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The ubiquitin proteasome system (UPS) is critical for the regulation of many intracellular
processes necessary for cell function and survival. The absolute requirement of the UPS
for the maintenance of protein homeostasis and thereby for the regulation of protein
quality control is reflected by the fact that deviation of proteasome function from the norm
was reported in cardiovascular pathologies. Inflammation is a major factor contributing to
cardiac pathology. Herein, cytokines induce protein translation and the production of free
radicals, thereby challenging the cellular protein equilibrium. Here, we discuss current
knowledge on the mechanisms of UPS-functional adaptation in response to oxidative
stress in cardiac inflammation. The increasing pool of oxidant-damaged degradation-prone
proteins in cardiac pathology accounts for the need for enhanced protein turnover by the
UPS. This process is accomplished by an up-regulation of the ubiquitylation machinery
and the induction of immunoproteasomes. Thereby, the inflamed heart muscle is cleared
from accumulating misfolded proteins. Current advances on immunoproteasome-specific
inhibitors in this field question the impact of the proteasome as a therapeutic target in
heart failure.
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INTRODUCTION
THE UBIQUITIN PROTEASOME SYSTEM
The ubiquitin proteasome system (UPS) plays a central role
in cellular protein-quality control, and MHC class I antigen
presentation in viral infection. By degrading short-lived poly-
ubiquitin-tagged proteins it determines the availability of regu-
latory proteins and controls a large number of cellular processes.
This system relies on a cascade of three enzymes termed E1, E2,
and E3 that conjugate poly-ubiquitin chains to specific target
proteins (Ciechanover, 1994; Komander, 2009). The 26S pro-
teasome represents the essential catalytic part of the UPS that
regulates the degradation of such ubiquitin-tagged protein sub-
strates. The standard-20S catalytic core complex is built up from
28 subunits that are arranged as four heteroheptameric rings in
a α1–7(β1–7)2α1–7 structure. Within the β-rings, three standard
β-subunits (β1, β2, β5) exert the catalytic activity (Groll et al.,
2000). In its latent state, the α-ring is closed and may be opened
upon interaction of the α-subunits with regulatory complexes
like the 19S regulator, thus forming the 26S standard-proteasome
(s-proteasome). The C-termini of the triple A-ATPase subunits
of the 19S complex bind to pockets between the α-subunits of
the catalytic core complex and thereby accomplish gate open-
ing. Other subunits of the 19S regulator primarily recognize
and bind poly-ubiquitin-chains, thus acting as the initial dock-
ing partner at the proteasome for degradation-prone proteins in
the cell.

The catalytic activity of the proteasome is modulated at the
level of subunit expression, subunit incorporation and by asso-
ciation of different regulator complexes to the proteasome core
complex. In addition to s-proteasomes, mammalian cells contain
a specific proteasome isoform, the so-called immunoproteasome
(i-proteasome). I-proteasomes harbor alternative catalytically
active β-subunits, i.e., β1i/LMP2, β2i/MECL1, and β5i/LMP7
(Aki et al., 1994). S-proteasomes are constitutively expressed
in almost all non-hematopoietic cells including cardiomyocytes,
endothelial cells, and fibroblasts. I-proteasomes are constitutively
expressed in immune relevant cells like lymphocytes and mono-
cytes or lymphoid tissues. Although the s-proteasome β1, β2,
and β5 represent the predominant catalytic subunits in the non-
stressed myocardium, mouse hearts also express i-proteasomes
to a minor extent (Gomes et al., 2006). In inflammation,
i-proteasomes are induced in target cells of a cytokine response,
e.g., cardiomyocytes in viral cardiomyopathy (Szalay et al., 2006).
Moreover, cardiac proteasomes from unchallenged hearts can
consist of multiple subpopulations with different proportions of
β-subunits in each β-ring (Gomes et al., 2006). Pro-inflammatory
cytokines and other stress conditions also regulate the synthesis
and association of the proteasome activator PA28. PA28 can inter-
act with the α-rings of the core 20S proteasome complex. This
way, the N-terminal tails of the α-subunits flip upwards, thereby
facilitating substrate entry and product release through the oth-
erwise closed gate of the 20S proteasome (Whitby et al., 2000).
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INFLAMMATORY CYTOKINE PRODUCTION AND OXIDATIVE STRESS
LEADING TO HEART FAILURE
Inflammation and oxidative stress are both implemented in the
development of acute and chronic heart failure. Oxidative stress
refers to the total burden of potentially harmful reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS) that
form in cellular metabolism. The most important sources of
ROS/RNS include the mitochondrial electron transport chain,
the nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase (Nox), and NO synthase (NOS) activity. Nox as the main
producer of ROS in vascular cells can be induced by inflam-
mation and a variety of cellular stress including ER stress. The
Nox-isoforms Nox2 and Nox4 are expressed in cardiomyocytes,
endothelial cells, fibroblasts, and inflammatory cells (Cave et al.,
2006). Both, their molecular targets and their involvement in
cardiac pathology have been reviewed recently (Burgoyne et al.,
2012). With the exception of Nox4, the molecular chaperone
Hsp90 binds to Nox proteins and regulates enzymatic activity
and superoxide production (Chen et al., 2011). Disruption of
Hsp90-Nox interaction and binding of Hsp70 to Nox promotes
the E3-ubiquitin-ligase CHIP-dependent ubiquitylation of Nox.
Thereby, Nox is transferred to proteasome-dependent degrada-
tion and ROS production is limited (Chen et al., 2012).

Cells have evolved various enzymatic and non-enzymatic
defense mechanisms that directly detoxify free radicals. Whenever
the demand to detoxify ROS is exhausted within a cell—a
process frequently occurring in pathophysiological conditions
like ischemia-reperfusion (I/R) injury—oxidative stress occurs
with potential harm to the cell. Herein, the detrimental effects
of ROS are particularly attributed to protein carbonylation, lipid
peroxidation, and DNA damage. In addition to I/R-injury, oxida-
tive stress is involved in a variety of other cardiovascular patholo-
gies, such as diabetic and anthracycline-induced cardiomyopathy
and cardiac hypertrophy (Khaper et al., 2010).

On the other hand, redox signaling also mediates crucial
physiological processes in the heart. Likewise, a transient and self-
limiting release of cytokines and chemokines in myocardial injury
initiates a protective process, thereby restoring overall cardiac
function. Inflammatory chemokines are mediators with multi-
ple functions including chemoattraction of lymphocytes, natural
killer cells, dendritic cells, and macrophages to the side of myocar-
dial injury. However, pro-inflammatory cytokines may also exert
detrimental effects—they contribute to heart failure in myocar-
dial infarction and viral myocarditis. Particularly, the levels of
pro-inflammatory cytokines like TNF-α and IL-6 have prognos-
tic value for the severity of heart failure (Khaper et al., 2010).
Prolonged and/or excessive cytokine/chemokine release results
in immune-mediated destruction of the myocardium by infil-
trating immune cells (Esfandiarei and McManus, 2008). This
immune response then frequently extends to remote uninfected
regions of the heart, where cytokines and inflammatory cells
promote cardiac remodeling leading to heart failure. One of
the basic principles of this destructive potential of a prolonged
cytokine response is that inflammatory cytokines and ROS both
stimulate the stress response and are re-activated by the same
pathways, thereby giving rise to a vicious cycle (Khaper et al.,
2010).

CURRENT STATE OF THE ART—THE UPS IN PROTEIN
QUALITY CONTROL IN CARDIOVASCULAR INFLAMMATION
Unfolded and misfolded proteins that arise as a consequence
of intrinsic or extrinsic factors like cytokine action or infec-
tion (Kruger and Kloetzel, 2012) are inherently toxic to cells
(Dantuma and Lindsten, 2010). It has been shown that accu-
mulating modified proteins tend to form high molecular weight
aggregates. These aggresome-like induced structures (ALIS) act
as generalized stress-induced protein storage compartments for
poly-ubiquitylated defective ribosomal products (DRiPs) (Szeto
et al., 2006). Chaperones like Hsc/Hsp70 bind DRiPs follow-
ing their translation. In the maturation process of dendritic
cells (DCs), DRiPs transiently accumulate as poly-ubiquitylated
conglomerates (Lelouard et al., 2004; Rahnefeld et al., 2011).
The ubiquitin ligase CHIP and the ubiquitin-domain protein
BAG-1 promote substrate modification with ubiquitin. Here,
CHIP and BAG-1 modulate the interplay of chaperones with the
UPS, thereby facilitating proteasome degradation of ALIS in DCs
(Kettern et al., 2011). ALIS need to be quickly and efficiently
eliminated before they intoxicate the intracellular environment.
Together with the transient protein sequestration in ALIS within
the unfolded protein response, the cellular machinery is adjusted
to enhance protein folding and/or to degrade misfolded pro-
teins by the UPS. However, insufficiency of the UPS either due
to ubiquitylation-deficits and/or impaired proteasome activity
results in proteotoxic stress or protein toxicity. All these processes
may contribute to heart failure (Powell et al., 2012).

Due to the increased demand to ubiquitylate damaged proteins
to target them for proteasome destruction and the restricted lev-
els of free ubiquitin in the cell, ubiquitin is strongly induced in
the event of a proteotoxic insult (Fornace et al., 1989). Moreover,
as a response of cytokine-stress or within DC maturation dif-
ferent enzymes of the ubiquitylation cascade are up-regulated
(Ebstein et al., 2009; Seifert et al., 2010). Thereby, the efficient
substrate ubiquitylation of oxidant-damaged and/or other mis-
folded nascent proteins in the cellular stress response ensures
sufficient tagging of these degradation-prone products to be then
detected by 19S subunits of the 26S proteasome. The patho-
physiological impact of substrate-ubiquitylation in this matter
becomes evident in neurological conformational disease. Here,
the aberrant UBB+1 protein is expressed, which in high concen-
tration is resistant to proteasome degradation causing chronic
aggregation of toxic proteins (Van Leeuwen et al., 1998).

UPS dysfunction or more precisely the consequences of pro-
teasome dysfunction are also observed in cardiomyopathies.
Herein, desmin-related cardiomyopathy represents a conforma-
tional disease that is attributed to improper folding of the desmin
protein. Due to unknown molecular mechanisms highly abun-
dant misfolded desmin aggregates in the myocardium cause a
functional impairment of proteasome degradation (Liu et al.,
2006). A recent investigation elegantly addressed the impact of
proteasome function in myocardial I/R injury making use of
a heart-specific peptidase-disabled mouse β5 subunit. T60A-β5
replacement of endogenous cardiac β5 proteasome subunits
reduced the chymotrypsin-like activity of the cardiac protea-
some leading to pronounced structural and functional dam-
age in I/R injury. This was attributed to increased levels of
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poly-ubiquitylated PTEN, which in consequence resulted in
reduced Akt phosphorylation (Tian et al., 2012). In patients with
dilated cardiomyopathy (DCM), proteasome functional insuffi-
ciency was also observed, here leading to the accumulation of
poly-ubiquitylated, oxidant-damaged proteins in end-stage heart
failure (Predmore et al., 2010).

Proteasome functional insufficiency results in a dysbalance
in protein homeostasis. Here, we discuss how the proteasome
responds to the need for increased protein turnover in pro-
teotoxic stress to prevent long-term detrimental effects. It has
been reported that electrophiles enhance proteasome expres-
sion through the antioxidant response elements (AREs)-Keap1-
Nrf2 signaling pathway (Kwak et al., 2003). We and others
have shown that mammalian cells up-regulate proteasome gene
expression to compensate for proteotoxic stress caused by pro-
teasome inhibition following the activation of the transcrip-
tion factor Nrf1/TCF11 (Steffen et al., 2010). Nrf1/TCF11 and
Nrf2 are members of the CNC-bZIP family both interacting
with AREs within the promoters of cytoprotective genes. Both
undergo regulation by the UPS—Nrf2 via ubiquitylation by
KEAP1 and Nrf1/TCF11 by the ER-associated degradation path-
way. An Nrf2 mediated transcriptional regulation is mainly
associated with an antioxidant response toward ROS/RNS or
electrophiles, whereas the TCF11 pathway seems to rely on other
triggers, like proteotoxic stress (Koch et al., 2011). Also, Hsp70
recruits the chaperone-directed ubiquitin ligase CHIP to pro-
mote Nox ubiquitylation and proteasome-dependent degradation
(Chen et al., 2012). Altogether, these studies provide evidence that
the s-proteasome itself can ameliorate oxidative stress.

Although still a matter of controversy, several reports suggest
that the 20S proteasome, which in contrast to 26S proteasome
lacks ubiquitin-binding sites within the 19S cap, is capable of
removing misfolded, oxidant-damaged proteins in response to
oxidative stress in an ubiquitin-independent manner (Grune
et al., 1997). Several lines of evidence argue against this hypothe-
sis: (1) Most of the 26S proteasome subunits are subject to ARE-
dependent transcriptional activation by Nrf1/TCF11 or Nrf 2
(Kwak et al., 2003; Steffen et al., 2010); (2) Components of the
ubiquitin conjugation machinery are up-regulated in response to
different kinds of oxidative stress (Seifert et al., 2010; Steffen et al.,
2010); and (3) Ubiquitin-rich aggregates accumulate in cells in
response to oxidative stress (Szeto et al., 2006). Moreover, a large
proportion of oxidant-damaged proteins is ubiquitylated and
thus represents substrates of the 26S proteasome in IFN-induced
oxidative stress (Seifert et al., 2010).

Another regulator of proteasome substrate turnover is PA28,
which has been recently suggested to increase the ability of s- and
i-proteasomes to degrade oxidant-damaged proteins (Pickering
and Davies, 2012). In cardiomyocytes, PA28α overexpression
resulted in increased proteasome-mediated removal of misfolded
and oxidized proteins (Li et al., 2011). However, the exact func-
tion of PA28 in degradation of oxidant-damaged proteins remains
to be determined.

Previous studies addressed the adaptation of the proteolytic
activity of the 26S proteasome in inflammatory injuries in the
heart, brain, and liver (Seifert et al., 2010; Opitz et al., 2011).
In fact, prolonged sequestration of oxidant-damaged proteins in

inflammation is prevented by the increased proteolytic activity of
the proteasome system, which is exerted by IFN-induced forma-
tion of the i-proteasome. I-proteasomes in comparison to their
s-proteasome counterpart are equipped with increased peptide-
hydrolyzing activity (Sijts et al., 2000; Strehl et al., 2006; Voigt
et al., 2010) and more efficient degradation capacity of ubiq-
uitylated proteins. The effective removal of oxidant-damaged
toxic proteins as a consequence of i-proteasome-function not
only guarantees a steady state in protein metabolism, but also
ensures cell viability in cellular stress (Seifert et al., 2010).
Likewise, i-proteasomes are perfectly suited to prevent the con-
sequences of aggravated inflammatory injury of the myocardium
in enteroviral cardiomyopathy. Here, cytokine response and cyto-
pathic effects of viral infection challenge the cellular unfolded
protein response in cardiomyocytes. As a consequence of its
superior proteolytic capacity, the i-proteasome eliminates toxic
protein aggregates in the heart and in this way preserves cell via-
bility and tissue integrity in cardiac inflammation (Opitz et al.,
2011).

FUTURE PERSPECTIVES
Recent studies suggest that the heart possesses an innate immune
system that is intended to delimit tissue injury and regulate
homeostatic responses (Mann, 2011). Toll-like receptors (TLR)
and Nucleotide-binding oligomerization domain-containing
protein-like receptors (NLR) act as pattern recognition receptors
(PRRs) that bind conserved motifs of pathogens. TLRs and NLRs
activate distinct signaling pathways, which promote the activation
of transcription factors NFκB and IRF3 to induce inflammatory
cytokines, type I interferons (IFN) and chemokines (Kawai and
Akira, 2011). Recent studies demonstrate that TLR and NLR also
recognize molecular patterns of endogenous material, so called
alarmins belonging to the family of damage-associated molecular
patterns (DAMPs) (Liu et al., 2009). Alarmins are constitutively
expressed and released upon myocardial damage such as myocar-
dial ischemia or viral myocarditis. Upon activation of TLRs and
NLRs these DAMPs recruit phagocytes to remove cell debris and
microbes to restore tissues homeostasis.

Whereas short-term TLR/NLR activation confers protec-
tive effects in the injured heart, prolonged, and/or aggravated
PAMP/DAMP-signaling results in the overwhelming recruit-
ment of inflammatory cells, thereby promoting apoptosis, car-
diac remodeling, and heart failure (Figure 1) (Fernandez-Velasco
et al., 2012). TLR-activation also triggers the formation of
ROS/RNS, which upon damage of proteins, lipids and DNA
generate oxidation-specific epitopes. These molecular patterns
represent targets of PRRs and further potentiate the inflamma-
tory response (Miller et al., 2011). In acute cardiac injury e.g., in
acute enteroviral myocarditis, formation of the i-proteasome in
cardiac cells and constitutive i-proteasome expression in invad-
ing inflammatory cells protect these cells from cellular death.
Here, the consequences of inflammation-induced ROS leading
to oxidant protein damage are counterbalanced by the increased
protein turnover rate of i-proteasomes. One downstream target
of oxidant-damage in cytokine stress is IκBα (Seifert et al., 2010).
NFκB-signaling relies on the proteasome-dependent degradation
of IκBα, a process that is clearly accelerated by i-proteasomes
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FIGURE 1 | Myocardial injury induces reactive oxygen species

(ROS) and reactive nitrogen species (RNS) via the activity of

NADPH-oxidase (NOX) and nitric oxide synthase (NOS). Thereby,
endogenous material being referred to as danger-associated molecular
patterns (DAMPs) is released. DAMPs activate membrane-bound Toll-like
receptors (TLRs) and cytoplasmatic Nucleotide-binding/oligomerization
domain-like receptors (NLRs). TLR and NLR-signaling results in cytokine
and chemokine release. Chemokines attract inflammatory cells and
thereby facilitate tissue repair. Upon activation of the mammalian target
of rapamycin (mTOR)-pathway, cytokines activate the cellular translation
machinery giving rise to an increased pool of misfolded, damaged

proteins known as defective ribosomal products (DRIPs). These nascent
proteins are prone to be further modified by ROS/RNS eventually leading
to an imbalance in the protein homeostasis with a surplus of misfolded,
oxidant-damaged proteins in the cell. Here, regulatory components within
the proteasomes take action—in inflammation, immunoproteasomes with
increased proteolytic activity are formed that ensure the timely
degradation of these inherently toxic protein aggregates. However,
whenever the immunoproteasome is dysfunctional or not properly
assembled, proteotoxic aggregates accumulate thereby promoting cell
death. This in turn creates a vicious cycle eventually potentiating cardiac
remodeling and heart failure.

in comparison to their s-proteasome counterparts (Visekruna
et al., 2009; Opitz et al., 2011). With the preservation of cellu-
lar integrity in cardiac inflammation, i-proteasome function may
limit the liberation of alarmins that could exacerbate inflamma-
tory responses in the injured heart.

This physiological adaptation of proteasome function as
observed in viral myocarditis (Opitz et al., 2011) and experi-
mental acute encephalomyelitis (EAE) (Seifert et al., 2010) is
challenged by the fact that inhibition of i-proteasome activ-
ity by specific small molecular compounds (Huber et al.,
2012) or gene-deletion of the i-proteasome in mice severely
attenuates inflammation in autoimmune models of rheuma-
toid arthritis and inflammatory colitis (Muchamuel et al., 2009;

Basler et al., 2010; Schmidt et al., 2010). Here, i-proteasome
dysfunction suppresses Th1 and Th17, but enhances regula-
tory T cell differentiation, thereby limiting autodestruction by
inflammatory cells (Kalim et al., 2012). Disease attenuation
upon i-proteasome inhibition was also attributed to reduced
pro-inflammatory cytokine levels at the side of the injury.
Thereby, DAMP-signaling and oxidative stress are actually pre-
vented here at very early stages, which in turn accounts for
a steady-state in protein metabolism and reduced recruit-
ment of inflammatory cells (Figure 1). Similar to these differ-
ent reports on i-proteasome function in autoimmunity, exper-
imental studies on first-generation proteasome inhibitors in
atherosclerosis (Yu and Kem, 2010) and myocardial ischemia
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(Powell et al., 2012) yielded conflicting results. There is gen-
eral agreement that proteasome inhibitors may be “poisons or
remedies” (Meiners et al., 2008). With the second-generation
of subunit-specific proteasome inhibitors it remains critical,
but is conceivable that the anti-inflammatory effects of these
compounds may be valuable in cardiovascular injury as well.
With the aim to identify these cardiac inflammatory conditions
that may benefit from i-proteasome-specific inhibitors, further

research should envisage the effects of i-proteasome function in
atherosclerosis, in I/R injury, cardiac hypertrophy, autoimmune
myocarditis, and DCM.
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