154496590-

155333859
RUSC1-AS1

17q25.1 4.00E-09 0.22085
chr17:70557347-

78812525

ITGB4, LGALS3BP, RPL38, DNAH17, SOCS3, ST6GALNAC2,
CD300C, CCDC40, MYO15B, CBX2, KIF19, ENDOV, RAB37,

C17orf99, and MIR4730

Deletion

11q23.1 6.20E-28 6.20E-28
chr11:103701096-

127804389

APOA1, ARCN1, FXYD2, CD3D, CD3E, CD3G, CRYAB, HSPA8,
RDX, TECTA, UPK2, UBE4A, VSIG2, BACE1, FXYD6,

ARHGAP20, C11orf1, CLMP, APOA5, TTC36, OR6T1, CCDC153,
OR10G7, DDI1, and OR8D4

17p12 4.48E-14 4.48E-14
chr17:11939511-

12020487
hsa-mir-744-3p

8p21.2 3.38E-24 1.13E-10
chr8:19767860-

28832196
CLU, EGR3, SLC18A1, TRIM35, BIN3, NUDT18, and C8orf58

16q24.2 5.23E-06 5.23E-06
chr16:73537103-

90354753
CYBA, RPL13, SLC7A5, CLEC3A, JPH3, VAT1L, DNAAF1,

DYNLRB2, ADAMTS18, and FAM92B

6q21 2.84E-09 2.79E-05
chr6:85623676-
114360570

HDAC2, AMD1, NT5E, POU3F2, SNX3, RNGTT, FIG4, SEC63,
PDSS2, MICAL1, RTN4IP1, and SCML4

1p36.11 0.0001786 0.0001786 chr1:1-29548541
CA6, CASP9, RUNX3, CD52, CLCNKB, CNR2, CORT, NPPA,

PAX7, PIK3CD, PTAFR, RPL11, TP73, RPL22, RPS6KA1,
TNFRSF25, TNFRSF14, TNFRSF18, H6PD, SRRM1, SYF2, CHD5,

13BioMed Research International



correlated with TMEscores allowed us to proceed to deter-
mine whether or not these factors were correlated with the
survival. 217 significantly different methylation sites were
detected.

3.3.4. Survival Analysis. According to the expression values
of the above differential miRNA, genes, methylation sites,
or methylation levels (whether they were greater than the
median of the expression value in all samples), the samples
were divided into 2 groups. Log-rank test was used to deter-
mine whether these differential mRNA, miRNA, and meth-
ylation sites were related to the survival. A total of 6
miRNAs, 124 genes, and 67 methylation sites related to the
survival (P < 0:05) were obtained. For example, we found
that miRNA hsa-mir-1307, gene LRRC48, and methylation
site cg25726128 were significantly correlated with the sur-
vival of BRCA patients (Figures 6(b)–6(d)).

3.4. The Correlation between TME and Immune Checkpoint
Inhibitor (ICI) Treatment. Next, we used TIDE (tumor
immune dysfunction and exclusion, http://tide.dfci.harvard
.edu/) to evaluate the clinical effects of immune checkpoint
inhibitor (ICI) therapy in the two sets of BRCA samples.
As shown in (Figure 6(e)), it could be seen that the TIDE
score of the high TMEscore group was significantly higher
than that of the low TMEscore group (wilcox.test, P value
= 1.067e-12).

ROC was used to evaluate the predictive ability of TMB,
TME group, TMB+TME group on the effect of immuno-
therapy (TIDE score was used as the immune efficacy score).
The result revealed that TME group was better than TMB as
a prognostic tool (roc.test, P value = 0.003749, Figure 6(f)).

3.4.1. The Relationship between TME and MSI. It was
reported that patients with MSI-H had a better prognosis
[39]. Therefore, combined with the TMEscore high samples
with better prognosis in this analysis, the MSI was analyzed.
According to the MSI score results predicted by TIDE, the
samples were divided into MSI high and low groups (high:
146; low: 911). We found that the TMEscores responding
to the two sets of MSI-high/low samples were significantly
different (wilcox.test, P = 2:589e − 09) (Figure 6(g)).

3.4.2. Comprehensive Genome Landscape of Tumor Samples.
According to the TMEscore grouping information (TME-
score, TMEscore_group), mutations (purity, ploidy, and
TMB), and clinical information (STAGE OS_STATUS) of
the sample, the comprehensive genome landscape of the
tumor sample was depicted, which is shown Figure 6(h).

4. Discussion

Breast cancer is a heterogeneous disease with highly variable
clinical outcomes [40–42]. In the United States, although the
incidence rate of breast cancer has slightly increased in
recent years, the overall mortality rate has been in decline
[43]. The overall decline in the mortality of breast cancer
patients could be credited to committed and diverse studies
in this field [6–8, 40–45]. Recently, the concept of compre-
hensive immunotherapy for breast cancer had been gradu-
ally developed [45, 46], and immune-related indicators
have been demonstrated to have a significant impact on
the prognosis of various tumors including breast cancer
[19–22]. We therefore profiled the tumor immunological
microenvironment and determined its predictive value for
breast cancer patients.

Table 1: Continued.

Type Cytoband q value
Residual
q value

Wide peak
boundaries

Genes in wide peak (pancancer survival analysis of genes, log-rank
P < 0:05)

SMPDL3B, CELA2B, ZNF593, ERRFI1, PQLC2, TRNAU1AP,
XKR8, PNRC2, KIF17, NBPF1, MIIP, LIN28A, LINC00115,

MORN1, GPR157, ACTL8, EFHD2, TAS1R3, PLEKHN1, UBXN11,
C1orf158, FHAD1, RBP7, ACTRT2, GPR153, PLA2G2C, RNF207,

SNORA59B, TTC34, and MIR4684

13q14.2 0.0013005 0.0013005
chr13:48870266-

51811240
PHF11, CTAGE10P, and ARL11

3p21.31 0.0015062 0.001506
chr3:41907969-

75074934

CCR3, CCR5, FHIT, FLNB, GPR27, ITIH1, CISH, ITIH3, MST1,
PDHB, RPL29, TDGF1, UBA7, USP4, SEMA3B, HYAL3, HYAL2,
PARP3, RBM6, RBM5, CCR9, TMEM115, MIR4443, TUSC2,

EIF4E3, C3orf62, SPINK8, CDHR4, ABHD14A, PTPN23, RBM15B,
ARHGEF3, SS18L2, SHISA5, ZMYND10, HEMK1, IP6K2, PHF7,
P4HTM, SNRK, ANO10, SEMA3G, KIF9, CAMKV, LRRC2,

FAM3D, and SNTN

6q27 1.76E-07 0.0036694
chr6:165745183-

171115067
CCR6, DACT2, and C6orf120

11q13.1 0.11052 0.11052
chr11:64565960-

65674152
MIR4690, CTSW

12p13.1 0.21108 0.21108
chr12:10747241-

18912988
ARHGDIB, PRB1, TAS2R7, GPRC5D, BCL2L14, TAS2R43, and

TAS2R30
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Table 2: The distribution of genes that are significantly related to the survival of breast cancer patients in different chromosomes (low
TMEscore group).

Cytoband q value
Residual q

value
Wide peak
boundaries

Genes in wide peak (pancancer survival analysis of genes, log-
rank P < 0:05)

Amplification

8q23.3 3.95E-64 1.42E-13
chr8:116404190-

117369718
LINC00536

1q42.3 1.69E-11 6.15E-10
chr1:233225485-

249250621
KCNK1; GPR137B; EXO1; and LINC00184

12q15 2.97E-08 2.97E-08
chr12:69232907-

70028065
CCT2

1q23.3 1.38E-16 4.61E-07
chr1:160766283-

161196692
TOMM40L

19q12 6.74E-07 6.74E-07
chr19:30071032-

30519016
CCNE1

17q23.3 2.32E-34 3.72E-06
chr17:61938003-

62464820
GH2

8p11.21 4.68E-13 8.02E-06
chr8:41464872-

42334787
PLAT;SLC20A2

15q26.3 1.46E-05 1.46E-05
chr15:98898260-

99719772
IGF1R

10p14 0.00010116 0.00010116
chr10:2133333-

14235192
CALML3; PRKCQ; AKR1C3; CDC123; PITRM1; NUDT5;

SEPHS1; MCM10; DHTKD1; SFMBT2; and AKR1E2

6p23 0.0015466 0.0015466
chr6:8294791-
22998441

MAK; CD83; ELOVL2; MBOAT1; and HDGFL1

20q13.32 1.56E-13 0.0034782
chr20:55360152-

57763459
hsa-mir-4325; MTRNR2L3

8q21.13 8.30E-23 0.0041212
chr8:80799143-

81914705
TPD52

17q25.3 2.00E-18 0.0043376
chr17:77706199-

77827008
CBX2

10q22.3 0.021087 0.021087
chr10:79530228-

82012440
RPS24; SFTPD; and EIF5AL1

3q26.32 2.40E-07 0.021413
chr3:176689515-

179942551
ZMAT3

20q13.33 2.33E-10 0.029112
chr20:62160482-

63025520
OPRL1; PTK6; and RTEL1

5p15.33 0.030952 0.030952 chr5:1-4423291 SLC6A3; AHRR; SLC6A19; and SDHAP3

8q21.3 8.78E-31 0.035914
chr8:90681176-

94209709
DECR1; OTUD6B

4q13.3 0.11535 0.11535
chr4:73718359-

75035796
CXCL1; CXCL2; CXCL3; and COX18

13q34 0.12313 0.12313
chr13:97958870-

115169878
GPR18; ZIC2; IRS2; FARP1; KDELC1; CARS2; DAOA;

LINC00346; UBAC2-AS1; and MIR548AN

3q26.2 1.34E-06 0.14005
chr3:161762173-

175078479
CLDN11; WDR49

8p21.3 2.12E-52 8.34E-20
chr8:21912133-

25692095
EGR3; BIN3; NUDT18; and C8orf58

1p36.13 2.15E-12 2.15E-12 chr1:1-24656091

CA6; CASP9; CLCNKB; CNR2; CORT; NPPA; PAX7; PIK3CD;
RPL11; RPL22; TNFRSF25; TNFRSF14; TNFRSF18; H6PD;

CHD5; CELA2B; ERRFI1; PNRC2; NBPF1; KIF17; MIIP; EFHD2;
LINC00115; MORN1; GPR157; ACTL8; TAS1R3; PLEKHN1;
C1orf158; RBP7; ACTRT2; RNF207; PLA2G2C; SNORA59B;

TTC34; and MIR4684

3p14.2 2.73E-11 2.73E-11
chr3:48386251-

69373975
CISH; FHIT; FLNB; ITIH1; ITIH3; MST1; PDHB; RPL29; UBA7;
USP4; IFRD2; SEMA3B; HYAL3; HYAL2; PARP3; RBM6; RBM5;
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It is reported that a large number of macrophage infiltra-
tion indicate a poor prognosis for cancer patients [47]. In
vivo studies suggest that macrophages can stimulate angio-
genesis, promote tumor cell extravasation, increase tumor
cell migration, and further promote the occurrence and
malignant progression [47]. Immunotherapy targeting mac-
rophages may bring new hopes to cancer patients [48].
Therefore, clarifying the relationship between macrophages
and the prognosis of cancer patients in clinical samples
may have a significant role in promoting drug targeting
macrophages. Through a comprehensive analysis of the
infiltration status of 22 immune cells (S Figure 1A) and
their correlation with survival (S Figure 1B), we found that
resting Mast cell was a favorable factor for the OS, and M0
macrophage was a risk factor for the OS, which were rarely
reported in breast cancer [40]. Further analysis also
showed that the higher M0 macrophage infiltration was
correlated to the worse prognosis of breast cancer patients
(Figures 1(d) and 1(e)). Therefore, the M0 macrophage
infiltration ratio may be used as an indicator to predict the
prognosis of breast cancer patients in the future.

TMEscore, rarely reported in breast cancer, was consid-
ered to be related to the prognosis of cancer patients [10].
We therefore used a similar approach to evaluate the rela-

tionship between TMEscore and the survival (S Figure 2A)
[10]. Our analysis revealed that 177 genes of interest were
significantly enriched in immune-related pathways such as
lymphocyte migration, lymphocyte chemotaxis, and
leukocyte chemotaxis (S Figure 2B). The Cox regression
model was used to determine the relationship between
those genes and the survival of samples. All genes were
divided into 2 categories according to the coefficient value
of them, and all samples were scored by TMEscore using
the TMEscore calculation formula. We found that there
was a positive correlation between TMEscore and the
survival of patients (S Figure 2C), which was never been
reported by others.

Further validation of TMEscore was conducted in dif-
ferent subgroups (S Figure 3). All analysis results
indicated that the obtained TMEscore might be a good
characterization of the prognosis of clinical samples
regarding their survival (S Figure 3). The evaluation
effect of TMEscore model also indicated that TMEscore
was a very good prognostic indicator for breast cancer
patients (Figure 2(a)). Our strata analysis found that
TMEscores were different in different pathological
subgroups (luminal A, luminal B, basal, and Her 2;
Figure 2(c)). The subgroup analysis based on TMEscore

Table 2: Continued.

Cytoband q value
Residual q

value
Wide peak
boundaries

Genes in wide peak (pancancer survival analysis of genes, log-
rank P < 0:05)

TMEM115; TUSC2; ABHD14A; RBM15B; ARHGEF3; SHISA5;
ZMYND10; HEMK1; IP6K2; PHF7; P4HTM; SEMA3G;

CAMKV; FAM3D; SNTN; C3orf62; CDHR; SNORD69; and
ESRG

19p13.3 8.22E-10 8.22E-10 chr19:1-1942022 AZU1; CIRBP; GZMM; APC2; CIRBP-AS1; and ODF3L2

Deletion

5q13.3 3.75E-05 3.75E-05
chr5:53747308-

89283337
BTF3; CKMT2; GZMA; GZMK; TAF9; ENC1; HSPB3; EDIL3;

NSA2; ANKRD55; NBPF22P; and LINC00461

6q26 4.72E-05 4.72E-05
chr6:156683000-

171115067
CCR6; IGF2R; TCP1; DYNLT1; ARID1B; SERAC1; DACT2;

OSTCP1; TMEM242; and C6orf99

11q23.2 1.08E-14 5.22E-05
chr11:101000626-

118347999

BIRC3; APOA1; FXYD2; CD3D; CD3E; CD3G; CRYAB; RDX;
MMP20; UBE4A; BACE1; FXYD6; ARHGAP20; C11orf1;

APOA5; DDI1; and FXYD6-FXYD2

11q25 1.87E-14 0.00011266
chr11:132748397-

135006516
GLB1L3

11p15.5 0.00022487 0.00022487 chr11:1-549958 IFITM1; SCGB1C1; and NLRP6

15q11.2 0.0003078 0.0003078 chr15:1-43514475
LTK; RAD51; RASGRP1; CHP; RPAP1; PPP1R14D; PAK6;
NIPA2; TUBGCP5; NIPA1; FSIP1; C15orf53; GOLGA8B;
MIR626; SNORD115-16; SNORD115-33; and TMCO5B

2q37.3 0.0049716 0.0049716
chr2:234295756-

243199373
HDLBP; PDCD1; RAMP1; PASK; SH3BP4; ANKMY1; MLPH;

and MSL3P1

10q26.3 0.00033563 0.013065
chr10:134143498-

135534747
INPP5A; UTF1; NKX6-2; PRAP1; and DUX4L2

18q23 0.039797 0.039797
chr18:62564783-

78077248
CD226

16q24.3 0.058632 0.058632
chr16:76942801-

90354753
CYBA; RPL13; SLC7A5; CLEC3A; VAT1L; DYNLRB2; DNAAF1;

and FAM92B

4p16.3 0.13214 0.13214 chr4:1-37273894
DHX15; MYL5; FGFBP1; FAM184B; DCAF16; CCDC96; DOK7;

and DTHD1

20p13 0.20564 0.20564 chr20:1-637696 ZCCHC3; DEFB132
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also suggested that TMEscore was a much better indicator
for evaluating the prognosis and survival of breast cancer
patients than their pathological phenotypes
(Figures 2(d)–2(f)). Furthermore, there was a significantly
negative correlation between TMEscore and TMB

(Figure 2(b); P < 2:2 × 10−16). Although the relationship
between TMEscore and the prognosis has been reported
in other malignant tumors [10, 49], this is the first
report in breast cancer. These findings lay the foundation
for the clinical application of TMEscore in the future.
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Figure 5: The analysis results of miRNA and mRNA. (a) Functional annotation of differentially expressed miRNA: the ordinate axis
represents different miRNAs, and the abscissa axis represents the functional annotations of miRNAs. (b) Volcano map of differentially
expressed genes (DEG): the red part on the right shows the upregulated TOP 9 genes, and the blue on the left shows the downregulated
top 2 genes. (c) Heat map of differentially expressed genes (DEG). (d) GO enrichment analysis of differentially expressed genes (DEG):
the abscissa axis represents the number of genes, and the ordinate axis represents the results of CC (cellular component), BP (biological
process), and MF (molecular function). (e) KEGG enrichment analysis of differentially expressed genes (DEG): the abscissa axis
represents the number of genes, and the ordinate axis represents the corresponding pathways.
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Through mutation analysis, we found that missense
mutations were the most common alterations in BRCA
[50, 51], and C>T was the most common type of SNP muta-
tion in both high TMEscore and low subgroup (S Figure 4A
and S Figure 4B). Similarities between the mutation
characteristics of the TMEscore groups and those of the
COSMIC mutation signature were analyzed and provided
(S Figure 4C and S Figure 4D). Through analysis, we
found that the mutation profile of the high TMEscore
group was mainly related to Signatures 2, 10, 30, 24, and 1
(S Figure 4C), while the low TMEscore group was mainly

related to Signatures 2, 3, and 6 (S Figure 4D). Among
them, Signature 24 was firstly found and reported in breast
cancer (https://cancer.sanger.ac.uk/signatures_v2/matrix
.png) [52–54]. PIK3CA, reported in other studies [55, 56],
was the gene with the highest mutation rate in the high
TMEscore group (47%; Figure 3 B1), while TP53 was the
most commonly mutated in the low TMEscore group
(59%; Figure 3 B2) [57, 58]. PIK3CA, MUC4, TP53,
KMT2C, and GATA3 were found to be significantly
different between the high TMEscore and the low
TMEscore group (Figure 3(c)). Among top 10 mutation
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Figure 6: Comprehensive analysis results of tumor samples. (a) Volcano map of differentially methylated sites: 217 significantly different
methylation sites were detected, and 67 methylation sites related to survival were obtained. (b) The survival analysis results of hsa-mic-
1307 in different subgroups: the abscissa axis represents the survival time, and the ordinate axis represents the survival probability. The
red curve represents high expression, and the blue curve represents low expression. (c) The survival analysis results of LRRC48 in
different subgroups: the abscissa axis represents the survival time, and the ordinate axis represents the survival probability. The red curve
represents high expression, and the blue curve represents low expression. (d) The survival analysis results of cg25726128 in different
subgroups: the abscissa axis represents the survival time, and the ordinate axis represents the survival probability. The red curve
represents high expression, and the blue curve represents low expression. (e) Immunotherapy efficacy score calculated by TMEscore
group: the abscissa axis represents the TMEscore subgroup, and the ordinate axis represents TIDE. ∗∗ represents that the analysis result
is statistically significant. (f) Using ROC analysis to evaluate the predictive ability of TMB, TMEgroup, and TMB+TME group on the
effect of immunotherapy. (g) The relationship between MSI and TMEscore: the abscissa axis represents different MSI subgroups, and the
ordinate axis represents TMEscore. ∗∗ represents that the analysis result is statistically significant. (h) Comprehensive genome landscape
of BRCA (47 survival-related genes, P < 0:01).
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genes, MUC4 was the gene with the highest mutation rate
(24%; Figure 3 A6), which was reported to be uncorrelated
with prognosis [59, 60].

Copy number alteration was a driving factor for the
occurrence and development of cancer, and it played an
important role in the entire developmental process of cancer
[52, 61]. Consistent with earlier reports, the most prevalent
somatic copy number alteration (SCNA) in our study was
either very short (focal) or arm-level [61]. Through analysis,
we found that 1q amplification was the most common arm-
level SCNAs, regardless of TMEscore (Figure 4(a)). Inciden-
tally, chromosome 1q21.3 amplification was considered to
be a trackable biomarker and actionable target for breast
cancer recurrence [62]. 16q deletion was the most common
arm-level SCNA among all samples (Figure 4(a)), while
17p deletion is the most frequently occurring SCNA in the
low TMEscore subgroup. Moreover, we found that in most
cases, the incidence frequency of deletion or amplification
in the same chromosome region seems to be significantly
higher in the low TMEscore subgroup than that of the high
TMEscore subgroup, which was rarely reported in other
studies (Figure 4(a)) [52, 61–63]. Similar status could also
be seen in focal SCNAs (Figures 4(b) and 4(c)). In other
words, genome amplification or deletion alterations are
much more likely to be found in the low TMEscore sub-
group (Figures 4(a)–4(c)).

83 amplification and 36 deletion loci belonging to SCNA
regions were found, and most of them have been reported in
other studies [64]. However, the relationship between genes
in these regions and the prognosis of breast cancer patients
has not been systematically reported [61–64]. Pancancer
survival analysis of genes across breast cancer in focal
SCNAs was conducted and summarized (Tables 1 and 2
and S Figure 5). A total of 95 amplified genes and 169
deletion genes in the high TMEscore group were found to
be significantly related to the prognosis of breast cancer
(Table 1; S Figure 5), while 61 amplified genes and 174
deletion genes in the low TMEscore group were identified
(Table 2; S Figure 5). In the high TMEscore group, the
chromosomal loci with the highest frequency of amplified
genes was located at 8q24.21 (n = 16; S Figure 5A1), and
the highest frequency of deleted genes was located at
1p36.11 (n = 52; S Figure 5A2), while in the low TMEscore
group, the chromosomal loci with the highest frequency of
amplified genes were found at 10p14 (n = 11, S
Figure 5B1), and the highest frequency of deleted genes
was found at 1p36.13 and 3p14.2 (n = 36; S Figure 5B2).
The above results in SCNAs regions were all discovered
and reported for the first time. Our results would provide a
framework for clinical work, especially for the
comprehensive evaluation of the prognosis for breast
cancer patients.

Through comprehensive analysis and evaluation, abnor-
mal changes in tumor purity and ploidy, which were
reported in other cancers [65–67], were also detected in
breast cancer. This discovery suggested that genome disor-
der was a common phenomenon during carcinogenesis,
but the correlation between them and breast cancer remains
to be elucidated (Figures 4(d) and 4(e)).

We found that hsa-mir-19a-3p, hsa-mir-30a-3p, hsa-
mir-9-5p, hsa-mir-105-3p, and hsa-mir-18a-5p were
enriched both in cancer and immune pathways
(Figure 5(a)). hsa-mir-30a-3p [68], hsa-mir-9-5p, and hsa-
mir-18a-5p have ever been reported in breast cancer [69].
hsa-mir-19a-3p, hsa-mir-30a-3p, and hsa-mir-9-5p were
validated to be significantly correlated with the prognosis
of breast cancer (http://starbase.sysu.edu.cn/
panMirSurvivalExp.php#). Through mRNA differential
expression analysis, these corresponding genes were mainly
upregulated in the high TMEscore group (Figures 5(b) and
5(c)). Among the top 9 upregulated genes, 6 of them
(LRRC48, CFAP69, BTG2, KDM4B, TPRG1, and SCUBE2)
were found to be relevant to the survival of breast cancer
patients (Figure 6(c); http://starbase.sysu.edu.cn/
panGeneSurvivalExp.php). Differentially expressed genes
were enriched in the cell cycle, cell division, and other
related pathways, indicating that major different biological
processes between the two sets of samples (high/low TME-
score) lie in cell division and proliferation (Figures 5(d)
and 5(e)). Methylation is a common epigenetic change that
affects the development, prognosis, and treatment of tumors
[70–72]. We found 217 significantly different methylation
sites in our datasets (Figure 6(a)). Furthermore, 6 miRNAs,
124 genes, and 67 methylation sites related to survival were
obtained. has-mir-1307 was significantly correlated to the
survival (Figure 6(b)) [73]. From Figure 6(d), it could be
found that cg25726128 was significantly correlated with the
survival of BRCA patients. Furthermore, LRRC48, CFAP69,
and cg25726128 were first discovered and reported to be
related to the survival of breast cancer patients
(Figures 6(c) and 6(d)). These new findings would be helpful
for us to conduct more in-depth research on the mechanism
of breast cancer in the future.

As shown in (Figure 6(e)), it could be seen that the
TIDEscore of the high TMEscore group was significantly
higher than that of the low TMEscore group (P value =
1.067e-12). The higher tumor TIDE prediction score was
related to the poorer response to immune checkpoint inhib-
itor therapy. In the previous analysis, the high TMEscore
group has a better prognosis, and the low TMEscore group
has a poor prognosis. Corresponding to the results of this
TIDE assessment, it showed that the high TMEscore group
had a good prognosis, but the low TMEscore group had a
better response on immune checkpoint inhibitor (ICI) ther-
apy. ROC was used to evaluate the predictive ability of TMB
[38], TME group, and TMB+TME group on the effect of
immunotherapy (Figure 6(f)). We found that TME was bet-
ter than TMB as a prognostic tool (roc.test, P value =
0.003749). TMEscores responding to the two sets of MSI
were significantly different (wilcox.test, P = 2:589e − 09)
(Figure 6(g)). Negative correlation between TMEscore and
TMB is displayed in Figure 2(b) (P < 2:2 × 10−16). Although
significant correlation between TMB and MSI was reported
in colorectal and pancreatic cancer [74], the relationship
between TMEscore and MSI in BRCA still needed to be val-
idated. But this would not weaken the potential of TMEscore
as an indicator for the prognostic evaluation in breast cancer
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patients (Figure 6(f)). It could be found that genomic alter-
ations in those two TMEscore groups were significantly dif-
ferent from each other (Figure 6(h)). In a word, it showed
that the TME method could be effectively used to predict
tumor prognosis and the responsiveness to ICI therapy.

Compared with traditional scoring methods, the advan-
tage of the TMEscore scoring method is that more cells are
included in the score [10, 38]. Twenty-two kinds of immune
cells are included in this project [10]. We first clustered them
according to the immune infiltration situation and then
screened the genes related to infiltration. In this step, the
candidate gene set was expanded to ensure the accuracy.
Finally, the gene expression grade index (GGI) score was
used to effectively simplify the model and facilitate calcula-
tion [37]. Compared with GGI, TMEscore has fewer require-
ments for the number of samples, and the calculation
process is much simpler.

5. Conclusion

TMEscore could be effectively used to predict tumor prog-
nosis and the efficacy of ICI. Signature 24 was first found
in breast cancer. In focal SCNAs, a total of 95 amplified
genes and 169 deletion genes in the high TMEscore group
are found to be significantly related to the prognosis of
breast cancer patients, while 61 amplified genes and 174
deletion genes in the low TMEscore group were found.
LRRC48, CFAP69, and cg25726128 were first discovered
and reported to be related to the survival of breast cancer
patients.
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Supplementary Table 1: the basic characteristics of the 4
datasets: TCGA-BRCA, GSE96058, GSE124647, and
GSE25066. Supplementary Figure 1: infiltrating cells in the
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TME. (A) The distribution ratio of 22 kinds of immune cells
(B cells memory, dendritic cells activated, macrophages M0,
etc.) in different samples: the ordinate represents the propor-
tion of different immune cells, the abscissa represents differ-
ent samples, and the color represents the type of immune
cells. (B) The relationship between 22 kinds of immune cells
and their relationship with survival (the larger the dot indi-
cates the more related to survival, the thickness of the line
indicates the strength of cell correlation). Supplementary
Figure 2: the relationship between TMEscore and survival.
(A) Consistent clustering results of differential genes: Con-
sensusClusterPlus was used for unsupervised class discovery
(1000 iterations, k = 1 : 10). The optimal k value of 3 was
determined using the elbow method and gap statics, com-
bined with the correlation between the final classification
and survival. The limma package of R was used to screen dif-
ferent types of differentially expressed genes (P < 0:05, jlog
2FCj > log 2 (1.5)). 522 differentially expressed genes were
obtained, and unsupervised cluster analysis was performed,
and the samples were divided into three categories. (B)
Functional enrichment analysis results of signature genes:
functional enrichment analysis on 177 nonredundant genes
using R ClusterProfiler revealed that this gene set was signif-
icantly enriched in immune-related pathways such as lym-
phocyte migration, lymphocyte chemotaxis, and leukocyte
chemotaxis. (C) Survival analysis results of all enrolled sam-
ples based on TMEscore: a Cox regression model was used
to determine the relationship between DEGs and the sur-
vival of samples. Next, genes were divided into 2 categories
according to their coefficient values, and samples were
divided into two groups based on high or low calculated
TMEscores. Supplementary Figure 3: validation and model
evaluation using TCGA-BRCA, GSE124647, and
GSE25066. (A) Survival analysis for TCGA-BRCA based
on TMEscore model: the red curve represents the high
TMEscore group, and the blue curve represents the low
TMEscore group; the ordinate axis represents the probability
of survival, and the abscissa axis represents the survival days.
(B) Survival analysis for GSE124647 (metastatic breast can-
cer) based on the TMEscore model: the red curve represents
the high TMEscore group, and the blue curve represents the
low TMEscore group; the ordinate axis represents the prob-
ability of survival, and the abscissa axis represents the sur-
vival days. (C1) Survival analysis for GSE25066
(chemotherapy) based on the TMEscore model: the yellow
curve represents the high TMEscore group, and the blue
curve represents the low TMEscore group; the ordinate axis
represents the probability of survival, and the abscissa axis
represents the survival days. (C2) ROC curve of GSE25066
(AUC = 0:612): the ordinate axis represents the detection
sensitivity of the ROC curve, and the abscissa axis represents
the detection specificity of the ROC curve. (D1) Survival
analysis for GSE124647 (endocrine therapy) based on the
TMEscore model: the yellow curve represents the high
TMEscore group, and the blue curve represents the low
TMEscore group; the ordinate axis represents the probability
of survival, and the abscissa axis represents the survival days.
(D2) ROC curve of GSE124647 (AUC = 0:557): the ordinate

axis represents the detection sensitivity of the ROC curve,
and the abscissa axis represents the detection specificity of
the ROC curve. Supplementary Figure 4: the results of muta-
tion spectrum analysis: nonnegative matrix decomposition
of the frequency matrix with 1,042 samples in rows and 96
mutation types in the columns were performed, mutational
characteristics of 3 somatic point mutations were extracted,
and then, the similarity between the extracted features and
the signature collected by cosmic was analyzed. (A) The fre-
quency distribution of 96 mutation types in high TMEscore
group: the most frequent type of mutation is C>T. (B) The
frequency distribution of 96 mutation types in low TME-
score group: the most frequent type of mutation is C>T.
(C) Similarity between the mutation characteristics of the
high TMEscore group and those of the cosmic mutation sig-
nature: the mutation spectrum was mainly related to Signa-
ture 2, Signature 10, and Signature 30. (D) Similarity
between the mutation characteristics of the low TMEscore
group and those of the cosmic mutation signature: the muta-
tion spectrum was mainly related to Signature 2, Signature 3,
and Signature 6. Supplementary Figure 5: pancancer survival
analysis of genes across cancers in SCNAs regions. The
abscissa axis represents the chromosome locus, and the ordi-
nate axis represents the number of genes locating in the cor-
responding chromosome locus. (A1) In the high TMEscore
group, the distribution and number of amplified genes that
are significantly related to the survival of breast cancer
patients in different chromosomes. (A2) In the high TME-
score group, the distribution and number of deletion genes
that are significantly related to the survival of breast cancer
patients in different chromosomes. (B1) In the low TME-
score group, the distribution and number of amplified genes
that are significantly related to the survival of breast cancer
patients in different chromosomes. (B2) In the low TME-
score group, the distribution and number of deletion genes
that are significantly related to the survival of breast cancer
patients in different chromosomes. (Supplementary
Materials)
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