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Objective: To develop a deep learning model for synthesizing the first phases of dynamic
(FP-Dyn) sequences to supplement the lack of information in unenhanced breast
MRI examinations.

Methods: In total, 97 patients with breast MRI images were collected as the training set
(n = 45), the validation set (n = 31), and the test set (n = 21), respectively. An enhance
border lifelike synthesize (EDLS) model was developed in the training set and used to
synthesize the FP-Dyn images from the T1WI images in the validation set. The peak signal-
to-noise ratio (PSNR), structural similarity (SSIM), mean square error (MSE) and mean
absolute error (MAE) of the synthesized images were measured. Moreover, three
radiologists subjectively assessed image quality, respectively. The diagnostic value of
the synthesized FP-Dyn sequences was further evaluated in the test set.

Results: The image synthesis performance in the EDLS model was superior to that in
conventional models from the results of PSNR, SSIM, MSE, and MAE. Subjective results
displayed a remarkable visual consistency between the synthesized and original FP-Dyn
images. Moreover, by using a combination of synthesized FP-Dyn sequence and an
unenhanced protocol, the sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) of MRI were 100%, 72.73%, 76.92%, and 100%,
respectively, which had a similar diagnostic value to full MRI protocols.

Conclusions: The EDLS model could synthesize the realistic FP-Dyn sequence to
supplement the lack of enhanced images. Compared with full MRI examinations, it thus
provides a new approach for reducing examination time and cost, and avoids the use of
contrast agents without influencing diagnostic accuracy.

Keywords: generative adversarial network (GAN), images synthesis, breast cancer, deep learning, magnetic
resonance imaging (MRI)
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INTRODUCTION

Breast cancer has become the most frequently-occurring
tumor in women with an increasing incidence (1, 2). Breast
magnetic resonance imaging (MRI) examinations have high
sensitivity for detecting breast cancer (3–5), and have been
recommended for the screening of high-risk groups to reduce
breast cancer mortality by the American Cancer Society and
the European Society of Breast Imaging (6, 7). However, a
traditional full MRI examination protocol includes not
only plain scanning and diffusion-weighted image (DWI),
but also dynamic-contrast enhanced (DCE) sequences.
The long image acquisition times, high cost, and the risk of
contrast agent allergy have limited its widespread application
for breast cancer screening (8, 9). In order to abbreviate total
scan time, Kuhl et al. (10) built an abbreviated MRI protocol
with equivalent diagnostic accuracy to the traditional full MRI
protocol, in which contrast agent is still requested. Thereafter,
Baltzer PA et al. (11, 12) proposed an unenhanced abbreviated
breast MRI (u-AB-MRI) protocol, including plain scanning
and DWI. This protocol can significantly reduce the scanning
time and is free of the contrast agent, but the diagnostic
performance may be reduced due to the missing DCE
sequence images. Thus, it is urgent to obtain DCE sequence
images without actual scanning to compensate for the
limitations in the u-AB-MRI protocol.

Generative Adversarial Network (GAN) is a deep learning
framework which has been applied to image-to-image
translation (13, 14). The new techniques based on the GAN
framework can contribute to addressing challenging tasks in
medical imaging (15, 16), particularly for converting an image
from one modality into the other (17–19), such as synthesizing
MRI images from CT images (20, 21). However, the breast MRI
images have a complex structure and uneven gray distribution.
DCE-MRI, on the other hand, has high spatial resolution and can
reflect the morphologic and hemodynamic features of breast
lesions (22). Thus, it is challenging to synthesize an enhanced
MRI image based on a plain scan image using a GAN model. To
address these drawbacks, we propose to build an effective novel
method, which can precisely learn the nonlinear mapping from
MRI plain scan images to enhanced images, to synthesize
realistic enhanced images.

In our study, a deep learning model was developed to
synthesize the first phases of dynamic (FP-Dyn) sequence in
order to compensate for the paucity of information in
unenhanced breast MRI examinations. We demonstrated that
the synthesized FP-Dyn sequence combined with an unenhanced
protocol had a similar diagnostic value to the traditional full MRI
examinations. To our knowledge, this is the first study to attempt
to obtain breast enhanced MRI images without scanning, and
further preliminarily evaluate the diagnostic performance of the
synthesized enhanced images. It may provide a new idea to
reduce the cost, examination time, and avoid the use of contrast
medium in breast MRI, which is conducive to the popularity of
breast MRI.
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MATERIALS AND METHODS

Patient Population
This study retrospectively collected the breast MRI images
from 97 patients who underwent MRI examinations between
2019 and 2021 at Xi’an International Medical Center Hospital,
and patients were randomly split into a training set (n = 45), a
validation set (n = 31) and a test set (n = 21), respectively. The
inclusion criteria for the MRI images were as follows:
I) image acquisition at 3.0T magnetic field; II) excellent
image quality with no motion artifacts. The exclusion
criteria were as follows: I) images with an incomplete
sequence; II) incomplete clinical data; and III) a history
of surgical resection. This research was approved by the
Ethics Committee of the Xi’an International Medical Center
Hospital and was conducted according to the principles of the
Declaration of Helsinki.

MRI Protocols
Image acquisition was performed using the MAGNETOM
Prisma 3.0T MRI. The imaging protocol mainly included
T1-weighted (T1w), T2-weighted (T2w), DWI, and T1w
sequences after contrast administration. Here, the Gd-DTPA
(0.1 mmol per kilogram body weight) was intravenously
injected at an injection rate of 2mL/s, and then the same
amount of normal saline was injected. Furthermore, the scan
parameters were as follows: Axial T1w: 176 slices, slice
thickness = 1.0 mm; FOV =384×384 mm; TR/TE, 5.66/2.46
ms; matrix = 384×384. Axial T2w: 160 slices, slice thickness =
0.9mm; FOV =360×230 mm; TR/TE, 2000/220ms; matrix =
400×256. Axial gadolinium-enhanced T1W: 176 slices, slice
thickness = 1.0 mm; FOV = 384×384 mm; TR/TE, 4.66/1.62
ms; matrix = 384×384. Axial DWI: 35 slices, slice thickness =
4.0 mm; TR/TE, 6100/65ms; FOV = 168×340 mm, b = 0 s/
mm2 and 1,000 s/mm2; EPI factor = 84; matrix = 84 ×170;
bandwidth = 2262 Hz/pixel.

Data Preprocessing
We used the following steps for data preprocessing. Firstly, the
original T1WI and FP-Dyn images in DICOM format were
converted to PNG format by using the MicroDicom Viewing
software (http://www.microdicom.com/). Then, TIWI images were
subtracted from the original FP-Dyn images, and applied a threshold
to obtain the contrast agent enhancing areas. Furthermore, using the
FP-Dyn images, the edge detail label was obtained through further
Canny edge detection. Moreover, the pixel values for each image
were scaled into the range [0,1] by using the min-max scaling
method. Finally, we expanded the training datasets through the data
augmentation strategies, which included rotating, cropping, and
mirroring them to improve the performance and robustness of the
model (23, 24).

Model Architecture
The enhance border lifelike synthesize (EDLS) model consists of
two components: a segmentation network (stage I) and a synthesis
network (stage II). The two networks have a similar network
December 2021 | Volume 11 | Article 7925
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structure, including a generator using the U-Net network and a
discriminator based on the convolutional neural network,
respectively. First, the segmentation network was constructed to
segment the potentially contrasted agent enhancing areas of T1WI
images. Then, the synthesis network was used to produce the FP-
Dyn sequence images from the input T1WI images and the
segmentation information. Here, the segmentation information
was used as additional information to supervise the contrasted
agent enhancing areas in the synthetic images (Figure 1).

Furthermore, the Dice loss function was used to train the
segmentation network in order to tackle the class imbalance
problem in the enhanced area and the non-enhanced area. As
shown in formula 1.

lseg(W) = 1 −
2os∈Wp(s) ∗ y(s)

os∈Wp(s) +os∈Wy(s) + ϵ

� �
(1)
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Where, W indicated the set of pixels in the whole image, s
represented the pixel, and p(s) represented the predicted
probability for s category by the segmentation network, y(s)
represented the true category label of pixel s, and e denoted the
smoothing coefficient.

In the synthesis network, the edge loss function and depth
supervision strategy were introduced to solve the problem of
blurring of edges and details in the synthesized image. The
detailed information was displayed in formula 2-6.

lcGAN (G,D) = Ex,y logD(x, y)½ �

+ Ex,xseg log (1 − D(x,G(x, xseg))
� �

(2)

llayer _ L1(G) = Ex,y,xseg jjy − Glayer(x, xseg) j1j ��
(3)
B

A

FIGURE 1 | The flowchart for synthesizing FP-Dyn sequences by using EDLS. (A) A flowchart for constructing the EDLS model. On stage I, the generator G1
transferred the T1WI image to the images only containing an enhanced area. The D1 discriminator was used to judge the consistency of the synthesized enhanced
area image with the original area images. In stage II, synthesized FP-Dyn sequence images were synthesized by a generator G2 from T1WI sequence images and
enhanced area images. In addition, the edge loss function was added to ensure the details of the synthesized FP-Dyn sequence image. The loss functions of the
EDLS model consist of two parts: L1 Loss and L2 Loss. (B) Showed the structure and detailed parameter information of the generators (G1, G2), and the G1 and
G2 had similar structures and parameters. The U-Net was applied to the network architecture of generators, and a deep-supervision strategy was used to optimize
the training process.
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llayer _ L2(G) = Ex,y,xseg jjy ∗ y _ edge − Glayer(x, xseg) ∗ y _ edge j1j ��
(4)

lDS = o
n

layer=c

(l1llayer _ L1 + l2llayer _ L2) (5)

ladv = argmin
G

max
D

(lcGAN (G,D)) + lDS (6)

The G and D represented the generator and discriminator
respectively. x represented the original T1WI sequence images,
xseg was the segmented image corresponding to x, y was the
original FP-Dyn sequence image, y_edge represented the y image
edge information map obtained by Canny operator detection,
lcGAN represented the generation countermeasure loss function,
and the loss function llayer_L1 was introduced to further ensure
the similarity between the synthesized image and the original
image. In addition, to solve the problem of lacking edge detail
information in the synthesized FP-Dyn images, we added the
edge detail loss function llayer_L2 into the model. Furthermore,
the depth supervision network lDS was added into the model for
stable convergence. And, the l1 and l2 were weighted coefficients
and assigned values of 1 and 6 according to the experimental
experience, respectively.

Model Training and Testing
The EDLS model training task sought to learn the mapping
specifically between T1WI sequence images and FP-Dyn
sequence images. Here, the EDLS model was trained on a
training set including 3996 pairs of T1WI-FP-Dyn images. We
optimized the loss functions by using the Adam optimizer during
the training stage, and the model parameters were updated for
each training iteration until the model converged. In addition, we
implemented all the models with Python 3.6. The TensorFlow
framework was used for model construction and evaluation. The
software and hardware included CUDA9.0, cuDNN7.6.5, and a
Linux server with 2 NVIDIA GTX 1080Ti GPUs.

Following the completion of the model training, the EDLS
model was used to synthesize the FP-Dyn images and sequences
based on 1226 T1WI images and 25 T1WI sequences in the
validation set, respectively. Furthermore, we also synthesized the
FP-Dyn sequences using the EDLS model for each patient in the
test set.

Conventional GAN Model
We compared the performance of the EDLS model to
conventional GAN models, including CycleGAN (25),
DC2Anet (26), MR-GAN (27), and Pix2Pix (28). Conventional
models were trained and evaluated using the same data set as the
EDLS model.

Quantitative Analysis of Model
Performance
The model performance was evaluated by using the quantitative
index of peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), mean square error (MSE) andmean absolute error (MAE)
Frontiers in Oncology | www.frontiersin.org 4
(29). A lower MSE and MAE, or a higher PSNR and SSIM,
indicated a better model performance for image synthesis (30).

Subjective Evaluation of Image Quality
The test images, including the synthesized FP-Dyn images and
the original FP-Dyn images, were randomly put together. Three
radiologists independently discriminated between the
synthesized and original FP-Dyn images. In addition, with
reference to the original image, the satisfaction of the
synthesized images was evaluated by the radiologists using a
five-point Likert scale (1 disagree strongly, 2 disagree, 3 no
response, 4 agree, and 5 agree strongly). Further, we
dichotomized the evaluated results. Scores equal to or greater
than 4 were defined as “satisfied”. Scores of 1 to 3 were defined
as “dissatisfied”.

Assessment of Diagnostic Value
Three reading modes, including reading mode (a), reading mode
(b), and reading mode (c), were designed to evaluate the diagnostic
value of the synthesized FP-Dyn sequence. And the reading mode
(a) included T1WI, T2WI, DWI, and the synthesized FP-Dyn
sequence. The reading mode (b) included the T1WI, T2WI, DWI
and the originally scanned FP-Dyn sequence. The reading mode
(c) included the T1WI, T2WI, DWI and the total phases of
scanned DCE sequences. Then, three experienced breast
radiologists independently diagnosed under each of the three
modes, respectively. There was a minimum of one month
between each of the reading modes. The breast lesions were
diagnosed according to the BI-RADS classification. Here, a BI-
RADS score greater than 3 was considered positive, while 3 or less
was considered negative. We compared the sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) among the afore-mentioned three reading modes, using
the pathology results as the gold standard.

Statistical Analysis
In this study, continuous variables were presented as mean and
standard deviation, and categorical variables were presented as
percentages. The Analysis of Variance (ANOVA) test was used
to analyze the performance differences between our model and
the conventional GAN models. In addition, the diagnostic
consistency among three different reading modes was
calculated from the Kappa test. Furthermore, the Kendall test
was used to evaluate the consistency of the diagnoses among the
radiologists. A two-side P-value less than 0.05 was considered
statistically significant. The Holm method was used to adjust the
P value between multiple group comparisons. All the statistical
tests were performed in R (version 3.6.3, https://www.rproject.
org) software.
RESULTS

The Performance of Models
We quantitatively compared the 1226 FP-Dyn images which were
respectively synthesized by the EDLS model and the conventional
December 2021 | Volume 11 | Article 792516
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GAN models. Here, the results which were measured by the MAE,
MSE, PSRN, and SSIM were summarized in Figure 2. It was easy to
see that the performance of the EDLS model was significantly
superior to other conventional GAN models. Compared with the
Pix2Pix model, the EDLS model produced improvements of more
than 2% in SSIM, which played an important role in improving the
quality of the synthesized images. Simultaneously, the PSNR had
also been significantly improved (P<0.001). In addition, we found
that the EDLS model had the lowest MAE and MSE (P<0.001).

The results of PSNR, SSIM, MAE and MSE from the
synthesized FP-Dyn sequences in 25 patients were shown in
Supplementary Figure 1. The experimental results suggested
that the EDLS model had the highest PSNR and SSIM (P<0.001),
and had the lowest MAE and MSE (P<0.001), compared with the
conventional models (Supplementary Figure 1).
Frontiers in Oncology | www.frontiersin.org 5
Visual Evaluation Between the Synthesized
and Original FP-Dyn Images
The 1226 synthesized FP-Dyn images and 1226 original FP-Dyn
images were randomly put together. As seen in Table 1, one
radiologist correctly identified images with 52.00% accuracy of
2452 images, and the precision rate for correctly identifying the
original FP-Dyn image was 51.20% of 1226 images. In addition,
each of the other two radiologists correctly identified images with
56.65% and 53.67% accuracy, and 54.35% and 52.71% precision.

Subjective Quality Evaluation of the
Synthesized Images
Qualitative metrics for image quality evaluation were shown in
Table 2. And there were no significant differences in subjective
image quality scores among the three radiologists. Compared
BA

DC

FIGURE 2 | The comparison of the performance between our model and conventional models on (A) PSNR, (B) SSIM, (C) MSE, and (D) MAE metrics. From left to
right, the violin plots with a median (orange line) respectively represented CycleGAN, DC2Anet, EDLS, MR-GAN, and Pix2Pix.
December 2021 | Volume 11 | Article 792516
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with the original FP-Dyn images, more than 99% of the
synthesized images in the shape consistency were good, and
the scores were 4 or 5. In addition, the contrast enhancement for
synthesized images was also given high scores by the three
radiologists. For example, more than 91% of synthesized FP-
Dyn images got good scores of 4 or 5 points for great vessels and
heart enhancement. And more than 75% of synthesized FP-Dyn
images in gland enhancement got good scores of 4 or 5 points.
Furthermore, from the evaluation results, we found that the
synthesized images were effective for the suppression of
motion artifacts.

In addition, Figure 3 showed an example of the input T1WI
images, synthesized FP-Dyn images, original FP-Dyn images,
and absolute error images. The absolute error images showed the
absolute error between the synthesized FP-Dyn image and the
original FP-Dyn image. We could clearly see that the EDLS
model had been learning to identify tissues that had similar
signal values in T1WI sequences, but had high signals in FP-Dyn
sequences, such as tumor tissue, the heart, and great blood
vessels. And the FP-Dyn image synthesized by the EDLS
model was highly consistent with the original FP-Dyn image
and had a similar enhancement in the lesion. However, the
images synthesized by the CycleGAN model failed to effectively
enhance the lesions. In addition, there were high background
pixel errors from the FP-Dyn images which were synthesized by
other models, compared with their original images.

The Reconstruction Pixel Error of
Synthesized Sequence
We further evaluated the reconstruction error of the synthesized
FP-Dyn sequence on the validation set. From Figure 4, we could
see that the synthesized FP-Dyn sequence images had a small
reconstruction error compared with the original FP-Dyn
sequence images. The average MAE on all sequences was 0.027
with a standard deviation of 0.004, and the average MSE on all
sequences was 0.003 with a standard deviation of 0.001. In
addition, some outliers of reconstruction errors were detected
in the statistical boxplot. And we found there were some gland
enhancements in the synthesized FP-Dyn images lower than in
Frontiers in Oncology | www.frontiersin.org 6
the original FP-Dyn images. It might be the major reason for the
outliers of reconstruction errors in the boxplot.

In addition, we assessed the correlation between the
synthesized FP-Dyn sequences and the original FP-Dyn
sequences for each patient in the validation set, then an overall
average for sequence correlations was calculated. Here, we found
that there were high positive correlations between the
synthesized FP-Dyn sequences and the original FP-Dyn
sequences. The overall average of the correlations between the
synthesized FP-Dyn sequences and the original FP-Dyn
sequences was r = 0.927 ± 0.311 (95% CI: 0.927 to 0.928,
P <0.001), (Supplementary Figure 2).

The Diagnostic Value of Synthesized
Sequence
We collected a test set of 21 patients who underwent breast MRI
examinations and with pathological examination results. Of 11
cases that were diagnosed as benign tumors, 1 case of chronic
mastitis, 2 cases of benign epithelial hyperplasia, 2 cases of
adenoids, 1 case of fibroadenoma, 1 case of fibroadenoma with
adenopathy, 2 cases of fibroadenoma with benign epithelial
hyperplasia, and 2 cases of invasive ductal carcinoma without
cancer cells in pathology after radiotherapy. The remaining 10
patients had malignant lesions. Of 10 cases that were diagnosed
as malignant lesions, 7 cases were non-specific invasive ductal
carcinoma, 1 case was non-specific invasive ductal carcinoma
with necrosis, and 2 cases were metastatic breast ductal
carcinoma. Here, the patients were respectively diagnosed by
three experienced breast radiologists using the three-reading
mode. The three radiologists had high diagnosis consistency as
measured by the Kappa test (Kappa = 0.688, P<0.001).

Based on pathology results, we counted the true-positive
(TP), false-negative (FN), false-positive (FP), and true-negative
(TN) values diagnosed by the three models, and then the
sensitivity, specificity, PPV, and NPV values for each reading
mode were then calculated, which were listed in Table 3. The
sensitivity, specificity, PPV, and NPV of the three reading modes
for breast cancer diagnosis were as follows. The reading mode (a)
was 100%, 72.73%, 76.92%, and 100%, respectively. The reading
mode (b) was 100%, 63.64%, 71.43%, 100%, respectively. The
reading mode (c) was 100%, 72.73%, 76.92%, and 100%,
respectively (Table 3).

Importantly, the reading mode (a) and reading mode (b) had
the same diagnosis in 20 cases, accounting for 95.24%. The
reading mode (a) and reading mode (c) had the same diagnosis
results in 19 cases, which accounted for 90.48%. Each of the
TABLE 2 | The satisfaction results of the subjective scoring of synthesized FP-Dyn images.

Reader Satisfaction Scores

Shape consistency Great vessels and heart enhancement Gland enhancement Artifact suppression

Reader 1 1221(99.59%) 1140(92.99%) 968(78.96%) 1195(97.47%)
Reader 2 1224(99.84%) 1119(91.27%) 947(77.24%) 1203(98.12%)
Reader 3 1224(99.84%) 1147(93.56%) 922(75.20%) 1207(98.45%)
F 2.005 5.058 4.905 3.131
P-value 0.367 0.080 0.086 0.209
December 2021 | Volum
TABLE 1 | The results of the visual evaluation between the synthesized and
original FP-Dyn images.

Reader Accuracy Precision

Doctor1 52.00% 51.20%
Doctor2 56.65% 54.35%
Doctor3 53.67% 52.71%
e 11 | Article 792516
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breast cancer cases both obtained a diagnosis with high BI-RADS
scores (4 or 5) by three reading modes, respectively.
DISCUSSION

In this study, we have developed a novel deep learning model,
namely EDLS, for synthesizing the FP-Dyn sequence images,
Frontiers in Oncology | www.frontiersin.org 7
which aims to supplement the lack of enhanced images for breast
MRI examinations without contrast agents, and then to ensure
diagnostic accuracy, lower scanning time, less cost and higher
security. The performance of the EDLS model has been verified
and proved to be powerful by using two independent data sets,
respectively. This result indicates that the EDLS could synthesize
high-quality FP-Dyn sequence images, surpassing conventional
GAN models. Of note, compared with the conventional models,
the lesion enhancement information, edge loss function, and
FIGURE 3 | Sample images of the T1WI images, synthesized FP-Dyn images, original FP-Dyn images, and absolute error images. From left to right: T1WI breast
MR images, synthesized FP-Dyn images, original FP-Dyn breast MRI, and absolute error images.
December 2021 | Volume 11 | Article 792516
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deep-supervision strategies are added to the EDLS model frame,
which may be a major reason for the improvement of
synthesized FP-Dyn images.

Notably, we found that the radiologists failed to effectively
discriminate between the original FP-Dyn image and the
synthesized FP-Dyn image because those images were visually
similar. Moreover, the subjective evaluation results by the
radiologists demonstrated that the synthesized images had
similar details to the original images. And there was a low
reconstruction pixel error of synthesized FP-Dyn sequence
images. Based on those results, it can be concluded that the
EDLS model could synthesize a realistic FP-Dyn sequence, which
may be useful to compensate for the diagnosis information
paucity in unenhanced MRI examinations.

The diagnostic value of synthesized FP-Dyn sequences should
be more considered. Here, the patients were diagnosed by three
reading modes, respectively, where reading mode (a) included
T1WI, T2WI, DWI and the synthesized FP-Dyn sequence, mode
(b) included T1WI, T2WI, DWI, and the originally scanned FP-
Dyn sequence, and reading mode (c) included T1WI, T2WI,
DWI, and the total phase of the scanned DCE sequences.
Meaningfully, the specificity and PPV of the reading mode (a)
was 72.73%, 76.92%, and was 63.64%, and 71.43% in the reading
mode (b). The reading mode (a) had higher specificity and PPV
than the reading mode (b). And it was important to note that
with the reading mode (a), breast cancer diagnostic sensitivity,
specificity, PPV, and NPV were achieved at equivalent levels to
those of the reading mode (c). The results indicate that the
Frontiers in Oncology | www.frontiersin.org 8
synthesized FP-Dyn sequences have diagnostic value for
breast lesions.

On one hand, synthesizing the FP-Dyn sequences is critical
not only for reducing scanning time and cost, but also for
effectively supplementing the lack of information in u-AB-MRI
and avoiding the adverse reactions of contrast agents. We have
demonstrated that the FP-Dyn sequences can be obtained by the
EDLS model without the actual scan. According to our statistics,
this MRI protocol acquisition time was substantially 10 to 15
minutes, compared with 25 to 30 minutes for the actual
enhanced abbreviated MRI protocol, which can effectively
reduce the scan time. A shorter scan time makes it easier for
patients to undergo MRI examinations. Furthermore,
intravenous access is not required in this MRI protocol, which
reduces the cost and avoids the adverse reactions of contrast
agents, compared with the full MRI protocol. In addition, the
synthesized FP-Dyn sequence images exhibit high similarity to
the original images and have diagnostic value for breast lesions,
which can effectively supplement the lack of information in u-
AB-MRI to ensure the breast MRI diagnosis accuracy. On the
other hand, we found the synthesized FP-Dyn images had fewer
respiratory motion artifacts than scanning images, which are
caused by breathing, movement, and heartbeat that are inevitable
during MRI scanning (31, 32). Similarly, Enhao Gong et al. (33)
demonstrated that motion artifacts have been reduced in
synthetic brain MRI images. Therefore, this method could also
help to reduce image motion artifacts to improve the quality of
MRI images. Besides, in future work, we plan to integrate this
TABLE 3 | The diagnostic values of the synthesized FP-Dyn sequences for breast lesions.

Reading Mode TP FP FN TN sensitivity specificity PPV NPV

Mode (a) 10 3 0 8 100% 72.73% 76.92% 100%
Mode (b) 10 4 0 7 100% 63.64% 71.43% 100%
Mode (c) 10 3 0 8 100% 72.73% 76.92% 100%
December 2021 | V
olume 11 | Article 7
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FIGURE 4 | The reconstruction error in synthesized FP-Dyn sequence images. The box plot displayed the data distribution of MAE and MSE of a reconstructed
image of the 25 patients, and each of the box plots displayed the data distribution of one patient. (A) displayed the data distribution of MAE of a reconstructed
image of the 25 patients, (B) displayed the data distribution of MAE and MSE of a reconstructed image of the 25 patients.
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model into an existing platform for medical image processing,
which can effectively save deployment and maintenance costs.

There were still several limitations to the current study. First,
breast cancer is highly heterogeneous (34, 35), and has different
imaging manifestations in different molecular types (36). In this
study, we merely collected a relatively small dataset from the
MAGNETOM Prisma 3.0T MRI scanner to train and test the
EDLS model. Furthermore, in our study, an automatic threshold
segmentation algorithm was used to binarize the subtracted
T1WI-FP-Dyn MRI images to obtain a rough lesion label.
Finally, the clinical application value of the EDLS model
should be further verified in a prospective study. Meaningfully,
we observed that the sensitivity and specificity for diagnosis were
similar between synthesized and original FP-Dyn sequences.
Thus, we will expand and collect data from multi-centers to
improve the accuracy and universality of the model in the future.
Meanwhile, the model will be retrained by the multiparametric
sequences (T1WI, T2WI, DWI) to synthesize the DCE sequence
images. Also, we plan to manually segment the lesion to ensure
the accuracy of lesion enhancement. Most importantly, we will
conduct a multi-center, prospective study to verify the clinical
application value.

In summary, we proposed a novel deep learning model, i.e.,
the EDLS model, to synthesize FP-Dyn sequence images. We
verified that the EDLS model could synthesize the realistic FP-
Dyn sequence. Furthermore, the synthesized FP-Dyn sequence
combined with an unenhanced protocol demonstrated a similar
diagnostic value to the traditional full MRI examination.
Compared with full MRI examinations, it may provide a
promising idea to compensate for the paucity of information
in unenhanced breast MRI examinations, and reduce cost and
scanning time, while avoiding contrast agent allergy.
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