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Abstract: Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 con-
ditions, of which primarily idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial
pneumonia, hypersensitivity pneumonitis, ILD associated with autoimmune diseases and sarcoidosis
may present a progressive fibrosing (PF) phenotype. Despite different aetiology and histopathological
patterns, the PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis,
which suggests that the diseases may share common pathogenetic pathways. Previous studies show
an enhanced activation of serotonergic signaling in pulmonary fibrosis, and the serotonin (5-HT)2

receptors have been implicated to have important roles in observed profibrotic actions. Our research
findings in support by others, demonstrate antifibrotic effects with 5-HT2B receptor antagonists,
alleviating several key events common for the fibrotic diseases such as myofibroblast differentiation
and connective tissue deposition. In this review, we will address the potential role of 5-HT and in
particular the 5-HT2B receptors in three PF-ILDs: ILD associated with systemic sclerosis (SSc-ILD),
ILD associated with rheumatoid arthritis (RA-ILD) and IPF. Highlighting the converging pathways
in these diseases discloses the 5-HT2B receptor as a potential disease target for PF-ILDs, which today
have an urgent unmet need for therapeutic strategies.

Keywords: 5-HT; 5-HT2B receptor antagonism; fibrosis; ILD

1. Introduction

The term interstitial lung disease (ILD) encompasses a large heterogeneous group
of diffuse parenchymal lung disorders, of which primarily idiopathic pulmonary fibrosis
(IPF), idiopathic nonspecific interstitial pneumonia, ILD associated with autoimmune
diseases, hypersensitivity pneumonitis and sarcoidosis may present a progressive fibrosing
(PF) phenotype [1]. Despite known or unknown causes and radiological patterns, the
PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis [2],
suggesting common pathogenetic pathways. In this review, we will address the potential
role of serotonin (5-HT) and the 5-HT2B receptor in three PF-ILDs: IPF, ILD associated with
systemic sclerosis (SSc-ILD) and ILD associated with rheumatoid arthritis (RA-ILD).

1.1. Idiopathic Pulmonary Fibrosis

Idiopathic pulmonary fibrosis is defined as usual interstitial pneumonia (UIP) based
on high-resolution computed tomography (HRCT) and/or histopathological pattern after
exclusion of other known causes of ILD [3]. IPF is the most common PF-ILD, and in a
systematic review a conservative estimate of the incidence was 3–9 cases per 100,000 per
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year for Europe and North America with lower reports for East Asia and South America [4].
IPF is more prevalent in the older population, rarely diagnosed before the age of 70, and is
more widely represented in males [5]. IPF patients demonstrate large heterogeneity in their
pulmonary manifestation of fibrosis, and it is generally not regarded as an inflammatory
disease, despite previous attempts to treat the disease with corticosteroids. Nonetheless,
patients with a rapid progress or experiencing an acute exacerbation have reported se-
vere innate and adaptive inflammatory infiltrates where the extent of inflammation was
correlated with yearly forced vital capacity (FVC) decline [6].

It is now widely recognized that the aetiology of IPF is a gene-environment interaction
involving a heterogeneous set of susceptibility genes such as TERT, SFTPC, TOLLIP and
MUC5B [7]. Environmental factors that have been linked to the development of IPF
in epidemiological studies include smoking, chronic viral infections and occupational
exposures, such as agriculture and farming, livestock, wood dust, metal dust, stone dust
and silica [8]. The clinical course of IPF is highly heterogeneous, but carries a poor prognosis
with a mean survival of four years [9]. On a yearly basis 5–10% of IPF patients experience
acute deteriorations in respiratory function, exacerbations, with a median survival of 3 to
4 months [10].

1.2. Systemic Sclerosis

Systemic sclerosis is an autoimmune disease characterized by vasculopathy of small
vessels, immune dysregulation, chronic inflammation, and subsequent fibrosis of the skin
and internal organs [11]. Skin fibrosis (scleroderma) is the distinguishing hallmark of SSc,
and the extent of skin involvement and its rate of progression reflect the severity of visceral
organ involvement. The reported prevalence of SSc varies between studies, but has been
estimated to be 15–30 cases per 100,000 individuals worldwide [12], with a peak onset
described at 55–69 years of age [13]. Although SSc, like other autoimmune diseases, is
more common in women than in men, the male sex is a poor prognostic factor with more
frequent and severe organ involvement [14].

ILD is a common and early manifestation of SSc, and most patients who develop severe
restrictive lung disease do so in the first five years following the onset of SSc symptoms [15].
SSc-ILD often has a severe course, and was the leading cause of death (17%) in a large
observational study in SSc [16]. The estimated prevalence of ILD has been reported at up
to 84% on HRCT [17], and it has been suggested that pulmonary function tests should not
be used for screening of ILD in SSc due to a lower sensitivity than HRCT [18]. The most
common ILD pattern in SSc patients is nonspecific interstitial pneumonia (NSIP), although
UIP can also be seen in 25–40% of cases [19].

Patients are grouped into limited cutaneous SSc (lcSSc), where the skin fibrosis is
restricted to areas distal to the elbows and knees, and diffuse cutaneous SSc (dcSSc) with
involvement also of the proximal extremities and trunk. The extent of skin involvement
is a prognostic risk factor for ILD and patients with dcSSc have both a higher prevalence
and mortality from ILD than those with lcSSc [16,20]. In addition, male sex, ethnicity and
presence of anti-topoisomerase antibodies appear to be important determinants of ILD
development [17].

1.3. Rheumatoid Arthritis

Rheumatoid arthritis is a systemic inflammatory autoimmune disorder estimated to
affect 0.5–1% of the world’s population. Although the predominant clinical feature is in-
flammation of the synovial lining of joints, RA has numerous extra-articular manifestations,
and lung disease is a major contributor to the extra-articular morbidity and mortality. There
are strong indications that lungs are involved in early pathogenesis of RA by citrullination
of proteins triggered by environmental exposure of, e.g., tobacco smoke. Development of
anti-citrullinated protein antibodies (ACPAs) in genetically susceptible individuals [21]
may initiate inflammatory responses and autoimmune reactivity. ILD is one of the most
common comorbidities associated with RA, significantly aggravating the patient’s disease
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course, prognosis, and health-related quality of life [22]. The prevalence of RA-ILD has
been reported to be as high as 76% in imaging studies, but clinically significant ILD occurs
in less than 10%, albeit with increasing incidence [23].

The histopathology of RA-ILD is heterogeneous showing a highly variable mix of
both fibrotic and inflammatory changes. Contrary to ILD associated with other connective
tissue diseases, the most prevalent pattern in RA-ILD is UIP followed by NSIP, which can
be further broken down into inflammatory and fibrotic subtypes [24]. Compared to RA
patients with a non-UIP pattern, those with UIP confer a poorer prognosis with survival
rates that are in parallel to those seen in IPF. The RA-ILD patients with UIP have been
reported to have more respiratory-related hospitalizations than other ILD subtypes [25].

Risk factors for the development of RA-ILD have been identified in several studies
and include older age, male sex, cigarette smoking, later onset RA, longer RA duration, RA
disease activity, and elevated levels of rheumatoid factor or anti-ACPA [26].

1.4. Current Therapeutic Strategies

Treatment of PF-ILD has changed considerably during the last two decades. Corticos-
teroids were during many years widely used for the treatment of fibrotic lung diseases,
but serious concerns have been raised due to increased mortality of IPF patients receiving
prednisone, azathioprine and N-acetylcysteine in a clinical trial [27] and the risk for renal
crisis in patients with SSc [28]. In patients with SSc and RA, the therapy for the underlying
disease has formed the basis for treatment of the ILD component. In RA and SSc, immuno-
suppressive therapies including cyclophosphamide, azathioprine, and mycophenolate
mofetil are widely used, and in SSc, haematopoietic stem cell transplantation has also
been successful. The first targeted antifibrotic drug, pirfenidone, was introduced for the
treatment of IPF in Japan 2008, and a couple of years later in the EU and the US. Another
antifibrotic drug, nintedanib, was approved for treatment of IPF in the US 2014 and in the
EU 2015. Since then, both drugs have been investigated in clinical studies enrolling a wide
range of PF-ILDs, leading to approvals for use in SSc-ILD regarding nintedanib in both the
US and in the EU, and for pirfenidone in the US. Nintedanib was further approved in 2020
in the EU for use in other chronic fibrosing ILDs with a progressive phenotype. Several
antifibrotic drugs are currently investigated for IPF in clinical phase 2–3 trials, some of them
also targeting a broader spectrum of PF-ILDs [29]. Today, there is no curative treatment
available for ILDs where lung transplantation stands as the final therapeutic measure.

2. The Serotonergic Pathways in Tissue Repair and Fibrosis

Serotonin (5-hydroxytryptamine, 5-HT) is a multifunctional signaling molecule, mainly
recognized for its role in the central nervous system (CNS), where it regulates several be-
havioral processes. Even now, over 70 years after its discovery, the functional role of 5-HT
is still not fully clarified, with emerging studies showing new biological influences and
disease associations. A mechanistic link between fibrosis and 5-HT was first reported in
the 1960s for a condition called carcinoid syndrome which is caused by neuroendocrine
carcinoid tumors that secrete vast quantities of 5-HT [30]. The syndrome was characterized
by tissue fibrosis, particularly affecting cardiac valves but also impacting on other organs
including lung and skin. More recently, agonistic activity on the 5-HT2B receptor has
been implicated in causing fibrosis, which led to the recall of fenfluramine used in the
treatment of obesity, as well as pergolide, a drug used to treat Parkinson’s disease [31,32].
The 5-HT2B receptor agonistic activity of these drugs has been suggested to lead to myofi-
broblast activation in a transforming growth factor (TGF)-β1 dependent manner, resulting
in fibrosis [33,34]. Besides the 5-HT2B receptor, the receptor subtypes 5-HT2A and 5-HT2C
have also been suggested to be involved in fibrosis. 5-HT has been described to play a
role in alveolar macrophage function through 5-HT2C receptors and thereby affect fibrosis
development [35], while the 5-HT2A receptor has been shown to induce a TGF-β dependent
fibrotic response in vivo [36]. Among the other classes of receptors, 5-HT7 was in a recent
paper by Tawfik et al. suggested to mediate anti-inflammatory and anti-fibrotic effects in
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the bleomycin-induced lung fibrosis model in rats [37]. However, the cellular mechanisms
underlying PF-ILDs are still under investigation where the activation of specific 5-HT
receptors remains an overlooked target in pulmonary fibrotic disorders. To understand
the pathophysiological impact of 5-HT and the different 5-HT receptors, it is important to
take into account the cellular context and the diversity in expression profile of the 5-HT
receptors in different conditions. It is clear that activation of the 5-HT2B receptor critically
affects several profibrotic responses, whereby modulating its activity has been shown to
attenuate fibrosis [34,38–40].

5-HT Synthesis and Signaling

5-HT is synthesized from the amino acid L-tryptophan, which is either incorporated
into newly synthesized proteins or undergoes metabolism via two pathways of rate-
limiting enzymes: tryptophan hydroxylase (TPH) or indoleamine 2,3-dioxygenase (IDO)
and tryptophan 2,3-dioxygenase (TDO) [41]. Following an initial hydroxylation by TPH
and decarboxylation, L- tryptophan is converted to 5-HT. There are two isoforms of TPH:
TPH1, expressed in neural cells and enterochromaffin cells in the gastrointestinal (GI)
tract; and TPH2, expressed predominantly in the CNS. The major source of 5-HT is found
outside the nervous system, synthesized by the enterochromaffin cells. Upon secretion
from the GI tract, 5-HT is rapidly taken up by circulating platelets via the serotonin re-
uptake transporter (SERT) and stored in dense granules. Pulmonary sources of 5-HT
reside in platelet-derived 5-HT as well as in endothelial cells, mast cells and pulmonary
neuroendocrine cells, which harbor and produce 5-HT [42,43].

The functions of 5-HT are mediated by binding to its receptors, where at least 15 dif-
ferent types of 5-HT receptors have been identified in human, all with specific tissue
distributions and signaling mechanisms. The receptors are categorized into seven classes,
where the class 2 receptors are subdivided into 2A, 2B and 2C and are G-protein coupled
receptors (GPCR). Through the binding of 5-HT, the 5-HT2B receptor activates and prop-
agates the ligand-receptor signal by interacting with intracellular effector proteins such
as phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3), which ultimately trigger
intracellular Ca2+ release. The elevated Ca2+ levels regulate gene expression and influence
cellular responses [44] (Figure 1).

Figure 1. 5-HT2B receptor activation and inhibition. The binding of 5-HT to the G-protein coupled
receptor 5-HT2B (5-HTR2B) triggers a GDP-GTP exchange with the dissociation of α and βγ subunits,
followed by activations of downstream effector molecules; phosphoinositide 3-kinase (PI3K), Src and
phospholipase C (PLC). Subsequently, the transcription of plasminogen activator inhibitor (PAI)-1
and TGF-β1 become increased, activating fibrotic responses. The inhibition of receptor activation with
5-HT2B receptor antagonist causes sequestering of phosphorylated Src, preventing the downstream
activation and nuclear translocation of STAT3 and Smad2/3, with decreased expression of PAI-1 and
TGF-β1. Conceivably, 5-HT2B receptor antagonism may further reduce TGF-β receptor signaling
through a diminished availability of TGF-β, thus acting as a second messenger to 5-HT.
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3. TGF-β—A Potential Second Messenger to 5-HT

TGF-β1 is recognized as a central mediator of fibrotic signaling and is secreted in an
inactive form by monocytes, lymphocytes, fibroblasts and macrophages and is stored in a
latent form in the extracellular matrix (ECM) [45]. Upon activation, TGF- β1 binds to cell-
surface receptors and activates both the non-canonical and canonical (Smad-dependent)
signaling pathways, where the latter includes translocation of proteins to the nucleus with
sequential targeted gene transcription of profibrotic genes such as plasminogen activator
inhibitor (PAI)-1, collagen and fibronectin. Fibroblasts from patients with SSc have shown
an increased expression of TGF-β1 receptors [46] as well as cell-surface integrins, which
can increase the amount of active TGF-β1 from the ECM. A small ECM component, the
proteoglycan decorin, has been suggested to inhibit TGF-β activation with promising at-
tenuated effects on fibrosis in vivo [47]. However, a dual involvement of decorin in fibrosis
is described, as decorin is also shown to enhance fibroblast migration [48]. In an in vivo
model of experimentally induced lung fibrosis in mice, pulmonary expression of decorin in-
creased, which was diminished following treatment with 5-HT2B receptor antagonists [34].
This oral, preventive treatment with 5-HT2B receptor antagonist in bleomycin-treated mice
resulted in an attenuated fibrotic development in the lung with reduced deposition of
connective tissue. This phenomenon was further identified in vitro, in human lung fibrob-
lasts, where inhibition of 5-HT2B receptors resulted in reduced synthesis of total amount
of proteoglycans and in particular decorin in cells exposed to 5-HT and TGF-β1 [34]. Our
previous study also showed that 5-HT2B receptor antagonist promotes an antiproliferative
effect on human bronchial smooth muscle cells and the inhibition of TGF-β1 release [49].
The 5-HT2B receptor antagonism also hampered myofibroblast differentiation as seen with
reduced pulmonary count of myofibroblasts in bleomycin-treated mice, a response that
appeared to be generated by interfering with TGF-β1 [34]. Significant anti-fibrotic effects
with, e.g., reduced ECM production have also been observed in in vivo disease models of
SSc after therapeutic treatment with selective 5-HT2B receptor antagonists [50,51]. These
data imply a direct or indirect link between serotonergic signaling and TGF-β1 activity,
where the mediators together drive important fibrotic remodeling processes.

3.1. A Piece of PAI?

The evidential impact of TGF-β1 on the development of fibrosis has been described
in multiple studies, where its sole pathway activation suffices the establishment of tissue
fibrosis. A study by Sonnylal et al. showed that constitutive activation of TGF-β1 signaling
in fibroblasts in mice developed histopathological features of dermal fibrosis as recognized
in patients with SSc [52]. The increased TGF-β1 expression was associated with vascular
changes, showing thickened vascular walls, along with enhanced levels of downstream
targets, such as collagen type I, fibronectin as well as PAI-1 [53]. In fibrotic tissue, the
increased levels of PAI-1 influenced ECM turnover; however, its impact in disease is not yet
fully understood, with studies showing both pro- and anti-inflammatory properties [53].
Lung fibroblasts from IPF patients and bleomycin-treated mice have demonstrated lower
expression of PAI-1 in comparison to normal fibroblasts, with elevated levels of collagen
type I and alpha-smooth muscle actin (α-SMA) in the IPF-derived fibroblasts [54]. However,
other studies further support the profibrotic effect elicited by PAI, where PAI-deficient
mice showed an enhanced fibroblast apoptosis with reduced myofibroblast formation [55].
The role of PAI may be linked to its early role in the onset of scarring, as mice subjected
to skin injury showed a swift increase in PAI-1 expression [56]. Neutralization of PAI-1
using a monoclonal antibody administered intraperitoneally both at induction of disease
and at disease establishment in a model of graft-versus-host disease, improved the clini-
cal skin condition showing normalization of cell infiltrations, epidermal thickening and
ulcer formation [57]. Additionally, the alleviating effects of PAI-1 neutralization were
also demonstrated in a bleomycin model of progressive skin fibrosis [57]. Moreover, in
bleomycin-injured mice, PAI-1 stimulated apoptosis of alveolar epithelial cells [58], which
are regarded by many researchers as the primary cell type affected in the repeated damages
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manifested in the onset of IPF [59–61]. Thus, diminishing the expression of PAI-1 may serve
as a beneficial anti-fibrotic strategy [62] that may partially protect against the development
of pulmonary fibrosis.

3.2. Impacts of 5-HT2 Receptor Activation on Downstream Signaling

Several studies support the notion that 5-HT induces TGF-β and PAI-1 [38,63]. In
fibroblasts isolated from patients with SSc, 5-HT has shown a dose-dependent increase in
mRNA levels of TGF-β and PAI-1 [38]. 5-HT2 receptor antagonists have been suggested to
attenuate lung fibrosis by reducing TGF-β signaling measured, e.g., as reduced Smad2/3
phosphorylation. This was recently shown in a chronic graft-versus-host disease model
where inhibition of the 5-HT2B receptor using a highly selective antagonist resulted in
reduced dermal fibrosis and lung fibrosis as well as a decreased Smad 2/3 phosphoryla-
tion, suggesting TGF-β involvement [50] (Figure 1). The signaling pathways elicited by
5-HT2 receptor activation is not yet elucidated in full context, but it has been speculated
that 5-HT-induced profibrotic responses are partly mediated by a second messenger. As
5-HT is known to regulate TGF-β production, TGF-β has been suggested to be this second
messenger. Supporting this, Dees et al. showed a time-dependent increase in nuclear levels
of p-Smad3, in response to 5-HT induction using dermal fibroblasts isolated from SSc
patients [38]. Furthermore, by using neutralizing antibodies against TGF-β they showed
that the profibrotic effects of 5-HT were TGF-β dependent. The antibodies completely
abrogated the profibrotic effects of 5-HT on mRNA expression of collagen and fibronectin.
In contrast to this, Chaturvedi et al. demonstrated that 5-HT-dependent TGF-β1 signaling
activated both canonical (Smad dependent) and non-canonical signaling pathways and
that 5-HT2B receptor antagonists primarily affected the non-canonical pathways, ERK1/2
and STAT3 [63]. Following treatment with 5-HT2A receptor antagonists, the downstream
mediators of TGF-β1 pathway were shown to be affected with reduced expression of
pSmad3 and pERK1/2 [64]. However, with the 5-HT2B receptor antagonist (SB204741),
the non-canonical pathway of TGF-β1 signaling was more influenced with physical and
functional restriction of p-Src [63,65]. This proposed mechanism of 5-HT2B receptor antag-
onists, studied in human dermal fibroblasts and porcine interstitial cells of the aortic valve,
suggests that the sequestering of p-Src sequentially inhibits STAT3 phosphorylation [63,65].
Phosphorylated STAT3 signaling is overactivated in SSc patients with accumulation of
p-STAT3 in the fibrotic skin. The pathological link of STAT3 in SSc is further recognized and
localized to dermal fibroblasts, where STAT3 deficiency results in cellular desensitization
for profibrotic effects triggered by TGF-β. Additionally, treating bleomycin-challenged
mice with a STAT3-inhibitor ameliorated induced skin fibrosis [66].

Strong evidence points towards a joint activated pathway in tissue fibrosis driven by
an overactivated TGF-β response, partly governed by the 5-HT2B receptor. Several studies
have identified 5-HT as a mediator potentiating TGF-β1-induced myofibroblast differen-
tiation and tumor necrosis factor-alpha (TNF-α)-induced matrix mineralization [34,67].
Prevention of receptor activation with 5-HT2B receptor antagonist steers intracellular signal-
ing pathways, via STAT signaling, reduced TGF-β production and directly or indirectly via
reduced Smad signaling, toward a minimized profibrotic cellular activity with alleviated
ECM deposition and myofibroblast differentiation.

4. Vascular Impact in ILD—A Local Delivery System for 5-HT

The wound healing response requires precise temporal instructions to promote a
proper assembly of cells and ECM components to restore healthy functional tissue. The
initial phase following tissue injury initiates the systemic recruitment of circulating blood
platelets to exposed subendothelial ECM proteins with the release of important wound
mediators, e.g., TGF-β1, PAI-1, fibrinogen, platelet-derived growth factor (PDGF) and
vascular endothelial growth factor (VEGF). Released from dense granules in platelets, 5-HT
promotes coagulation together with tissue factor and ADP, acting as a helper agonist [68,69].
The mixture of naturally derived growth factors from activated platelets has been used
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in therapeutic purposes in the form of a platelet gel or as platelet-rich plasma, showing
beneficial clinical effects, enhancing wound closure in patients with cutaneous ulcers [70,71].
The cascade of locally released mediators such as the aforementioned agents, along with
PDGF, interleukin (IL)-1β [72], act in synergy to enhance the repair response, triggering
the synthesis of ECM proteins, angiogenesis and inflammation.

The serotonergic impact of the lung is further emphasized by the local enrichment
of platelets that are readily translocated and accumulated in the lung following systemic
exposure of 5-HT [73]. Additionally, the lung has also been suggested to be a major site
of platelet production, where intravascular megakaryocytes in the pulmonary circulation
release platelets [74]. As seen in mice, the lung acts as a platelet reservoir as megakaryocytes
are found in the pulmonary extravascular space [74]. This extrapulmonary source of
platelets, with bone marrow-derived hematopoietic stem cells, participates in the local
inflammatory process following lung injury. It has been shown that by blocking the
serotonergic signaling with ketanserin (a 5-HT2A/2C receptor antagonist) the inflammation
and the fibrotic deposition of connective tissue in the lungs of bleomycin-treated mice were
reduced along with altered pulmonary levels of hemopoietic stem and progenitor cells [75].

In general, dysregulated endothelial permeability and vascular leakage are com-
mon features in ILDs [38,76]. In SSc, there is a progressive loss of capillaries due to
microvascular injury, which results in tissue fibrosis [77]. Endothelial dysfunction and
vasculopathy develop early in SSc, with Raynaud’s phenomenon as a typical vascular man-
ifestation [78,79]. In patients with RA-ILD, there is an ongoing systemic inflammation with
increased risk of pulmonary hypertension, and there is a general overall risk of pulmonary
thromboembolism in patients with RA [80]. Deficiency in peripheral 5-HT has been shown
to exacerbate the clinical and pathological scores of arthritis in collagen-induced arthritic
mice, where depletion of 5-HT in Tph1-/- mice showed an altered inflammatory response
with a cell imbalance in Th17 cells and T-regulatory cells [81]. These studies demonstrate
the active role of 5-HT in autoimmunity and the important function of circulating platelets
in the pathogenesis of rheumatic diseases [82].

Patients with IPF show that heterogenic abnormal vascular phenotypes with anasto-
moses between the systemic and pulmonary vasculature, neovascularization in fibrotic
areas and secondary pulmonary hypertension are commonly occurring [83,84]. Enhanced
vascularization is evident close to fibrotic areas, whereas within the fibrotic foci there is
substantially reduced vascularization [85], suggesting that the surrounding cells are trying
to compensate the lack of sufficient oxygen supply. Interestingly, 5-HTRs have been implied
to regulate hypoxic responses in pulmonary vascular systems in pulmonary arterial hyper-
tension (PAH) [86]. Pulmonary hypertension is a disease with vascular remodeling with
features of inflammation and fibrosis and has been described as a common comorbidity
in several ILDs [87]. In these vascular structures, the endothelial expression of TPH1 is
increased causing serotoninergic-induced proliferation of the underlying smooth muscle
layer [88]. Inhibition of TPH1 showed beneficial effects in models of PAH reducing vascular
remodeling [89]. Interestingly, the 5-HT2B receptor antagonist SB204741 has been shown to
prevent the onset of the heritable form of PAH in vivo [90], with signs of reduced arteriole
wall stiffness. The 5-HT2B receptor is broadly expressed in the cardiovascular system and
a pathological connection of 5-HT to cardiovascular events has been described in which
therapeutic effects were obtained when serotonergic signaling was blocked in pulmonary
hypertension [91].

In conclusion, there is a close cellular crosstalk in the alveolar compartments of ILDs
where vascular changes in blood flow, local hypoxia and platelet activation with release of
5-HT may be a trigger for local injury and further development of fibrotic events involving
5-HT signaling and receptor activation.

5. The Immune Modulating Impact of 5-HT

Accumulating evidence points to the role of 5-HT as a potent immune modulator
affecting various immune cells through its receptors [92] and via the process of serotony-
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lation [93]. Almost all immune cells express the 5-HT receptors, including the 5-HT2B
receptor. In acute inflammation, 5-HT is believed to recruit immune cells to the inflamma-
tory site. Exactly how 5-HT interacts with the immune system is less well characterized,
but deregulated 5-HT levels have been suggested to contribute to the pathology of chronic
inflammatory disorders by homing cells to the inflammatory site and to target e.g., T-
cells and macrophages. M2 macrophages are strongly implicated in the pathogenesis
of fibrosis, as they are a rich source in providing profibrotic mediators, highlighting the
significance in blocking the polarization of M1 to M2 macrophages. In line with this, 5-HT
has been shown to skew macrophage polarization [94] through engagement of the 5-HT2B
and 5-HT7 receptors and modulate T-cell activation, proliferation and differentiation and
thereby cytokine production [92]. 5-HT has been shown to regulate the production of IL-1,
IL-6 and TNF-α from human monocytes [95], an event also shown in mice [96]. Recently,
prophylactic treatment with 5-HT2B receptor antagonist resulted in reduced production of
the pro-inflammatory cytokines TNF-α and IL-1β, demonstrated in a bleomycin-induced
lung fibrosis model [34]. Furthermore, a report studying the anti-inflammatory potential
of a 5-HT2B receptor antagonist in vivo and in vitro suggested that selective inhibition of
the 5-HT2B receptor reduces both T cell-dependent and T cell-independent inflammatory
responses [97]. Importantly, the mechanism by which the 5-HT2B receptor activity controls
immunological effects is inconclusive with studies supporting different pathways [98–100].

Alterations in 5-HT signaling have been described in inflammatory conditions of the
gut, such as inflammatory bowel disease, in patients with allergic airway inflammation,
RA and SSc [92]. Interestingly, a genetic polymorphism of the 5-HT2A receptor has been
associated with increased susceptibility to RA [101]. A direct link between systemic 5-
HT levels in seropositive RA patients (the most common form of RA) and joint pain has
been suggested [102], which has been confirmed in models of arthritis, where increased
intra-articular levels of 5-HT caused joint inflammation and pain [103], while its depletion
attenuated disease severity [104]. The amplified vascular permeability in inflamed joints
suggest platelet-derived 5-HT to mediate the effect [105]. Radiographic changes in temporo-
mandibular joints of patients with RA was associated with high 5-HT levels [106], which
was also associated with synovial plasma extravasation by the release of various inflamma-
tory mediators [107–109]. Furthermore, platelets of RA patients have a lower 5-HT content,
which is interpreted as platelet release of 5-HT during inflammatory episodes [110], a
finding that was also observed in SSc patients [111].

The immune modulating properties of 5-HT and 5-HT2B receptor antagonists may
thus have a beneficial effect in treating PF-ILDs, since chronic inflammatory processes
and enhanced release of proinflammatory mediators contribute to tissue destruction and
reconstruction, as seen in patients with SSc or RA [112,113]. Although the contribution of
inflammation in fibrosis pathology is still under debate, and in IPF, little effect has been
shown with corticoid steroid treatment, a disease lacking requirements of inflammatory
infiltrates at diagnosis. Even so, IPF patients with a rapid deterioration display an increased
infiltration of inflammatory cells [6]. As such, fibroblast derived from IPF patients cultured
on plastic release enhanced levels of TNF-α promoting cellular detachment and cellular
migration [114]. It is possible that inflammation may occur and have a more pronounced
impact in early phases in IPF since the condition is thought to arise from repeated damage
to epithelial cells with subsequent triggered inflammatory response. Due to the insidious
nature of the PF-ILDs, diagnosis and pharmacological treatment are commonly initiated at
a late stage when fibrosis has manifested for several years, possibly hindering therapeu-
tic effects. Conceivably, an earlier and more targeted anti-inflammatory treatment may
be required to generate measurable effects in fibrotic development, where the immune
modulating impact of 5-HT2 receptor antagonism is yet to be elucidated.
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6. The Perfect Interstitial Storm—Vascular System, Inflammation and Fibrosis
6.1. 5-HT—From Circulation to Local Tissue Delivery

Increased systemic levels of 5-HT contribute to tissue remodeling processes, since it is
swiftly delivered to damaged sites via recruited platelets. Levels of 5-HT have shown to
be increased during fibrosis [36], probably linked to an enhanced platelet degranulation
at injured sites. Already in 1983, platelets were shown to be depleted in 5-HT in patients
with inflammatory arthritic diseases such as SSc, systemic lupus erythematosus and RA,
indicative of enhanced platelet activity in these chronic disease states [110]. Circulating
endothelial cells have been shown to be increased in IPF patients, particularly in those
with low diffusion capacity [115], along with shredded microparticles from endothelial
cells [116]. These microparticles were shown to induce fibroblast migration in vitro, which
indicates that an activated endothelium may influence fibrogenesis [116].

In SSc, platelets are either directly or indirectly involved in all three pathophysiologic
processes (autoimmunity-vasculopathy-fibrosis). Vasculopathy and endothelial dysfunc-
tion are early events in the pathogenesis of SSc, recognized by Raynaud’s atypical vascular
manifestation presented years prior to any other symptom. In patients with Raynaud’s
phenomenon [117], elevated plasma levels of 5-HT were shown to be correlated with mark-
ers for endothelial damage, e.g., von Willebrand factor (vWF), and tissue-plasminogen
activator [118]. An enhanced platelet activation caused by the vasculopathy may lead to
local release of 5-HT, where 5-HT may act on nearby fibroblasts to trigger fibrosis. This
pathogenic feature can explain why skin fibrosis in SSc always starts from the fingers in
the form of sclerodactyly as the fingers are the first sites affected by vasculopathy [78].

In bleomycin-induced pulmonary fibrosis in rats, 5-HT homeostasis was affected with
increased gene expression of Tph1 along with downregulation of Sert [119]. In line with
this, inhibition of IDO in fibroblasts enhanced the gene expression of Tph1, along with
elevated levels of melatonin, the secondary catabolic product of 5-HT, pointing towards
a crosstalk between IDO and TPH pathways. Treatment with melatonin decreased the
gene expression of IDO in fibroblasts [120]. Collectively, these findings indicate that an
altered pathway activity may further propagate a specific signaling cascade and cellular
response, that in fibrosis may be skewed towards over activated TPH1 and resulting in an
increased production of 5-HT. Inhibition of 5-HT uptake into circulating platelets may thus
reduce the systemic level and local tissue delivery of 5-HT, sequentially minimizing local
inflammatory and profibrotic actions.

6.2. The Distribution of 5-HT2 Receptors—Tuning Inflammation and Fibrosis

In normal human pulmonary conditions, levels of 5-HT are usually low due to high
pulmonary expression of SERT [121], with 5-HT2A and 5-HT2B receptors found on bronchial
and vascular SMCs, and on endothelial cells, respectively [39]. However, in the lungs of
IPF patients, the 5-HT2A receptors have also been described to be localized on interstitial
fibroblasts. Expression of 5-HT2B receptors is mainly localized to fibroblasts in fibroblastic
foci, as compared to 5-HT2A receptors, and in areas of fibrotic tissue [36]. Histological
examination of lung biopsies from SSc patients revealed intertwined patterns of inflam-
mation and fibrosis; however, despite the high prevalence of pulmonary involvement, the
pathogenesis of SSc-ILD is not well understood. The mesenchymal involvement is however
evident with activated fibroblasts and myofibroblasts providing high amounts of deposited
collagens. The 5-HT2B receptor has also been repeatedly identified in the fibrotic skin of
SSc patients, demonstrating an increased receptor expression with an evident localization
to fibroblasts [38,122].

Collectively, more studies align with the notion of a pathological link between altered
local and systemic levels of 5-HT in diseases characterized with endothelial involvement
and wound healing responses provided by fibroblasts. The role of 5-HT and its receptors in
PF-ILDs such as SSc-ILD, RA-ILD and IPF has not been considerably studied, with major
examinations of its potential as a novel therapeutic target still lacking (Figure 2).
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Figure 2. Converging pathways in PF-ILDs. The PF-ILDs of RA, IPF or SSc share similarities in
disease mechanisms, where several pathogenic pathways are likely intertwined and linked to the
development of lung fibrosis. At tissue injury, circulating platelets become recruited to the injured
site where they aggregate and become activated, releasing 5-HT. The increased local concentration of
5-HT allows for binding to 5-HT2B receptors expressed on nearby cells (outlined in red), promoting
pro-inflammatory and fibrotic actions with increased permeability and release of cytokines as a
result. The activation of 5-HT2B receptor triggers fibroblast proliferation and differentiation into
myofibroblast causing an excess deposition of ECM proteins that propels the tissue into a fibrotic
state. Macrophages become polarized toward an M2-phenotype that further enhance the repair
mechanism which is exaggerated in fibrosis.

6.3. 5-HT2B Receptor—An Important Player in Fibrosis

In recent years, several studies have demonstrated potent fibrotic effects elicited
through 5-HT signaling, stimulating several cellular processes that are associated with the
development of fibrosis. The systemic levels of 5-HT have been shown to have marked
effects on dermal fibrosis, where reduced blood levels of 5-HT resulted in protective effects
against fibrotic manifestation in skin [38]. In a systemically induced experimental model
of lung fibrosis, mice subjected to repeated subcutaneous administrations of bleomycin
demonstrated an attenuated fibrotic development in the lung with reduced deposition
of connective tissue, following an oral, preventive treatment with 5-HT2B receptor antag-
onist [34]. Taken together, 5-HT-associated signaling is a promising target in regulating
several profibrotic cellular responses in multiple organs.

In light of the presented studies examining the pathogenic impact of 5-HT with
aggravated fibrosis, cytokine release and cell infiltration, one could ask whether the main
antifibrotic mechanism elicited by abrogated 5-HT signaling is facilitated through its
anti-inflammatory properties. However, treatment with 5-HT2 receptor antagonist also
shows beneficial antifibrotic effects when administered in animal models with established
fibrosis lacking inflammatory features [123–125]. The tight skin 1 mouse model (Tsk-1),
reflecting human SSc, generates autoantibody production and skin fibrosis with only minor
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inflammation, thus modelling the disease at later stages. Treatment of Tsk-1 mice with
5-HT2B receptor antagonists attenuated fibrotic development where dermal thickness,
collagen deposition and myofibroblast count were reduced [51].

7. Therapeutic Potential in 5-HT2B Receptor Antagonism

Current antifibrotic therapies reduce the rate of disease progression, defined as decline
in lung function, by about 50% in IPF, as well as in other PF-ILDs. This indicates that the
pathways affected by these drugs are shared across a spectrum of fibrotic lung diseases.
Interestingly, the proportion of patients whose diseases are stabilized over a year has
increased with these therapies; however, some treated patients still progress at a rate
similar to the natural course of the disease. Thus, it is tempting to speculate that there
are several endotypes of fibrosis in the spectrum of PF-ILDs, and that several pathways
may be involved in a single patient. A better understanding and characterization of these
endotypes with biomarkers may therefore sharpen individualized treatment, either as
monotherapy, targeting a specific pathway, or as combination therapy, targeting several
pathways. The need for improved characterization of patients to develop individualized
therapies is evolving and is discussed further in [126–128].

The 5-HT2B receptor represents a promising target for new anti-fibrotic treatments.
The development of new drugs selectively targeting the 5-HT2B receptor has so far been
hampered by non-selective compounds with unwanted side effects. New, safe and highly
selective 5-HT2B receptor antagonists are therefore needed, and are currently in develop-
ment. Using receptor antagonists to selectively block binding of 5-HT to specific receptors
offers beneficial outcomes as a therapeutic strategy with minimized secondary effects in
comparison to systemically reducing 5-HT levels. Clopidogrel inhibits ADP-dependent
platelet activation and has shown therapeutic effects in reducing fibrosis [129,130]. It
reduces the degranulation of platelets and thus influences systemic and local levels of
5-HT. However, in a small study in patients with SSc, clopidogrel did not reduce freely
circulating levels of 5-HT in plasma and showed no effect in reducing dermal thickening.

With a central role in fibrosis, TGF-β has been suggested to be a potential antifibrotic
target and a few clinical studies addressing this have been performed. A monoclonal
antibody towards the integrin alphaVbeta6 (αvβ6), expressed in epithelial cells, was
recently investigated as a treatment option for IPF [131], as αvβ6 can activate latent TGF-
β [132], but the study was halted due to safety concerns. Given the multifunctionality of
TGF-β and its critical role in a range of physiological processes complete blocking of its
activity could be associated with significant risk. Selective inhibition using 5-HT2B receptor
antagonists that interfere with certain TGF-β signaling pathways could represent a more
specific and safer alternative to a complete blockage (Figure 3).

An ongoing clinical trial in phase III examines the autotaxin inhibitor (GLPG1690)
that reduces lysophosphatidic acid as its mode of action in patients with IPF. Interestingly,
lysophosphatidic acid plays a crucial role in platelet activation as it acts as a stimulator
of platelet aggregation [133]. Another compound being investigated is the pentraxin
2 protein, showing high tolerability in IPF patients and early signs of persistent treatment
efficacy [134]. Pentraxin 2 protein is a natural circulating protein with immune modulating
entities affecting macrophage differentiation, attenuating profibrotic phenotypes [135].
Interestingly, 5-HT2B receptor activation has been shown to modulate human macrophage
polarization, promoting M2 macrophages representing a profibrotic phenotype with im-
munosuppressive and wound reparative characteristics. Changes in the expression of M2
genes, e.g., CCL18, have recently been linked to clinical responses on lung function in
tocilizumab-treated patients with SSc [136]. In addition, nintedanib, in clinical use for IPF
and SSc-ILD [137], inhibits M2 differentiation of human monocytes in vitro and reduces
M2 macrophage counts in vivo [138]. Macrophages recruited to sites of injury express
increased levels of TNF-α, while levels of TGF-β1 are increased at later stages of wound
healing [139]. These temporal alterations in inflammatory and fibrotic mediators, orches-
trated by the wound healing response, further emphasize the complex mechanistic role of
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5-HT2 receptor activation during fibrosis development and optimal windows for effective
treatments. The immune modulating properties of 5-HT2B receptor antagonism proposes
thus a beneficial effect in antifibrotic treatments, since chronic inflammatory processes
and enhanced release of proinflammatory mediators contribute to tissue destruction and
remodeling, also seen in patients with RA and SSc. Treatment with anti-inflammatory
agents in patients with PF-ILDs with elements of pulmonary inflammation may serve to
counteract the positive feedback loop created in the tissue niche with ongoing remodeling.
However, the underlying and powerful driver of fibrosis is situated also in the ECM as
a pathologically restructured lung-ECM directs cellular responses towards a persistent
profibrotic activity [140]. In a recent clinical trial, patients with PF-ILD, not focusing on
disease origin, were investigated in regard to the efficacy of nintedanib [141]. The study
showed promising results in affecting the annual decline in FVC, further emphasizing
converging disease mechanisms in PF-ILDs.

Figure 3. Potential of 5-HT2B receptor antagonism in PF-ILDs. By blocking the binding of 5-HT
with selective 5-HT2B receptor antagonist, several key events in fibrosis can be inhibited. This as-yet
unexplored therapeutic strategy has been demonstrated in pre-clinical models to reduce, e.g., ECM
deposition, cell proliferation, myofibroblast differentiation and proinflammatory cytokine release,
ultimately attenuating the development of lung fibrosis, an effect also observed in other types of
tissue, further emphasizing 5-HT2B receptor as a novel disease target for anti-fibrotic treatment.

In conclusion, there is compelling evidence pointing toward converging pathways
in the fibrotic development in PF-ILDs, whereby hampering 5-HT2B receptors activity
alleviates several key pathological features in IPF, RA and SSc.
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ILD Interstitial lung disease
PF Progressive fibrosing
IPF Idiopathic pulmonary fibrosis
5-HT Serotonin, 5-hydroxytryptamine
SSc Systemic sclerosis
RA Rheumatoid arthritis
UIP Usual interstitial pneumonia
HRCT High-resolution computed tomography
FVC Forced vital capacity
NSIP Nonspecific interstitial pneumonia
lcSSc Limited cutaneous SSc
dcSSc Diffuse cutaneous SSc
ACPA Anti-citrullinated protein antibody
CNS Central nervous system
TGF-β1 Transforming growth factor
TPH Tryptophan hydroxylase
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SERT Serotonin re-uptake transporter
GPCR G-protein coupled receptors
PLC Phospholipase C
IP3 Inositol 1,4,5-trisphosphate
PI3K Phosphoinositide 3-kinase
PAI-1 Plasminogen activator inhibitor 1
ECM Extracellular matrix
α-SMA Alpha-smooth muscle actin
TNF-α Tumor necrosis factor-alpha
PDGF Platelet-derived growth factor
VEGF Vascular endothelial growth factor
IL Interleukin
PAH Pulmonary arterial hypertension
vWF von Willebrand factor
Tsk-1 Tight skin 1
αvβ6 alphaVbeta6
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