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Alzheimer’s disease (AD) is the most common type of dementia that is clinically characterized by the presence of memory
impairment and later by impairment in other cognitive domains. The clinical diagnosis is based on interviews with the patient
and his/her relatives and on neuropsychological assessment, which are also used to monitor cognitive decline over time. Several
biomarkers have been proposed for detecting AD in its earliest stages, that is, in the predementia stage. In an attempt to find
noninvasive biomarkers, researchers have investigated the feasibility of neuroimaging tools, such as MR, SPECT, and FDG-PET
imaging, as well as neurophysiological measurements using EEG. In this paper, we investigate the brain functional networks in AD,
focusing on main neurophysiological techniques, integrating with most relevant functional brain imaging findings.

1. Introduction

Amnesic mild cognitive impairment (MCI) is characterized
by memory impairment, either associated or not with mild
deficit in other cognitive domains whereas the function of
daily living is essentially preserved [1-3]. Annual conver-
sion rate from normality to dementia of Alzheimer’s type
(Alzheimer’s disease, AD) ranges between 0.2% and 4% [3, 4]
whereas that from MCI to AD is between 6% and 25%
[3, 5]. Itis an open issue with important clinical implications
whether or not MCI is essentially a prodromic stage of AD
(3].

Although clinical manifestations of cognitive dysfunction
and impairments of activities of daily living are the current
standard measures for the diagnosis of AD, biomarkers are
receiving increasing attention in research centers as possible
early diagnostic surrogate measures of the ongoing pathology
[6]. Not surprisingly, there is already a growing literature of
biomarkers associated with the transition of MCI to AD [7—
14].

Connectivity plays a critical role in mediating cognitive
function. The breakdown of connectivity, both in the func-
tional and structural system domain, plays a major role in the

onset of AD symptoms. Thus, a failure of the regions of a net-
work to interact at a high level of coordination may underpin
the cognitive disorders which are present in AD. The failure
of network function may be due to interaction failure among
the regions of a network, which is denoted as the disconnec-
tion hypothesis [15]. The breakdown is thought to be due to
chronically progressive AD neuropathology with underlying
molecular mechanisms leading downstream to neuronal
and synaptic dysfunction and ultimately to neuronal loss.
Such AD-characteristic structural and functional changes
are hypothesized to reflect, at least partially, the progressive
impairment of fiber tract connectivity and integrity [16-18],
suggesting that disconnection in AD is evident at both the
functional and structural level.

Advances in electroencephalographic (EEG) signal anal-
ysis permit relatively precise localization of brain neural
sources and the ability to track their hierarchical connectivity
in sustaining a given function. This information can be inte-
grated with structural and functional imaging provided by
fluorodeoxyglucose (FDG) positron emission tomography
(PET), perfusion single-photon emission computed tomog-
raphy (SPECT), and functional magnetic resonance imag-
ing (fMRI). Such integrated measures can index patterns of



neural activation responsible for sensory perception, atten-
tion, memory, movement, and higher mental operations
including language and thought, since electromagnetic sig-
nals change in parallel over time and task, and can be
impaired directly during such activity [19].

Actually, in the new guidelines for the AD diagnosis [20],
EEG is not mentioned as a diagnostic measurement, instead
of giving greater emphasis on MRI, cerebrospinal fluid
(CSF), PET, and genetic findings.

The associations between brain pathology and indices of
functional and structural connectivity may help our under-
standing of the role of connectivity in brain function [15].

The aim of this review is to investigate the brain func-
tional network in AD focusing on main neurophysiological
techniques and integrating the results with functional brain
imaging findings. We will mainly review studies using EEG
data to investigate functional networks; moreover, some
very recent studies utilizing PET and SPECT to investi-
gate functional brain imaging of AD-related pathology are
reported.

2. Functional Network

2.1. EEG in Normal Aging. Studies in normal elderly indi-
viduals have consistently showed that healthy ageing is not
associated with substantial EEG changes, which instead are
caused by pathological conditions. Usually, the EEG signal
is elaborated (quantitative EEG-qEEG) performing a fast
Fourier transform (FFT) in order to estimate the power
density of selected EEG frequency band, providing a power
spectrum and high-density spatial EEG mapping of each
frequency band.

A tendency toward a slower alpha rhythm has been
reported in the elderly subjects, but it is poorly significant
in comparison to normal adults. In fact, the normal alpha
frequency is higher than 8 Hz also in the elderly. A qEEG
study of age-related changes during cognitive tasks revealed
no conclusive differences between the young and the elderly
[21]. Therefore, it should be taken in mind that an abnormal
EEG in aged people should prompt further investigation to
disclose brain pathology, since normal aging per se is not
associated with significant EEG alterations.

To make this point clear, it is noteworthy that slow waves
over the temporal areas (mainly of the left hemisphere) are
occasionally seen in the EEG of normal elderly subjects.
The main features of these “nonpathological” slow waves are
that they do not disrupt background activity, they are not
associated with a substantial asymmetry of the alpha rhythm,
their morphology is usually rounded, and their voltage is
usually greater than 60—70 ¢V. Moreover, they are attenuated
by mental activity and eye opening, and their prevalence is
increased by drowsiness and hyperventilation. Finally, they
occur sporadically as single waves or in pairs, not in longer
rhythmic trains.

2.2. The Role of EEG in AD. Although EEG is the only clinical
diagnostic instrument directly reflecting cortical neuronal
functioning, the genesis of surface EEG rhythms is still the
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object of current investigation and partly not understood.
The biological complexity of the brain modular function and
the physical “sum” effect of different brain electrical fields
on surface EEG recordings make the understanding of EEG
components a very difficult task.

In general, EEG changes are well related to cognitive
dysfunction in AD. Moreover, cognitive impairment is asso-
ciated with a reduction or loss of EEG reactivity in AD
[22]. Normal alpha was shown to be suppressed during
eye opening in AD patients with significantly higher WAIS
performance IQ scores whereas in AD patients with irregular
alpha it does not or only weakly change during eye opening
[23].

The most frequent findings are the power reduction of
beta activity and alpha rhythm, the power increase of slow
activities in the theta bands in milder dementias, and of delta
activities in more severe dementia. Both intrahemispheric
and interhemispheric coherence of fast and alpha EEG
activities is reduced in neurodegenerative diseases causing
dementia, thus suggesting a reduction of neural connections.
On the contrary, coherence in delta and theta bands have
been reported to be increased in AD, but this data is
not agreed upon by all researchers [24]. The alpha (or
background activity) also suffers from the slowing-down of
its frequency, often till its peak falls below the 8-8.5 Hz. This
phenomenon can happen together with a true increase of the
theta power.

According to the “transition” hypothesis that considers
MCI as a “reservoir” of patients possibly developing demen-
tia, mainly of the AD type, EEG studies have tried to
highlight early changes. Considered altogether, it is difficult
to identify MCI patients from normal controls, but emerging
data is consistent with the hypothesis that those who will
convert to dementia already show similar EEG changes as
early AD patients [7, 8, 13, 25]. Moreover qEEG features
could predict longitudinal cognitive decline in normal
elderly with subjective complaints, with an overall predictive
accuracy of 90% [26].

It should be taken in mind that EEG measures electrical
field variations, and a number of clinical conditions can
disturb the normal electrical field of the brain. For instance,
electrolyte changes may alter the appearance and time
variation of the brain-generated electrical fields, and medi-
cations can slow the posterior dominant rhythm. Moreover,
in assessing the frequency of the alpha rhythm, alerting
manoeuvres are essential in order to ensure that the patient
is not drowsy. Hence, a large number of conditions cause
the EEG to appear abnormal. In EEG practice, the clinician
has to rely to a large extent on the clinical history and
the neurological examination findings to make a clinically
meaningful conclusion.

In summary, a shift-to-the-left of background activity
and the increase of theta power are the earliest and more
robust features of AD. When the disease progresses to its
moderate stage, theta activities increase further and delta
activities appear. In the most severe stages, delta and theta
activities increase again while the background activity cannot
be longer recognized. These increasing EEG changes accord-
ing to severity of AD have been highlighted by a study based
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FiGure 1: Sample of visual EEG and EEG spectrum on 4 clinical classes of severity (Global Deterioration Scale: GDS, from 3 to 6; for more
details see text). EEG frequency bands (X-axis) and percent value of each band (Y-axis) are shown.

on 4 clinical classes of severity (GDS, from 3 to 6, Figures 1
and 2) [27].

2.3. Pathophysiology of EEG Changes in AD. With this basis,
the understanding of pathophysiology of EEG changes in
AD is even more complex and just some general concepts
can be commented. Scalp alpha rhythms (8-13 Hz) mainly
result from sequences of inhibitory (IPSP) and excitatory
(EPSP) postsynaptic potentials at the dendrites of cortical
pyramidal neurons. These potentials depend mainly on the
influence of near and distant cortical modules [28], as well
as on the interactions of excitatory corticothalamocortical
relay fibres and inhibitory thalamic reticular fibres [29,
30]. Cholinergic and glutamatergic synapses are especially
involved in the genesis of these potentials. In Alzheimer’s
disease (AD), characterized by an early cholinergic (and
possibly glutamatergic) deficit, this may produce a slowing-
down of alpha rhythm and a reduction up to disappearance
of alpha rhythm in the severe stages.

Theta rhythms are usually not appreciated in normal
awakening EEG. However, a theta power increase is observed
over the frontal and temporal areas during learning and
memory tasks. The theta rhythms that are recorded during
these tasks are thought to be produced by the activation of
septal-hippocampal system. Hippocampus has a cholinergic
innervation originating from basal forebrain, the medial
septum, and the vertical limb of the diagonal band of Broca.
Populations of GABAergic and glutamatergic neurons have
also been described in several basal forebrain structures. The
synchronized depolarization of hippocampal neurons pro-
duces field potentials that have a main frequency of 3-12 Hz
and are usually known as hippocampal theta rhythm [31]. A
cholinergic-glutamatergic hypothesis of AD, in which most
symptoms may be explained by cholinergic-glutamatergic
deficits, has been advanced. Neuronal injury/loss may in-
clude an excitotoxic component that possibly contributes
to the early cholinergic deficit. This excitotoxic component
may occur, at least in part, at the septal level where somas
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FIGURE 2: Histogram showing the relationship between 7 EEG fre-
quency bands (2-3.5; 4-5.5; 6-7.5; 8-9.5; 10-11.5; 12-13.5;14—
22.5Hz) and disease’s severity (normal controls and 4 clinical class-
es of severity; GDS 3 to 6).

of cholinergic neurons are found. This insult may modify
septal networks and contribute to the abnormal information
processing observed in AD brain, including its hyperex-
citability states. According to this theory, the increased theta
production in AD would derive from hyperexcitability of the
septal-hippocampal system [32].

By means of observations in head injury patients, it has
been suggested that delays in corticocortical fiber propa-
gation may play a global role in determining human EEG
frequencies, increasing the amount of delta activity [33].
Increased T2 relaxation times in cortical gray matter and
white matter were correlated with a shift in relative EEG
power to lower frequencies in the delta range (delta activity:
1-4 Hz) and reduced cognitive performance. Generally, these
data are consistent with the idea that head injury somehow
damages the ability of brains to form local cell assemblies
within the global synaptic action field environment.

The increment of delta oscillations in mild cognitive im-
pairment (MCI) and AD subjects might be related to loss
of hippocampal and posterior cortical neurons, which are
impinged by cholinergic inputs. Indeed, it has been demon-
strated that early degeneration in mesial temporal cortex
of AD subjects can affect functional connectivity between
hippocampal formation and temporoparietal cortex [34].
Furthermore, a bilateral reduction of gray matter volume
in the hippocampal formation and entorhinal cortex of AD
subjects was correlated with an increment of delta rhythms
in posterior cortex [9, 35].

3. Functional Brain Imaging

Historically, morphological imaging became easily a reliable
diagnostic procedure for several brain disease, like neoplastic
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or cerebrovascular injuries, and at least for degenerative
disease. This did not happen for functional neuroimaging,
either metabolic or perfusional. This has actually slowed
down these biomarkers introduction into dementia diagnos-
tic criteria.

Recently, Dubois et al. proposed to revise the NINCDS-
ADRDA criteria for the diagnosis of AD [20]. A specific
pattern on functional neuroimaging with FDG-PET has been
proposed as one of the supportive features in the diagnosis
of probable AD, specifically in terms of reduced glucose
metabolism in bilateral temporal parietal regions. In fact, a
reduction of glucose metabolism as seen on PET in bilateral
temporal parietal regions and in the posterior cingulate is the
most commonly described diagnostic criterion for AD [36].

The newly proposed diagnostic criteria for AD entails a
two-step diagnostic process, first identifying dementia syn-
drome (lack of episodic memory and other cognitive impair-
ment) and then applying criteria based on the AD phenotype
(presence of plaque and neurofibrillary tangles) [20]. As a
matter of fact, this does not allow diagnosis in life. Further-
more, the pathogenetic role of amyloid deposition in AD
patients is still unclear, highlighting the necessity of another
diagnostic path [37-40]. In summary, the authors propose
that the term “Alzheimer’s disease” should refer only to the
in vivo clinicobiological expression of the disease. Obviously,
prospective studies with postmortem verification are needed
to validate this new proposal. Actually, metabolic changes (as
identified by FDG-PET) associated with neocortical dysfunc-
tion are detectable before atrophy appears [41]. Moreover,
metabolism reductions exceeded volume losses in MCI [42],
and in presymptomatic early-onset familial AD [43]. Actu-
ally, a pattern of parietotemporal metabolic reductions in
MCI and AD, and frontal metabolic reductions later in the
disease, has been established through the last decades of
research [44-46] and has recently been confirmed in ADNI
PET data [47]. The usefulness of FDG-PET could be high-
lighted also in detecting prodromal AD showing metabolic
reductions in the anterior cingulate, posterior cingulate, and
temporal, parietal, and medial temporal cortices [48-50].

Finally, several compounds have been developed for the
imaging of amyloid for PET and SPECT. The rapid develop-
ment of different compounds suitable for the visualising of
amyloid during the past 10 years has led to the first promising
in vivo studies of the amyloid ligands PIB (N-methyl-
2-(4L'-methyl aminophenyl)-6-hydroxybenzothiazole) [51]
and FDDNP (2-(1-[6-[(2-[18F]fluoroethyl] (methyl)ami-
no]-2-naphthyl]ethylidene)malononitrile) [52]; the latter
compound also seems to label neurofibrillary tangles in pa-
tients with AD. Furthermore, both compounds have shown
a pattern of increased radioligand retention in patients with
AD compared with control individuals that is consistent with
AD pathology [52-54]. Accumulation of amyloid, however,
has also been reported in cognitively intact older people [37—
40]. In a recent paper, Oh et al. using PET imaging with
the PIB compound, structural MRI, and cognitive measures
identify two brain networks in which the degree of gray
matter volume fluctuates in a similar manner: a frontal
network and a posterior network [39]. The authors suggested
that S-amyloid deposition in older people without dementia
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may influence a wide structural network, although it is not
clear whether people with higher 3-amyloid deposition will
progress to AD.

Because SPECT is more widely available and cheaper
than PET, it has received much attention as an alternative to
PET. However, at present, the technique is not included in
the criteria proposed by Dubois et al. [20] as the diagnostic
accuracy estimates for this modality generally fall below
the requisite 80% levels specified by the Reagan Biomarker
Working Group [55].

4. Neurophysiological Evaluation of AD

In a clinical context, some firm points can be made concern-
ing EEG in the evaluation of AD. In a more strict sense, the
main applications of EEG should be as a different diagnostic
tool between dementia and other conditions characterized
by peculiar EEG pattern such as Creutzfeldt-Jakob disease
(CJD), toxic-metabolic encephalopathy, or in case of pseu-
dodepressive dementia [56]. In a broader sense, EEG can be
useful to stage the severity of dementia on a pathophysiolog-
ical basis, and, in AD, gives useful information for prognostic
purposes [57]. Actually, all patients with moderate to severe
AD could exhibit abnormal EEGs. When a substantial part
of the dominant rhythm falls within the range of theta band
physicians should be encouraged to perform qEEG. This, in
order to identify the so-called transition frequency between
dominant and theta activity, as suggested by Klimesh [58].
Moreover, qEEG is a highly sensitive method to evaluate the
biological effect of drugs [59, 60].

Cortical sources of scalp EEG rhythms have been success-
fully evaluated in AD patients by single dipole sources deeply
located into a spherical brain model [61]. Single dipole
sources of alpha or beta rhythms are located more anteriorly
as a function of AD severity. Such “anteriorization” of the
dipole source is observed in AD patients not only with
respect to normal subjects but also with respect to subjects
with MCI [8, 61]. Notably, the location of the dipole sources
correlates with the reduction of rCBF in anteroposterior
and laterolateral brain axes [62]. By applying the LORETA
technique, which elaborates solutions to compute the cortical
sources of EEG activities, several multicenter studies have
been performed in recent years in AD as well as in MCI,
gaining substantial information [7-9, 63].

Even if not usually used in clinical practice, other neuro-
physiological measurements could be performed in the eval-
uation of AD. Event-related potentials (ERP) may reflect
cognitive decline in the longitudinal followup of MCI [64]
and AD patients [65], and ERP and MRI data fusion could
improve diagnostic accuracy of early AD [66]. Moreover,
transcranial magnetic stimulation (TMS), especially com-
bined with EEG, may provide useful information about the
degree and progression of AD [67-69].

However, it is obviously important to combine multiple
biomarkers in order to obtain complementary information
to be used in clinical AD diagnosis practice. This kind of
investigation has been recently performed [41, 70-72] con-
firming that each biomarker (including EEG, PET, SPECT,

MRI, apolipoprotein E risk gene (ApoE4), cerebrospinal fluid
(CSF), and neuropsychological tests) does carry complemen-
tary information, and the simple combination of classifiers
trained on these different modalities can improve the
diagnostic performance. Indeed, ApoE2 has been suggested
as having a protective effect and delaying the age of onset of
AD (73, 74].

qEEG has been analysed together with other measures
of brain function. For instance, qEEG was analysed together
with regional cerebral blood flow (rCBF) quantitative mea-
surements in order to investigate the correlation between
EEG activities and hypoperfusion and to assess the diagnostic
accuracy of the two methods used alone or in combination.
In a study on 42 AD patients and 18 healthy controls [75],
rCBF and qEEG were correlated with one another, suggest-
ing that these measurements used together are reasonably
accurate in differentiating AD from healthy aging. Another
qEEG-SPECT (semiquantitative Tc-99 HMPAO technique)
correlative study on 42 AD patients underlined that bilateral
hippocampal rCBF was the perfusional index best correlated
with the MMSE as well as being significantly correlated to
qEEG [76] (Figures 3, 4, and 5).

A very interesting application of gEEG measures tried to
evaluate their prognostic meaning in AD. In a preliminary
study on 31 AD patients, right delta relative power predicted
both the loss of activities of daily living (ADL) and death
whereas right theta relative power predicted the onset of
incontinence [77]. A confirmation came from an extended
group of 72 patients. Because patients were in different stages
of the disease, the statistical analysis was performed in the
entire group as well as in the subgroup of 41 patients with
mild AD (scoring 3 or 4 on the GDS). In the whole group, the
loss of ADL was predicted by delta relative power in either
side, incontinence was predicted by alpha relative power in
the right side, a borderline statistical significance was reached
for death (P < .05). In the subgroup of mildly demented
patients, the loss of ADL was predicted by left delta relative
power, incontinence by both delta and alpha relative powers
in the right side, and death was not significantly predicted
(P =.08) [78].

Using both conventional visual analysis and qEEG, other
authors found that AD patients with an abnormal EEG at
an early stage had a different pattern of cognitive decline
than those (matched for severity of dementia) with a normal
EEG. The patients with a deteriorating EEG during the first
year of followup subsequently showed a greater decline of
praxic functions, a tendency to Parkinsonism and a higher
risk of institutionalisation than patients with a stable EEG
during the Ist year [79]. In another study, more marked
EEG abnormalities were found in patients with delusions
and hallucinations who also showed a more rapid cognitive
decline [80]. The same authors also found that an abnormal
EEG and psychosis were independent predictors of disease
progression [81].

As discussed in a recent paper [8], most of the EEG
studies in AD patients have reported a prominent decrease of
coherence at the alpha band. The reduction of alpha coher-
ence in AD patients has been also found to be associated with
ApoE genetics risk of dementia; this alpha power reduction
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F1Gure 3: Sample of SPECT neuroimaging (Tc-99 HMPAO) and EEG brain mapping in a mild AD patient. Topographic scalp distribution

of the EEG power on the 2.0 to 3.5Hz frequency band (top right) and 4.0 to 7.5 Hz frequency band (bottom right) is shown. For more
details, see text.
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FIGURE 4: Sample of SPECT neuroimaging (Tc-99 HMPAO) and EEG brain mapping in a moderate AD patient. Topographic scalp
distribution of the EEG power on the 2.0 to 3.5 Hz frequency band (top right) and 4.0 to 7.5 Hz frequency band (bottom right) is shown.
For more details, see text.
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F1Gure 5: Sample of SPECT neuroimaging (Tc-99 HMPAO) and EEG brain mapping in a severe AD patient. Topographic scalp distribution
of the EEG power on the 2.0 to 3.5Hz frequency band (top right) and 4.0 to 7.5 Hz frequency band (bottom right) is shown. For more

details, see text.

is supposed to be mediated by cholinergic deficit [82].
Instead, coherence at the delta and theta bands has been
less straightforward. Some studies have shown a decrement
of slow EEG coherence in AD patients [83] whereas others
have reported its increase [84]. Wada et al. [85] examined
intrahemispheric coherence at rest and during photic stim-
ulation in 10 AD patients. In the resting EEG, patients with
AD had significantly lower coherence than gender- and age-
matched healthy control subjects in the alpha-1, alpha-2,
and beta-1 frequency bands. EEG analysis during photic
stimulation demonstrated that the patients had significantly
lower coherence, irrespective of the stimulus frequency.
The changes in coherence from the resting state to the
stimulus condition showed significant group differences
in the region of the brain primarily involved in visual
functioning. These findings suggest that patients with AD
may have an impairment of functional connectivity in both
nonstimulus and stimulus conditions. This suggests a failure
of normal stimulation-related brain activation in AD. In
another study, alpha coherence was decreased significantly in
temporo-parieto-occipital areas in the majority of patients
while significant delta coherence increase was found in a
few patients between frontal and posterior regions. This was
expressed to a greater extent in patients with a more severe
cognitive impairment [84]. The authors speculated that
their findings could reflect two different pathophysiological

changes: (i) the alpha coherence decrease could be related
to alterations in corticocortical connections whereas (ii)
the delta coherence increase suggests lack of influence
of subcortical cholinergic structures on cortical electrical
activity.

Finally, the EEG correlates of biological markers have
been investigated in AD. Jelic et al. [86] found a positive
correlation between levels of tau protein in the cerebrospinal
fluid (CSF) and delta/alpha ratio. In a subgroup with
high CSF tau levels, a strong relationship between EEG
alpha/theta and alpha/delta power ratios was found. No
such correlation was found in healthy controls and mildly
cognitively impaired individuals with elevated CSF tau
levels. ApoE 4 allele is a risk factor for late-onset AD and
is proposed to have an impact on cholinergic function in
AD.

The qEEG of 31 patients with AD was recorded at the
early stage of the disease and after a 3-year followup. Patients
with AD were divided into several subgroups according to
the number of ApoE4 alleles, with a similar clinical severity
and duration of dementia. The AD patients carrying the
ApoE4 alleles had more pronounced slow-wave activity than
AD patients without the ApoE4 alleles, although the disease
progression rate did not change. These differences in EEG
may suggest differences in the degree of the cholinergic
deficit in these subgroups [87].
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