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Myotonic dystrophy type 1 (DM1 also known as Steinert disease) is a multisystemic 
disorder mainly characterized by myotonia, progressive muscle weakness and wasting, 
cognitive impairments, and cardiac defects. This autosomal dominant disease is caused 
by the expression of nuclear retained RNAs containing pathologic expanded CUG 
repeats that alter the function of RNA-binding proteins in a tissue-specific manner, leading 
ultimately to neuromuscular dysfunction and clinical symptoms. Although considerable 
knowledge has been gathered on myotonic dystrophy since its first description, the 
development of novel relevant disease models remains of high importance to investigate 
pathophysiologic mechanisms and to assess new therapeutic approaches. In addition 
to animal models, in vitro cell cultures provide a unique resource for both fundamental 
and translational research. This review discusses how cellular models broke ground to 
decipher molecular basis of DM1 and describes currently available cell models, ranging 
from exogenous expression of the CTG tracts to variable patients’ derived cells.
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inTRODUCTiOn

Myotonic dystrophies (DM) are a group of dominant disorders that are among the most prevalent 
neuromuscular diseases in adults (1). The main characteristics of these multisystemic diseases are 
myotonia, progressive muscle weakness and wasting, cardiac-conduction defects, cognitive impair-
ments together with other endocrine dysfunctions (1). Two DM forms have been identified so far: 
type 1 (DM1 also called Steinert Disease) and type 2 (DM2, previously known as PROMM), which 
is generally less severe than DM1. Both share a similar molecular mechanism in which delete-
rious expansion of microsatellite repeats in non-coding regions, (CTG)n in 3′UTR of dystrophia 
myotonica protein kinase (DMPK) gene in DM1 (2–4) and (CCTG)n in intron 1 of CNBP gene in 
DM2 (5) are transcribed into expanded C/CUG-RNA that are retained in the nucleus as discrete 
foci. These ribonuclear foci sequester muscleblind-like (MBNL) RNA-binding proteins, resulting 
in their functional loss and consequently, RNA metabolism alterations (6–11). Thus, misregulation 
of alternative splicing events within downstream effector genes were found in striated muscles of 
DM1 patients and associated with clinical symptoms, such as insulin resistance, myotonia, muscle 
weakness, and cardiac defects (12–18).

During the past 20 years, several animal models, including mouse, fly, zebrafish, and worm have 
been developed to investigate DM1 pathophysiologic mechanisms. They largely contributed to the 
current state of the art on myotonic dystrophies, which also benefited from research performed on 
cell cultures. At present, more than 100 years from the first descriptions of Steinert disease, there is 
still a need for cellular models to decipher disease-related molecular mechanisms and evaluate thera-
peutic approaches before in vivo validation. Because DM is a multisystemic disease affecting many 
tissues and cell types, various cell models are required to cover all DM-associated defects. Thanks to 
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technological progresses, we have access to new cellular models 
allowing more comprehensive and adequate studies. Herein, we 
will discuss the use of in vitro cell models through the advances in 
myotonic dystrophy research and describe the available cellular 
models, from exogenous expression of CTG repeats to patient’s 
derived cells, which were developed for the study of DM1.

CeLLULAR MODeLS in DM1  
ReSeARCH HiSTORY

In the early 1900s, Dr. Hans Steinert provided for the first time a 
detailed description of a neuromuscular disorder characterized by 
dystrophic progression with myotonia and degeneration of skel-
etal muscle (1). Since then, Steinert’s disease that was renamed as 
myotonic dystrophy type 1 or DM1 by the International Myotonic 
Dystrophy Consortium has been extensively investigated at both 
clinical and pathophysiologic level. Even before the discovery  
of the mutation responsible for DM1, primary cells derived 
from DM1 patients have been used to uncover differences in 
behavior or cytochemistry (19–22) to study metabolism (23–26) 
or to understand mechanisms leading to symptoms described in 
patients, like widely observed insulin resistance (27–30). However, 
besides learning about the clinical, physiological, and cellular 
manifestations of DM1, it was essential to define the molecular 
bases of the disease. The first breakthrough came in 1992, when 
the mutation responsible for DM1 was identified as an unstable 
CTG expansion within the 3′ non-coding region of the DMPK 
gene (2–4, 27, 31, 32). The next challenge was to understand how 
this expansion leads to molecular and cellular defects observed 
in DM1 cells. As it became striking that mutant DMPK mRNA 
was altered in DM1, the use of different cellular models provided 
initially confusing conclusions about its expression in the disease 
(33, 34). Nevertheless, the observation that the level of mutant 
DMPK mRNA decreased when the size of the repeats increased, 
led to the hypothesis that expanded repeats were rather impairing 
post-transcriptional processing of the mutant DM1 allele (35). 
The compelling evidence for this postulate came shortly after, 
when discrete ribonuclear foci were reported for the first time 
in DM1 fibroblasts (36). Additionally, experiments performed 
with patient-derived myoblasts and fibroblasts determined that 
mutant DMPK transcripts, while correctly spliced and polyade-
nylated, were not exported to the cytoplasm but retained in the 
nucleus (37, 38), causing approximately 50% reduction of the 
DMPK protein levels in DM1 myoblasts (39). These findings 
obtained from patient-derived cells gave rise to the idea of a RNA  
gain-of-function mechanism in DM1. This concept was proposed 
following the identification of a RNA-binding protein, CELF1 
(also called CUG-BP) that could bind to single-stranded UG 
motifs and is aberrantly accumulated in the nucleus of cells 
derived from DM1 patients (40–43). Upregulation of CELF1 and 
its splicing regulatory activity have been associated with abnor-
mal splicing of downstream targets, suggesting a trans-dominant 
effect of CUG repeats on RNA processing in DM1 (18, 44) which 
was further confirmed in cell models overexpressing exogenous 
CUG expanded tracts with increasing lengths (16). Finally, at the 
beginning of the 2000s, a second breakthrough has been reached 

with the identification of RNA-binding proteins that bind specifi-
cally to CUG repeats proportionally to the size of the expansion 
(45). These proteins belong to the MBNL family, which includes 
three paralogs (MBNL1, MBNL2, and MBNL3), and all of them 
are sequestered within the nuclear RNA foci in DM1 patient cells 
(46). Among their functions, MBNL proteins are splicing regula-
tory factors that control developmental switch between fetal and 
adult isoforms of many transcripts (47). Thus, titration of MBNL 
proteins by nuclear CUGexp-RNA results in alternative splicing 
misregulations of several pre-mRNAs in DM1, and some of them  
are associated to DM1 phenotypic features, establishing the 
deficiency of functional MBNLs as a central cause of the disease 
(12–18, 48–51).

CeLL MODeLS eXPReSSinG 
eXOGenOUS CTG RePeATS

Several years after the identification of the mutation, the expres-
sion of exogenously expressed CTG tracts in cellular models was 
widely used as a tool to confirm the direct role of the repeats in 
the pathologic mechanisms of DM1. The repeats, usually inserted 
in the 3′UTR of a truncated DMPK gene commonly under the 
control of a CMV promoter, are transiently or stably expressed 
in well-characterized human or murine cell lines, such as HeLa, 
HEK, or C2 cells. Even if they are lacking the entire genomic 
context of the CTG expansion and its own specific promoter 
regulation, they still recapitulate several DM1-associated features 
like the formation of ribonuclear foci that colocalizes with MBNL 
proteins and the splicing defect (16, 52, 53). Thus, they provide 
fast and reproducible tools for informative screening readout. 
Up to date, several constructs containing expanded CTG repeats 
have been described. A construct expressing interrupted 960 
CTG repeats has been used in a wide range of studies including 
molecular mechanism investigations and validation of thera-
peutic approaches (54). To ensure the stability of the expansion, 
the CTG tracts are interrupted with TCGA sequences every 20 
repeats (16). Several similar constructs with different lengths of 
CTG repeats and/or promoters were developed (16, 52, 55, 56), 
however, the potential impact of these interruptions is not well 
defined yet. Additionally, constructs expressing short but pure 
repeats were also developed. Stable muscle cell lines express-
ing 200 CTG showed nuclear aggregates of mutated RNA that 
may cause disruptions in myogenic differentiation according to 
the 3′UTR-DMPK environments of the CTG repeats (57, 58). 
Overexpression of large pure repeats is more challenging due to 
their instability and technical issues associated with the cloning of 
long tracts of CTG repeats that substantially restricts their length 
(59, 60). However, some works partially overcame this constraint 
by expressing plasmids reaching 800 and 914 uninterrupted  
CTG repeats in the 3′UTR context of the DMPK gene or in induc-
ible construct expressing GFP, respectively (10, 61–63).

In vitro cell models expressing exogenous CTG repeats have 
been widely used for small molecules screenings, therapeutic 
approaches, or molecular investigations (16, 54–56). However, 
these models may encounter some limitations associated with the 
level of CTG overexpression that is not under the control of the 
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endogenous DMPK promoter and the absence of the complete 
DMPK genomic context that could limit their use in specific  
tissue or molecular mechanism studies.

DM1 PATienTS’ DeRiveD CeLL MODeLS

Cells obtained directly from patients are of great utility in 
modeling human genetic disorders if they reproduce molecular 
hallmarks of the disease. Regarding DM1 patients’ derived cells, 
they express the whole range of mutation lengths observed in 
affected individuals within their natural genomic context and 
reproduce other canonical features of the disease (Figure  1) 
such as CUGexp-RNA foci that colocalize with the MBNL 
family members (45, 46, 64–70), alternative splicing misregula-
tions (48, 65, 67, 70–73), and alterations of metabolic pathways  
(74, 75). However, considering variable parameters, like for 
instance samples from patients with different forms of the dis-
ease (from congenital to adult), culture conditions, or replicative 
senescence of primary cells, one should be aware of experimental 
variability between them. The generation of patient’s cell lines 
or stem cells with their vast reprogramming abilities represent 
additional tools for deciphering molecular DM1 pathogenesis but 
also for translational research including drugs screening (72, 76) 
and therapeutics development (65, 70, 77–79).

Human Primary Cells
Currently in the DM1 field, primary cell cultures mainly con-
sist of dermal fibroblasts and skeletal muscle cells, also called 
myoblasts. Isolated directly from patient’s tissue by either an 
enzymatic digestion of the extracellular matrix or an explant 
technique (small sliced pieces of biopsy from which cells grow 
out), primary cells potentially maintain physiological character-
istics of their origin tissue environment. Primary fibroblasts are 
often used because of their relative accessibility from patients 
and their ease of manipulation in culture. On the other hand, 
primary myoblasts have the advantage to initiate a myogenic 

differentiation that results in their fusion into multinucleated 
cells or myotubes (Figure 1). Concomitantly, the expression of 
the DMPK gene is upregulated during the myogenic differentia-
tion process (39) and differentiated DM1 muscle cells conserve 
some features found in DM1 muscles such as alternative splicing 
misregulation of muscle-specific transcripts (49, 78–88). Given 
the relative difficulty to have access to muscle biopsies of dys-
trophic patients, an alternative source of muscle-like cells was 
designed. Thus, primary fibroblasts were transduced with a viral 
construct expressing the key myogenic factor MYOD1 to force 
the expression of the myogenic program. This trans-differenti-
ation leads to the formation of differentiated muscle-like cells 
expressing muscle-specific transcripts presenting similar splicing 
abnormalities that those found in DM1 primary myoblasts and 
patients’ muscles (18, 89, 90).

However, working with primary cells has also some constraints. 
Asides from the limited accessibility and availability of biopsies 
from patients, all somatic cells enter into replicative senescence 
after a define number of divisions that is inversely correlated with 
the age of the donor (91, 92). This phenomenon is even more pro-
nounced in DM cells as their proliferative capacity is reduced when 
compared with age-matched control due to a premature entry 
into replicative senescence (81). Another difficulty, except the 
lengths of the repeats itself, is that primary cells could reflect the 
variability of the individual they are isolated from. Indeed, the age 
of the donor (fetal vs. adult), the tissue origin (distal vs. proximal 
muscle), and impairment, and the severity of the patient symptoms 
could influence cells behavior when grown in culture. In addition, 
various optimizations of cell cultures and medias or manipulation 
conditions may potentially lead to discrepancies between results.

immortalized Human Fibroblast  
and Myoblasts
To circumvent the limitation of replicative senescence and keep 
the cells in a proliferative state, immortalized cell lines from 
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DM1 primary fibroblasts, trans-differentiated fibroblasts, and 
myoblasts have been established (Figure 2) (71, 76, 93–95). The 
immortalization process of human fibroblasts requires the stable 
re-expression of the human telomerase (hTERT) to prevent 
the excessive shortening of telomeres that triggers the entry in 
replicative senescence. Additional inhibition of the dominant  
p16 pathway by overexpressing CDK4 (the natural ligand of p16) 
in association, or not, with CCND1 is needed for the immortali-
zation of human myoblasts (96–98). As a result, the immortalized 
DM1 cell lines display potentially unlimited number of divisions 
while keeping most of the tissue- and disease-specific character-
istics. Furthermore, clonal selection leads to homogeneous cell 
cultures, which allow to provide more consistent and reproducible 
results. Immortalized cells due to their unlimited lifespan are of 
special interest when considerably large amounts of cellular mate-
rial is needed, e.g., for high-throughput screenings (54, 76, 99).

Although the immortalized cell lines present a high value, 
it is not fully determined yet whether the immortalization 
process that requires viral transduction for genomic integration 
and stable expression of hTERT and CDK4 transgenes has any 
consequences on cellular behavior. Further validations and the 
use of different cell lines might also be needed to determine 

whether increasing number of divisions may alter disease- or 
tissues-characteristics of immortalized cells.

Human Pluripotent Stem Cells (hPSCs)
Cultures of some primary cells types like human neuronal cells 
constitute a major challenge due to limited biopsies availability 
and delay of tissue harvesting. The difficulty to obtain material 
reflecting early stages of the disease process also represents con-
siderable limitations for disease investigations (100). Fortunately, 
the ability to generate defined cell types from hPSCs offers a  
unique opportunity to study disease mechanism in a cell-specific 
manner. hPSCs comprising both embryonic and induced pluri-
potent stem cells (iPSCs), carry the potential to differentiate them 
into a wide spectrum of cell types in  vitro, including the reca-
pitulation of early human embryo development states (101–103). 
Therefore, they provide an attractive prospect for modeling cell-
type-specific disorders.

Embryonic stem cells (hESCs) are isolated from the inner mass 
of the blastocyst, and can be distinguished by their remarkable  
long-term proliferative potential along with the ability to differ-
entiate into practically any cell type (Figure 2) (102). Although 
hESCs allow the generation of diverse cell types, up to date most 
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of the work in the DM1 field has been performed in neural stem 
cells. Lately, they proved to be additionally useful in identification 
of new pathways misregulated in the context of DM1 mutation-
like disruptions in mTor signaling or defective neuritogenesis  
(64, 67). However, hESC research raises several ethical issues and 
has been a subject of controversy over the past 15 years. To obvi-
ate the concerns of hESCs, a more recent method of generating 
patient-specific cells has arisen. It is built on the discovery that 
somatic cell nuclei can be “reprogrammed” to an embryonic-like 
state. The whole process begins for obtaining somatic cells, e.g., 
fibroblasts, from the affected individuals, which are then subjected 
to delivery of reprogramming factor cocktails (Figure 2). Such 
modified cells are referred to as iPSCs (101). Most importantly, 
this approach can be applied to human somatic cells, offering 
a unique opportunity to derive patient-specific cell lines from 
readily available material (100, 101). Several hiPSc derived from 
primary fibroblasts of DM patients have already been described 
(65, 73, 104–107). Interestingly, the ability to reprogram DM1 
immortalized lymphoblastic cells carrying 200 CTG repeats into 
hiPSC also opens the possibility to obtain, in the near future, 
hiPSC directly from patient’s blood samples rather than skin 
biopsies (106).

Intriguingly, regarding the pluripotent state of the cells, 
CTG repeats are highly unstable during both reprogramming 
and subsequent passages, with a more rapid expansion when 
the initial CTG tract is longer (108). Contradictory to what is 
observed in vivo, several reports have shown CTG repeats insta-
bility during culture of undifferentiated DM1-hPSCs but not in 
differentiated cells, which might be related to some epigenetic 
differences in these cells (73, 108, 109). In DM1 maternally 
derived hESC lines, hypermethylation occurs upstream of 
CTG repeats when repeats number exceeded 300, however, the 
hypermethylation observed during reprogramming of patients 
fibroblasts into hiPSCs is not associated with the expansion of 
CTG repeats (110, 111).

In the past years, a substantial progress in the culture and dif-
ferentiation technologies associated with hiPSC has been done. 
Comparing to tissue harvesting, hiPSCs have the advantage of a 
nearly endless supply. They might be expanded to large quantities 
and stored for a future expansion or manipulation. Nevertheless, 
the equivalence of iPS-derived cells to mature in vivo cells might 
vary because they often do not capture the entire mature 
phenotype. Also, other issues such as homogenous culture 
of differentiated cells, chromosomal rearrangement during 
reprogramming and relatively high cost of hPSC maintenance, 
constitute additional challenges. However, this technology offers 
a unique opportunity to investigate specific human disease cell 
types such as neuronal cells or cardiomyocytes for which there 
are none other or highly limited biological resources.

DM1 CeLL MODeLS AS A TOOL FOR THe 
DeveLOPMenT OF THeRAPeUTiC 
APPROACHeS

In vitro studies using DM1 cell models contribute also to the 
development of therapeutic approaches for myotonic dystrophies. 

Comprehensive studies have been performed in various DM1 
cell models to determine and support translational potential of 
new strategies. Thus, different approaches aim to degrade mutant 
DMPK mRNAs have been tested in DM1 derived cells including 
gapmer antisense oligonucleotides (ASOs) directed against the 
CUGexp repeats (55, 112) or the DMPK transcript it-self (113) 
as well as shRNA (114), which have showed significant efficacy 
in decreasing the level of CUGexp-transcripts. In another hand, 
CUGexp-steric blocking approaches by using fully modified 
ASOs or viral-derived antisense RNA proved also to be effec-
tive in reversal disease molecular features when tested in DM1 
cell ular models (77, 78, 112, 115, 116). As a matter of fact, DM1 
cells are not only used for therapeutic compounds validation. 
Indeed this tool is also utilized in screening assays allowing the 
identification of molecules that either interfere with the abnor-
mal MBNL1:CUGexp interaction such as pentamidine (117, 118) 
or lomofungin (119), reduce the expression of mutant DMPK 
mRNAs like actinomycin D, modulate splicing changes (72) or 
affect the behavior of nuclear foci (120–122). Besides, reliable 
DM1 cell models are essential in the perspective of the recent 
progress made in genome engineering. TALEN and CRISPR-Cas 
approaches are being successfully applied in different disease 
cell ular models giving rise to a wide range of possibilities for 
future therapeutic interventions (65, 70, 95, 123–125). DM1 
cell models constitute, therefore, an inescapable source and a 
flexible platform for thorough studies and validation of disease 
therapeutics.

COnCLUSiOn

Through the years, cultured cells showed to be an essential model 
for both fundamental and translational research on myotonic 
dystrophy. Despite the fact that cells do not reflect the complexity 
of a whole organ or body, each cellular model, from the patients’ 
derived cells to more artificial models overexpressing CTG 
expanded tracts, is suitable for different investigations. They 
were and are used in many studies addressing various questions 
related to myotonic dystrophy diseases like mutation lengths, 
instability, polymorphisms or tissue-specific mechanisms, 
molecular alterations, and effect of therapeutic approaches. 
Understanding all of those features paved the way to decipher 
molecular basics of DM1 and DM2, as both forms share com-
mon features, i.e., abnormal expansion of repeated sequences, 
formation of RNA-positive foci and trans-dominant effect on 
alternative splicing. Even though DM1 cells served as archetype 
for DM research, it is noteworthy that some cellular models have 
been also established for myotonic dystrophy type 2. Further 
investigations in those cells may emphasize the differences 
between both DM forms and promote better understanding of 
their pathological mechanisms. Besides, recent advances in cell-
availability and -engineering have given rise to unprecedented 
experimental opportunities to study disease mechanisms and 
therapeutic strategies. Late genome engineering tools, with the 
particular use of emerging development of TALENs and the 
CRISPR–Cas9 systems, facilitate the next generation of thera-
peutic interventions and hold a great promise for permanent 
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genetic corrections (65, 70, 95, 123–125). Furthermore, it opens 
the door for the development of isogenic cell lines providing 
a genetically matched “control cells.” Alternate possibilities 
brought by genome editing tools combined with hiPSC tech-
nologies promise the generation of novel tissue-specific cell 
lines opening new horizons for the development of more refined 
wide-ranging myotonic dystrophy cell models, which will push 
forward future disease investigations.
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