
RESEARCH ARTICLE

The influence of footwear on walking

biomechanics in individuals with chronic ankle

instability

Gabriel MoisanID
1,2,3*, Martin Descarreaux2,3, Vincent Cantin2,3
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Trois-Rivières, Trois-Rivières, PQ, Canada

* gabriel.moisan@uqtr.ca

Abstract

Background/Purpose

The effects of footwear on the walking kinematics, kinetics and electromyography (EMG) of

individuals with chronic ankle instability (CAI) at different speeds are still unknown. The

objective of this cross-sectional study was to evaluate the kinematic, kinetic and electromy-

ography differences between shod and barefoot walking at comfortable (CW) and fast (FW)

speeds in individuals with CAI.

Methods

Twenty-one individuals with CAI walked on a 5-meter walkway shod and barefoot at CW

and FW speeds. A force plate was used to record the ground reaction forces, a 3-D motion

analysis system to record the lower limb kinematics and a surface EMG system to collect

the gluteus medius, vastus lateralis, gastrocnemius lateralis, gastrocnemius medialis, pero-

neus longus and tibialis anterior muscles activity. The dependent variables were ankle and

knee angles and moments and normalized muscle activity. The shod and barefoot data dur-

ing CW and FW were compared using a one-dimensional non-parametric mapping analysis.

Results

The main results of this study were that individuals with CAI exhibited more ankle dorsiflex-

ion angle, knee extension and tibialis anterior muscle activation during the beginning of the

stance phase during shod compared to barefoot walking. Also, the biomechanical effects of

shoes are similar during walking at FW and CW.

Conclusion

The biomechanical deficits associated with CAI were partly attenuated during the shod com-

pared to the barefoot condition and these effects were similar at CW and FW. These findings

are compatible with the concept that locomotor interventions using suitable shoes may

enhance gait abilities in individuals with CAI.
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Introduction

Shoes are important in human locomotion, as they are the first interface between the body and

the ground. Shoes are mainly worn to protect the feet from thermal and/or chemical injuries,

to enhance daily comfort but also to modulate lower limbs’ biomechanics. During shod walk-

ing, cadence [1], ankle plantarflexion [2], knee flexion [3] and knee flexion moments [4] are

decreased and knee adduction moments [4], tibialis anterior muscle activity [5], peroneus

longus muscle activity [5] and stride length [4] are increased compared to barefoot walking.

Changes in lower limb biomechanics when wearing shoes have been associated with improve-

ment in pain and function in individuals with musculoskeletal disorders [6, 7]. Individuals

with chronic ankle instability (CAI) could perhaps benefit from the biomechanical effects of

wearing certain types of shoes, such as the decrease in ankle plantarflexion. CAI is character-

ized by a continuum of residual impairments following a lateral ankle sprain and results in

recurrent sprains and/or episodes of ankle “giving way” during locomotion [8]. During walk-

ing, individuals with CAI exhibit increased ankle and rearfoot inversion, ankle plantarflexion,

lateral foot vertical forces and peroneus longus muscle activity compared to healthy controls

[9]. However, no previous study simultaneously identified the biomechanical differences

between individuals with and without CAI when walking shod and barefoot. Also, no study

has quantified lower limb biomechanical effects of wearing shoes during walking in individu-

als with CAI. It has yet to be determined if biomechanical deficits associated with CAI can be

attenuated by wearing shoes. Quantifying the biomechanical effects of shoes on individuals

with CAI will help clinicians and researchers to better understand their potential benefits in

the rehabilitation of this population.

In most studies quantifying the lower limb biomechanical effects of shoes, participants were

asked to walk at a self-selected, comfortable speed, as shown by a recent systematic review

[10]. Walking at a faster speed increases lower extremity muscle activity [11], joint moments

[12], tibio-talar plantarflexion and hallux dorsiflexion at toe off [13]. As lower limb biome-

chanics change as walking speed increases, shoes could induce different biomechanical effects

at different speeds. There is a need to investigate the effects of shoes on lower limb biomechan-

ics when walking at a faster speed in order to better understand the role of footwear during

locomotion.

The objectives of this study were to quantify the effects of wearing shoes on lower limb

EMG, kinematics and kinetics in individuals with CAI during walking and to assess if these

effects change at a faster speed. It was hypothesized that wearing shoes will decrease the bio-

mechanical deficits associated with CAI, such as the increased ankle plantarflexion, and that

the effects will be greater when walking faster.

Materials and methods

Participants

Twenty-one individuals with CAI were recruited to participate in this cross-sectional study

(see Table 1). Participants were identical to the CAI group of a study investigating the bio-

mechanical differences between individuals with and without CAI during shod walking [14].

Participants were included if they had one (or more) significant lateral ankle sprains that

occurred more than one year prior to study onset and had self-reported functional deficits due

to ankle symptoms that were quantified by a score of<90% and<80% on the Foot and Ankle

Ability Measure (FAAM) Activity of daily living (ADL) and Sport (S) subscales, respectively.

At least two episodes of an ankle “giving way” in the last six months and/or having a feeling of

instability had to be reported by the participants in order to be included in this study.
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scholarships received by the first author. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0239621
https://figshare.com/articles/The_influence_of_footwear_on_walking_biomechanics_in_individuals_with_chronic_ankle_instability/12465833
https://figshare.com/articles/The_influence_of_footwear_on_walking_biomechanics_in_individuals_with_chronic_ankle_instability/12465833
https://doi.org/10.6084/m9.figshare.12465833


Individuals were excluded from the study if they had a history of a lower extremity surgery or

a fracture that needed a surgical realignment, a history of lower extremity musculoskeletal

injury within the last three months, had any known condition that adversely affects gait or

were undergoing treatment for CAI. Inclusion criteria were based on the recommendations of

the International Ankle Consortium [15]. The Université du Québec à Trois-Rivières (UQTR)

ethics committee (CER-16-226-07.21) approved the experimental protocol, and written con-

sent was obtained from each participant. The potential participants were recruited through the

university’s outpatient podiatry clinic and among the UQTR students.

Instrumentation

Kinematic markers were placed on the tested limb over the greater trochanter, the lateral fem-

oral epicondyle, the lateral malleolus and the fifth metatarsal head. Two three-marker clusters

were placed on the distal lateral one-third of the leg and thigh. During the shod condition, the

marker over the fifth metatarsal head was attached directly to the shoe as determined by palpa-

tion. For the sake of ecological validity, it was chosen not to cut holes into the shoe uppers in

order not to decrease their stability. Also, a limitation of the data collection volume area was

associated with the motion analysis system used. It was therefore not feasible to reliably place

multiple markers on the foot in a non-colinear way. During a calibration trial, virtual markers

were created over the medial femoral epicondyle and medial malleolus. The calibration trial

was used to locate the hip/knee/ankle joint centers and subsequently calculate ankle and knee

angles and moments during the dynamic trials. Nine Optotrak Certus cameras (Northern Dig-

ital, Waterloo, Ontario, Canada) recording at a sampling rate of 100 Hz, collected the kine-

matic data.

To collect ground reaction forces data, a force platform (Bertec Corp, Colombus, OH,

USA) embedded in the floor on the participants’ path was used at a sampling rate of 1000 Hz.

To record walking speed, electronic photocells timing gates (Brower Timing System, Draper,

UT, USA) positioned 1.35 meters before and after the force platform were used.

Differential Ag surface EMG electrodes (Model DE2.1, Delsys Inc, Boston, MA, USA) were

placed over the gluteus medius, vastus lateralis, gastrocnemius lateralis and medialis, peroneus

longus and tibialis anterior muscles in the position outlined by the SENIAM guidelines [16].

At each electrode site, the skin was shaved, abraded with fine-grade sandpaper and wiped with

alcohol swabs. A reference electrode was placed over the ipsilateral anterior superior iliac

spine. The EMG signals were collected at a sampling rate of 1000 Hz and amplified with a gain

of 1000 (CMRR > 92 dB at 60 Hz, input impedance of 10 GW; 12 bits A/D converter).

Table 1. Descriptive data.

Gender ratio (M/F) 4/17

Age (years) 26.3 (±8.5)

Mass (kg) 64.9 (±12.7)

Height (m) 1.65 (± 0.08)

Foot posture index 3.3 (±3.8)

Last sprain (yr) 2.4 (±1.9)

Previous sprains 5.6 (±5.4)

FAAM-ADL (%) 86.4 (±4.5)

FAAM-Sport (%) 69.6 (±8)

IPAQ (MET-min/week) 2125 (±1468)

Data reported as mean (standard deviation).

https://doi.org/10.1371/journal.pone.0239621.t001
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Protocol

Prior to the experimental protocol, the participants completed the validated French version of

the FAAM-ADL and FAAM-S [17] and the International Physical Activity Questionnaire

(IPAQ) [18]. They also reported the number of sustained ankle sprains and the time since the

last sprain. In order to quantify foot morphology of the participants, the Foot Posture Index

(FPI) was administered to them [19].

Prior to the data collection, a calibration trial was recorded. Then, participants had to walk

on a 5-meter walkway at self-selected comfortable (CW) and fast (FW) speeds during two

experimental conditions (shod and barefoot). The order of the conditions and speeds was ran-

domly assigned across participants. The FW was described to the participants as the fastest

walking speed possible to reach whilst keeping both feet simultaneously in contact with the

ground. During the shod condition trials, all participants wore the same model of shoes, in the

proper size (Athletic Works, Model: Rupert, Bentonville, AR, USA). The protocol consisted of

completing five familiarization trials during which mean walking speed was calculated and five

trials during which lower limb kinetics, kinematics and EMG was recorded. It was performed

for each condition and speed for 20 consecutive recorded trials. A trial was rejected and imme-

diately retaken when speed varied from ±5% of the mean speed determined during the famil-

iarization trials, if the foot was not entirely on the force platform, or if participants adapted

their stride length or frequency in an attempt to hit the force platform.

Data processing. Kinematic and kinetic data were processed using Visual3D software (C-

motion, Inc., Germantown, MD, USA). The dependent variables were ankle and knee angles and

moments. Before joint angle and moment calculations, marker trajectories and force platform

data were respectively low-pass filtered using a 4th order Butterworth filter at a frequency of 6 Hz

and 50 Hz. Interjoint motion was calculated using a Cardan sequence of X-Y’-Z”. Rotation around

the X, Y’ and Z”-axes defined the extension/flexion, adduction/abduction and internal rotation/

external rotation, respectively. All movements were expressed as rotation of the distal segment in

relation to the proximal segment. The kinematic model used in this study only allowed measuring

the sagittal plane angle and moment (X) of the ankle joint. The calibration trial ankle angle was

determined as the 0˚ of the joint. The knee and ankle joints centers were calculated as the mid-

point from the medial-lateral aspect of each joint. Internal joint moments at the knee and ankle

were calculated using inverse dynamics and were normalized to body mass (Nm/kg). Touchdown

and toe-off of the stance phase were determined with the force platform using a 10 N threshold.

EMG data of all muscles were filtered with a 10 to 450 Hz 4th order Butterworth band-pass

filter using a custom MATLAB file (Mathworks, Inc., Natick, MA). The Root Mean Square

(RMS) of these data was calculated with a 100 ms-moving window. The RMS data of all trials

were normalized with the mean peak RMS of the five shod trials at fast walking speed.

Analysis

Walking speeds during shod and barefoot trials at CW and at FW were compared with depen-

dent t tests as the data were distributed according to the Shapiro-Wilk test. To compare the

EMG, kinematic and kinetic data between shod and barefoot walking during CW and FW,

curves analyses were performed using one-dimensional statistical non-parametric mapping

(SnPM) [20, 21]. Each individual stance phase was normalized to 100%. A Bonferroni thresh-

old of significance of P<0.0031 (P = 0.05/16) was used to correct for multiple comparisons.

When the SnPM(t) curves crossed this threshold for the biomechanical outcomes, supra-

threshold clusters were created, indicating significant differences between the shod and bare-

foot conditions in a specific location of the stance phase. The analyses were conducted using

the open-source code (www.spm1d.org) in Python software (Version 2.7).
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Results

Walking speed

During shod trials at FW, mean walking speed was faster compared to barefoot trials (2.00 m/s

(SD:0.23) vs 1.89 m/s (SD:0.29) (P<0.001)). No difference was observed between conditions at

CW (1.38 m/s (SD:0.19) vs 1.32 m/s (SD:0.21) (P = 0.12)).

Kinematic and kinetic data

During the data collection session of one participant, technical difficulties occurred and thus

this dataset was removed from the kinematic and kinetic analyses. Graphical representations

of kinematic and kinetic patterns are presented in Fig 1 and Fig 2.

During shod CW, participants exhibited increased ankle dorsiflexion angle from 0 to 5%

(P = 0.001) and decreased dorsiflexion moments from 98 to 99% (P = 0.001) of the stance

phase compared to barefoot walking. They also exhibited increased knee extension angle from

0 to 11% (P<0.001), adduction moments from 85 to 93% (P<0.001), extension moments at

1% (P = 0.001) and from 91 to 94% (P<0.001) and decreased extension moments from 4 to 7%

(P<0.001), adduction moments from 2 to 4% (P<0.001) and internal rotation moments from

0 to 3% (P<0.001) and 89 to 94% (P = 0.001) of the stance phase during shod compared to

barefoot walking.

During shod FW, participants exhibited increased ankle dorsiflexion angle from 0 to 8%

(P<0.001) and 84 to 99% (P<0.001) and decreased dorsiflexion moments at 99% (P = 0.001)

of the stance phase for shod compared to barefoot walking. At the knee, increased extension

angle from 0 to 13% (P<0.001) and decreased internal rotation angle from 84 to 99%

(P<0.001), extension moments from 4 to 12% (P<0.001), adduction moments at 3%

(P = 0.001) of the stance phase were observed during shod compared to barefoot walking.

EMG data

Technical difficulties with the EMG measurements led to remove a few datasets (e.g. excessive

perspiration). The following numbers of participants were used in the EMG analyses of the

gluteus medius (20 CW, 21 FW), vastus lateralis (20 CW, 21 FW), gastrocnemius lateralis (19

CW, 19 FW), gastrocnemius medialis (20 CW, 21 FW), peroneus longus (19 CW, 20 FW) and

tibialis anterior (20 CW, 21 FW) muscles.

At CW, tibialis anterior muscle activity was increased from 0 to 1% (P = 0.001) and 4 to

12% (P<0.001) of the stance phase during shod compared to barefoot walking.

At FW, muscle activity was increased for the vastus lateralis from 10 to 17% (P<0.001), the

gastrocnemius lateralis from 68 to 82% (P<0.001), the gastrocnemius medialis from 73–78%

(P<0.001) and the tibialis anterior from 0 to 1% (P = 0.001) and 5 to 14% (P<0.001) of the

stance phase during shod compared to barefoot walking. Graphical representations of EMG

patterns are presented in Fig 3.

Discussion

Individuals with CAI exhibited changes in EMG, kinetics and kinematics during shod com-

pared to barefoot walking. The main kinematic effect of wearing shoes was increased ankle

dorsiflexion during the beginning of the stance phase (CW and FW). Previous studies showed

that individuals with CAI exhibit decreased ankle dorsiflexion (or increased plantarflexion)

compared to healthy counterparts during walking [22, 23]. The posterior part of the talar

trochlea is narrower than the anterior part [24]. When the ankle joint is in a dorsiflexed posi-

tion, the anterior part of the talar trochlea is in contact with the articular surfaces of the
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malleoli, decreasing the talo-crural space width [25] and increasing ankle stability [26]. There-

fore, the decreased ankle dorsiflexion during walking could place individuals with CAI at

more risk of sustaining a lateral ankle sprain [8]. As most lateral ankle sprains are sustained

during the initial impact of the foot with the ground during locomotion [27–29], wearing

shoes could perhaps attenuate the risk of sustaining lateral ankle sprains during walking. In

fact, in our study, most shoes’ significant effects were observed during the beginning of the

Fig 1. Kinematics of shod and barefoot walking during (A) CW and (B) FW. Means of the shod (black) and barefoot

(blue) conditions are respectively represented by dotted lines and standard deviations are observed between the full

lines. Significant between-group differences are observed in the shadowed region. df: dorsiflexion, pf: plantarflexion,

ext: extension, flex: flexion, add: adduction, abd: abduction, Irot: internal rotation, Erot: external rotation.

https://doi.org/10.1371/journal.pone.0239621.g001
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stance phase. Prospective studies are needed to determine to what extent wearing shoes can

decrease the risk of sustaining lateral ankle sprains and what types of shoes are the most effi-

cient. This is especially important as previous studies showed that individuals with CAI still

Fig 2. Kinetics of shod and barefoot walking during (A) CW and (B) FW. Means of the shod (black) and barefoot

(blue) conditions are respectively represented by dotted lines and standard deviations are observed between the full

lines. Significant between-group differences are observed in the shadowed region. df: dorsiflexion, pf: plantarflexion,

ext: extension, flex: flexion, add: adduction, abd: abduction, Irot: internal rotation, Erot: external rotation.

https://doi.org/10.1371/journal.pone.0239621.g002
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Fig 3. EMG of shod and barefoot walking during (A) CW and (B) FW. Means of the shod (black) and barefoot (blue) conditions are respectively

represented by dotted lines and standard deviations are observed between the full lines. Significant between-group differences are observed in the

shadowed region.

https://doi.org/10.1371/journal.pone.0239621.g003
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exhibit biomechanical deficits compared to healthy counterparts during shod walking [9]. The

results of our study are consistent with those of Oeffinger et al. [2] which also observed

increased ankle dorsiflexion when wearing shoes during walking. Furthermore, the increased

knee extension during the beginning of the stance phase found in our study is consistent with

the results of Zhang et al. [3]. This could represent a compensation for the increased ankle dor-

siflexion and may be associated with the increased stride length when wearing shoes [4]. The

combination of the increased ankle dorsiflexion and knee extension are also observed when

comparing shod and barefoot running [30].

Knee adduction moments were decreased from 2 to 4% (CW) and at 3% (FW) of the stance

phase of walking and knee extension moments were increased at 1% (CW) and decreased

from 4 to 7% (CW) and 4 to 12% (FW) of the stance phase. However, when visually inspecting

the knee frontal and sagittal moments curves (see Fig 2), one can observe a temporal delay sug-

gesting that wearing shoes delays the peak knee adduction and flexion moments. It is also

observed for the vastus lateralis muscle activation (FW) (see Fig 3), suggesting that wearing

shoes delays the activation of this muscle which is consistent with previously published results

[31]. This delayed vastus lateralis activation could perhaps be explained by the delayed peak

knee adduction and flexion moments.

An increased activity of the gastrocnemius medialis and lateralis muscles (FW) was also

observed during the end of the stance phase, which is consistent with the results of Franklin

et al. [5], which also found an increased activity of the gastrocnemius medialis muscle during

the latter part of the stance phase when wearing shoes. The increased activity occurred shortly

after the peak amplitude during the beginning of the propulsion phase of walking. One of the

main functions of the gastrocnemius medialis and lateralis muscles is to facilitate the anterior

progression of the center of pressure and prevent the center of mass of dropping too low dur-

ing the propulsive phase [32]. When walking with shoes, individuals with CAI may need a

greater contribution of the gastrocnemii muscles for the propulsion to be efficient. Finally,

increased tibialis anterior muscle activity was observed when wearing shoes during the begin-

ning of the stance phase. This result is consistent with those of previous studies [5, 33] and

could be responsible for the increased ankle dorsiflexion during the beginning of the stance

phase, observed when wearing shoes.

Another interesting finding is that the biomechanical effects of shoes are similar during

walking at FW and CW. This could be of interests for clinicians and researchers as it increases

the generalizability of the previous studies’ results that investigated the biomechanical effects

of shoes during walking, even if speed varied.

The results of this study should be interpreted in light of a few limitations. The first limita-

tion is the population mean age of 26.1 years. As gait biomechanics change when getting older

[34], the results of this study may not be generalizable to an older population. The second limi-

tation is the unbalanced men/women ratio among participants. Many sex biomechanical dif-

ferences have been previously observed in previous studies [35, 36]. As only four men were

recruited in this study, the results may perhaps not be generalizable for the male population.

The third limitation is the kinematic model used. In order to increase the ecological validity of

our results, no hole was cut in the shoes upper. Therefore, only the sagittal ankle angle and

moment were calculated. It is possible that shoes have significant effect on transverse and fron-

tal ankle angles and moments but could not be observed in this study. The kinematic model

also did not allow the measurement of the kinematics of the rearfoot, midfoot and forefoot seg-

ments. The fourth limitation is the greater mean speed for shod compared to barefoot walking

trials at FW. The differences observed in this study represent a 5% increase, which fall into the

current gold standard of ±5% in the literature. We are therefore confident that our results

were not significantly biased by walking speed.
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Conclusions

The biomechanical deficits associated with CAI were partly attenuated during the shod com-

pared to the barefoot condition and these effects were similar at CW and FW. The main results

were that individuals with CAI showed more ankle dorsiflexion angle, knee extension and

tibialis anterior muscle activation and delayed peak knee flexion and adduction moments dur-

ing shod compared to barefoot walking. These findings are compatible with the concept that

locomotor interventions using suitable shoes may enhance gait abilities in individuals with

CAI. Thus, this study will inform future efficacy trials aiming to attenuate the deficits associ-

ated with CAI during rehabilitation.

Author Contributions

Conceptualization: Gabriel Moisan, Martin Descarreaux, Vincent Cantin.

Formal analysis: Gabriel Moisan.

Investigation: Gabriel Moisan.

Methodology: Gabriel Moisan, Martin Descarreaux, Vincent Cantin.

Supervision: Martin Descarreaux, Vincent Cantin.

Visualization: Gabriel Moisan, Martin Descarreaux, Vincent Cantin.

Writing – original draft: Gabriel Moisan.

Writing – review & editing: Martin Descarreaux, Vincent Cantin.

References
1. Wirth B, Hauser F, Mueller R. Back and neck muscle activity in healthy adults during barefoot walking

and walking in conventional and flexible shoes. Footwear Science. 2011; 3(3):159–67. https://doi.org/

10.1080/19424280.2011.633104

2. Oeffinger D, Brauch B, Cranfill S, Hisle C, Wynn C, Hicks R, et al. Comparison of gait with and without

shoes in children. Gait Posture. 1999; 9(2):95–100. Epub 1999/11/27. https://doi.org/10.1016/s0966-

6362(99)00005-3 PMID: 10575074.

3. Zhang X, Paquette MR, Zhang S. A comparison of gait biomechanics of flip-flops, sandals, barefoot and

shoes. J Foot Ankle Res. 2013; 6(1):45. Epub 2013/11/08. https://doi.org/10.1186/1757-1146-6-45

PMID: 24196492; PubMed Central PMCID: PMC3907140.

4. Keenan GS, Franz JR, Dicharry J, Della Croce U, Kerrigan DC. Lower limb joint kinetics in walking: the

role of industry recommended footwear. Gait Posture. 2011; 33(3):350–5. Epub 2011/01/22. https://doi.

org/10.1016/j.gaitpost.2010.09.019 PMID: 21251835.

5. Franklin S, Li FX, Grey MJ. Modifications in lower leg muscle activation when walking barefoot or in min-

imalist shoes across different age-groups. Gait Posture. 2018; 60:1–5. Epub 2017/11/10. https://doi.

org/10.1016/j.gaitpost.2017.10.027 PMID: 29121509.

6. Jannink M, van Dijk H, Ijzerman M, Groothuis-Oudshoorn K, Groothoff J, Lankhurst G. Effectiveness of

custom-made orthopaedic shoes in the reduction of foot pain and pressure in patients with degenerative

disorders of the foot. Foot Ankle Int. 2006; 27(11):974–9. Epub 2006/12/06. https://doi.org/10.1177/

107110070602701119 PMID: 17144963.

7. Trombini-Souza F, Matias AB, Yokota M, Butugan MK, Goldenstein-Schainberg C, Fuller R, et al. Long-

term use of minimal footwear on pain, self-reported function, analgesic intake, and joint loading in

elderly women with knee osteoarthritis: A randomized controlled trial. Clin Biomech. 2015; 30

(10):1194–201. Epub 2015/08/27. https://doi.org/10.1016/j.clinbiomech.2015.08.004 PMID: 26307181.

8. Hertel J. Functional Anatomy, Pathomechanics, and Pathophysiology of Lateral Ankle Instability. J Athl

Train. 2002; 37(4):364–75. Epub 2003/08/26. PMID: 12937557; PubMed Central PMCID: PMC164367.

9. Moisan G, Descarreaux M, Cantin V. Effects of chronic ankle instability on kinetics, kinematics and mus-

cle activity during walking and running: A systematic review. Gait Posture. 2017; 52:381–99. Epub

2017/01/08. https://doi.org/10.1016/j.gaitpost.2016.11.037 PMID: 28063387.

PLOS ONE The influence of footwear on walking biomechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0239621 September 24, 2020 10 / 12

https://doi.org/10.1080/19424280.2011.633104
https://doi.org/10.1080/19424280.2011.633104
https://doi.org/10.1016/s0966-6362%2899%2900005-3
https://doi.org/10.1016/s0966-6362%2899%2900005-3
http://www.ncbi.nlm.nih.gov/pubmed/10575074
https://doi.org/10.1186/1757-1146-6-45
http://www.ncbi.nlm.nih.gov/pubmed/24196492
https://doi.org/10.1016/j.gaitpost.2010.09.019
https://doi.org/10.1016/j.gaitpost.2010.09.019
http://www.ncbi.nlm.nih.gov/pubmed/21251835
https://doi.org/10.1016/j.gaitpost.2017.10.027
https://doi.org/10.1016/j.gaitpost.2017.10.027
http://www.ncbi.nlm.nih.gov/pubmed/29121509
https://doi.org/10.1177/107110070602701119
https://doi.org/10.1177/107110070602701119
http://www.ncbi.nlm.nih.gov/pubmed/17144963
https://doi.org/10.1016/j.clinbiomech.2015.08.004
http://www.ncbi.nlm.nih.gov/pubmed/26307181
http://www.ncbi.nlm.nih.gov/pubmed/12937557
https://doi.org/10.1016/j.gaitpost.2016.11.037
http://www.ncbi.nlm.nih.gov/pubmed/28063387
https://doi.org/10.1371/journal.pone.0239621


10. Franklin S, Grey MJ, Heneghan N, Bowen L, Li FX. Barefoot vs common footwear: A systematic review

of the kinematic, kinetic and muscle activity differences during walking. Gait Posture. 2015; 42(3):230–

9. Epub 2015/07/30. https://doi.org/10.1016/j.gaitpost.2015.05.019 PMID: 26220400.

11. Murley GS, Menz HB, Landorf KB. Electromyographic patterns of tibialis posterior and related muscles

when walking at different speeds. Gait Posture. 2014; 39(4):1080–5. Epub 2014/03/13. https://doi.org/

10.1016/j.gaitpost.2014.01.018 PMID: 24618372.

12. Browning RC, Kram R. Effects of obesity on the biomechanics of walking at different speeds. Med Sci

Sports Exerc. 2007; 39(9):1632–41. Epub 2007/09/07. https://doi.org/10.1249/mss.

0b013e318076b54b PMID: 17805097.

13. Dubbeldam R, Buurke JH, Simons C, Groothuis-Oudshoorn CG, Baan H, Nene AV, et al. The effects of

walking speed on forefoot, hindfoot and ankle joint motion. Clin Biomech. 2010; 25(8):796–801. Epub

2010/07/14. https://doi.org/10.1016/j.clinbiomech.2010.06.007 PMID: 20619515.

14. Moisan G, Mainville C, Descarreaux M, Cantin V. Kinematic, kinetic and electromyographic differences

between young adults with and without chronic ankle instability during walking. J Electromyogr Kinesiol.

2020; 51:102399. Epub 2020/02/07. https://doi.org/10.1016/j.jelekin.2020.102399 PMID: 32028104.

15. Gribble PA, Delahunt E, Bleakley CM, Caulfield B, Docherty CL, Fong DT, et al. Selection criteria for

patients with chronic ankle instability in controlled research: a position statement of the International

Ankle Consortium. J Athl Train. 2014; 49(1):121–7. Epub 2014/01/01. https://doi.org/10.4085/1062-

6050-49.1.14 PMID: 24377963; PubMed Central PMCID: PMC3917288.

16. Hermens H, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sen-

sors and sensor placement procedures. Journal Of Electromyography And Kinesiology. 2000; 10

(5):361–74. https://doi.org/10.1016/s1050-6411(00)00027-4 PMID: 11018445

17. Borloz S, Crevoisier X, Deriaz O, Ballabeni P, Martin RL, Luthi F. Evidence for validity and reliability of a

French version of the FAAM. BMC Musculoskelet Disord. 2011; 12:40. Epub 2011/02/10. https://doi.

org/10.1186/1471-2474-12-40 PMID: 21303520; PubMed Central PMCID: PMC3045395.

18. Criniere L, Lhommet C, Caille A, Giraudeau B, Lecomte P, Couet C, et al. Reproducibility and validity of

the French version of the long international physical activity questionnaire in patients with type 2 diabe-

tes. J Phys Act Health. 2011; 8(6):858–65. Epub 2011/08/13. https://doi.org/10.1123/jpah.8.6.858

PMID: 21832302.

19. Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system for scoring

standing foot posture: the Foot Posture Index. Clin Biomech. 2006; 21(1):89–98. Epub 2005/09/27.

https://doi.org/10.1016/j.clinbiomech.2005.08.002 PMID: 16182419.

20. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: A primer with

examples. Human Brain Mapping. 2002; 15(1):1–25. https://doi.org/10.1002/hbm.1058 PMID:

11747097

21. Pataky TC, Vanrenterghem J, Robinson MA. Zero- vs. one-dimensional, parametric vs. non-parametric,

and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory

analysis. Journal of Biomechanics. 2015; 48(7):1277–85. https://doi.org/10.1016/j.jbiomech.2015.02.

051 PMID: 25817475

22. Chinn L, Dicharry J, Hertel J. Ankle kinematics of individuals with chronic ankle instability while walking

and jogging on a treadmill in shoes. Phys Ther Sport. 2013; 14(4):232–9. Epub 2013/04/30. https://doi.

org/10.1016/j.ptsp.2012.10.001 PMID: 23623243.

23. Son SJ, Kim H, Seeley MK, Hopkins JT. Altered Walking Neuromechanics in Patients With Chronic

Ankle Instability. J Athl Train. 2019; 54(6):684–97. Epub 2019/06/05. https://doi.org/10.4085/1062-

6050-478-17 PMID: 31162941; PubMed Central PMCID: PMC6602400.

24. Daud R, Abdul Kadir MR, Izman S, Md Saad AP, Lee MH, Che Ahmad A. Three-Dimensional Morpho-

metric Study of the Trapezium Shape of the Trochlea Tali. The Journal of Foot and Ankle Surgery.

2013; 52(4):426–31. https://doi.org/10.1053/j.jfas.2013.03.007 PMID: 23623302

25. Imai K, Ikoma K, Kido M, Maki M, Fujiwara H, Arai Y, et al. Joint space width of the tibiotalar joint in the

healthy foot. J Foot Ankle Res. 2015; 8:26. Epub 2015/07/07. https://doi.org/10.1186/s13047-015-

0086-5 PMID: 26146520; PubMed Central PMCID: PMC4490633.

26. Wei F, Fong DT, Chan KM, Haut RC. Estimation of ligament strains and joint moments in the ankle dur-

ing a supination sprain injury. Comput Methods Biomech Biomed Engin. 2015; 18(3):243–8. Epub

2013/05/10. https://doi.org/10.1080/10255842.2013.792809 PMID: 23654290.

27. Fong DT, Hong Y, Shima Y, Krosshaug T, Yung PS, Chan KM. Biomechanics of supination ankle

sprain: a case report of an accidental injury event in the laboratory. Am J Sports Med. 2009; 37(4):822–

7. Epub 2009/02/04. https://doi.org/10.1177/0363546508328102 PMID: 19188559.

28. Gehring D, Wissler S, Mornieux G, Gollhofer A. How to sprain your ankle—a biomechanical case report

of an inversion trauma. J Biomech. 2013; 46(1):175–8. Epub 2012/10/20. https://doi.org/10.1016/j.

jbiomech.2012.09.016 PMID: 23078945.

PLOS ONE The influence of footwear on walking biomechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0239621 September 24, 2020 11 / 12

https://doi.org/10.1016/j.gaitpost.2015.05.019
http://www.ncbi.nlm.nih.gov/pubmed/26220400
https://doi.org/10.1016/j.gaitpost.2014.01.018
https://doi.org/10.1016/j.gaitpost.2014.01.018
http://www.ncbi.nlm.nih.gov/pubmed/24618372
https://doi.org/10.1249/mss.0b013e318076b54b
https://doi.org/10.1249/mss.0b013e318076b54b
http://www.ncbi.nlm.nih.gov/pubmed/17805097
https://doi.org/10.1016/j.clinbiomech.2010.06.007
http://www.ncbi.nlm.nih.gov/pubmed/20619515
https://doi.org/10.1016/j.jelekin.2020.102399
http://www.ncbi.nlm.nih.gov/pubmed/32028104
https://doi.org/10.4085/1062-6050-49.1.14
https://doi.org/10.4085/1062-6050-49.1.14
http://www.ncbi.nlm.nih.gov/pubmed/24377963
https://doi.org/10.1016/s1050-6411%2800%2900027-4
http://www.ncbi.nlm.nih.gov/pubmed/11018445
https://doi.org/10.1186/1471-2474-12-40
https://doi.org/10.1186/1471-2474-12-40
http://www.ncbi.nlm.nih.gov/pubmed/21303520
https://doi.org/10.1123/jpah.8.6.858
http://www.ncbi.nlm.nih.gov/pubmed/21832302
https://doi.org/10.1016/j.clinbiomech.2005.08.002
http://www.ncbi.nlm.nih.gov/pubmed/16182419
https://doi.org/10.1002/hbm.1058
http://www.ncbi.nlm.nih.gov/pubmed/11747097
https://doi.org/10.1016/j.jbiomech.2015.02.051
https://doi.org/10.1016/j.jbiomech.2015.02.051
http://www.ncbi.nlm.nih.gov/pubmed/25817475
https://doi.org/10.1016/j.ptsp.2012.10.001
https://doi.org/10.1016/j.ptsp.2012.10.001
http://www.ncbi.nlm.nih.gov/pubmed/23623243
https://doi.org/10.4085/1062-6050-478-17
https://doi.org/10.4085/1062-6050-478-17
http://www.ncbi.nlm.nih.gov/pubmed/31162941
https://doi.org/10.1053/j.jfas.2013.03.007
http://www.ncbi.nlm.nih.gov/pubmed/23623302
https://doi.org/10.1186/s13047-015-0086-5
https://doi.org/10.1186/s13047-015-0086-5
http://www.ncbi.nlm.nih.gov/pubmed/26146520
https://doi.org/10.1080/10255842.2013.792809
http://www.ncbi.nlm.nih.gov/pubmed/23654290
https://doi.org/10.1177/0363546508328102
http://www.ncbi.nlm.nih.gov/pubmed/19188559
https://doi.org/10.1016/j.jbiomech.2012.09.016
https://doi.org/10.1016/j.jbiomech.2012.09.016
http://www.ncbi.nlm.nih.gov/pubmed/23078945
https://doi.org/10.1371/journal.pone.0239621


29. Kristianslund E, Bahr R, Krosshaug T. Kinematics and kinetics of an accidental lateral ankle sprain. J

Biomech. 2011; 44(14):2576–8. Epub 2011/08/10. https://doi.org/10.1016/j.jbiomech.2011.07.014

PMID: 21824618.

30. Hall JP, Barton C, Jones PR, Morrissey D. The biomechanical differences between barefoot and shod

distance running: a systematic review and preliminary meta-analysis. Sports Med. 2013; 43(12):1335–

53. Epub 2013/09/03. https://doi.org/10.1007/s40279-013-0084-3 PMID: 23996137.

31. Sacco IC, Akashi PM, Hennig EM. A comparison of lower limb EMG and ground reaction forces

between barefoot and shod gait in participants with diabetic neuropathic and healthy controls. BMC

Musculoskelet Disord. 2010; 11:24. Epub 2010/02/05. https://doi.org/10.1186/1471-2474-11-24 PMID:

20128894; PubMed Central PMCID: PMC2828424.

32. Francis CA, Lenz AL, Lenhart RL, Thelen DG. The modulation of forward propulsion, vertical support,

and center of pressure by the plantarflexors during human walking. Gait Posture. 2013; 38(4):993–7.

Epub 2013/06/22. https://doi.org/10.1016/j.gaitpost.2013.05.009 PMID: 23787149; PubMed Central

PMCID: PMC3795949.

33. Scott LA, Murley GS, Wickham JB. The influence of footwear on the electromyographic activity of

selected lower limb muscles during walking. J Electromyogr Kinesiol. 2012; 22(6):1010–6. Epub 2012/

07/28. https://doi.org/10.1016/j.jelekin.2012.06.008 PMID: 22835487.

34. Boyer KA, Johnson RT, Banks JJ, Jewell C, Hafer JF. Systematic review and meta-analysis of gait

mechanics in young and older adults. Exp Gerontol. 2017; 95:63–70. Epub 2017/05/14. https://doi.org/

10.1016/j.exger.2017.05.005 PMID: 28499954.

35. Fukano M, Fukubayashi T, Banks SA. Sex differences in three-dimensional talocrural and subtalar joint

kinematics during stance phase in healthy young adults. Hum Mov Sci. 2018; 61:117–25. Epub 2018/

08/08. https://doi.org/10.1016/j.humov.2018.06.003 PMID: 30086450.

36. Bruening DA, Frimenko RE, Goodyear CD, Bowden DR, Fullenkamp AM. Sex differences in whole

body gait kinematics at preferred speeds. Gait Posture. 2015; 41(2):540–5. Epub 2014/12/31. https://

doi.org/10.1016/j.gaitpost.2014.12.011 PMID: 25548119.

PLOS ONE The influence of footwear on walking biomechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0239621 September 24, 2020 12 / 12

https://doi.org/10.1016/j.jbiomech.2011.07.014
http://www.ncbi.nlm.nih.gov/pubmed/21824618
https://doi.org/10.1007/s40279-013-0084-3
http://www.ncbi.nlm.nih.gov/pubmed/23996137
https://doi.org/10.1186/1471-2474-11-24
http://www.ncbi.nlm.nih.gov/pubmed/20128894
https://doi.org/10.1016/j.gaitpost.2013.05.009
http://www.ncbi.nlm.nih.gov/pubmed/23787149
https://doi.org/10.1016/j.jelekin.2012.06.008
http://www.ncbi.nlm.nih.gov/pubmed/22835487
https://doi.org/10.1016/j.exger.2017.05.005
https://doi.org/10.1016/j.exger.2017.05.005
http://www.ncbi.nlm.nih.gov/pubmed/28499954
https://doi.org/10.1016/j.humov.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/30086450
https://doi.org/10.1016/j.gaitpost.2014.12.011
https://doi.org/10.1016/j.gaitpost.2014.12.011
http://www.ncbi.nlm.nih.gov/pubmed/25548119
https://doi.org/10.1371/journal.pone.0239621

