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ABSTRACT

Motivation: Biological networks change in response to genetic
and environmental cues. Changes are reflected in the abundances
of biomolecules, the composition of protein complexes and other
descriptors of the biological state. Methods to infer the dynamic state
of a cell would have great value for understanding how cells change
over time to accomplish biological goals.
Results: A new method predicts the dynamic state of protein
complexes in a cell, with protein expression inferred from
transcription profile time courses and protein complexes inferred
by joint analysis of protein co-expression and protein–protein
interaction maps. Two algorithmic advances are presented: a new
method, DHAC (Dynamical Hierarchical Agglomerative Clustering),
for clustering time-evolving networks; and a companion method,
MATCH-EM, for matching corresponding clusters across time points.
With link prediction as an objective assessment metric, DHAC
provides a substantial advance over existing clustering methods. An
application to the yeast metabolic cycle demonstrates how waves
of gene expression correspond to individual protein complexes.
Our results suggest regulatory mechanisms for assembling the
mitochondrial ribosome and illustrate dynamic changes in the
components of the nuclear pore.
Availability: All source code and data are available under the Boost
Software License as supplementary material, at www.baderzone.org,
and at sourceforge.net/projects/dhacdist
Contact: joel.bader@jhu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Current views of biological networks and pathways are primarily
static, comprising databases of curated pathways or of pairwise
interactions, primarily between proteins. Many methods have been
developed to cluster, partition or segment an interaction network into
putative complexes. Recent comparisons suggest that hierarchical
stochastic block models provide the most accurate reconstruction
of real protein complexes from interaction data (Park and Bader,
2011). These static views, however, fail to capture the rich dynamic
structure of a cell. Accounting for dynamic changes in protein
complexes is crucial to building accurate models of cellular state.

High-throughput measurements of protein abundance are possible
through label-free quantitative mass spectrometry (Haqqani et al.,
2008; Sardiu and Washburn, 2011; Zhu et al., 2010), but may be
limited to the most highly abundant proteins. In contrast, transcript
abundance is more readily available and is often used as a proxy for
protein abundance. Previous methods combined transcript dynamics
with interaction databases to create a moving picture of the cell state
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under the crude assumption of a fixed number of protein complexes
and with ad hoc criteria to match protein complex membership
across time points (Park et al., 2010). The problem considered here
is also distinct from evolutionary dynamics, where algorithms have
been developed to estimate ancestral networks and infer the most
likely evolutionary mechanisms (Navlakha and Kingsford, 2011).

This work, in contrast, uses a rigorous probabilistic framework
to translate a hierarchical stochastic block model to the dynamic
domain. The number of protein complexes can increase or decrease
at each time point, and individual complexes can grow, shrink,
or swap components with other complexes. The resulting network
dynamics reveals the temporal regulation of cell protein state.

The starting point is our previous static clustering method,
Hierarchical Agglomerative Clustering, or HAC (Park and Bader,
2011). The HAC method maximizes the likelihood of a hierarchical
stochastic block model, also known as the likelihood modularity
(Bickel and Chen, 2009). HAC has the appealing features of
automatic selection of model size and multi-scale networks views.
Furthermore, it out-performs leading methods in the task of link
prediction, an objective performance metric when true group
assignments are unknown. Extending HAC to dynamic networks
requires a solution to the identifiability problem: how complexes
inferred at one time point correspond to complexes inferred at other
time points. Furthermore, transitions of a protein from one complex
to another must be permitted by the model, requiring dynamical
coupling between network snapshots.

In this work we address these points. First, we convert likelihood
modularity from maximum likelihood to fully Bayesian statistics,
which automatically accounts for model complexity and provides
well-founded criteria for selecting the correct number of clusters.
Second, we ‘kernelize’ the likelihood modularity with an adaptive
bandwidth to couple network clusters at nearby time points,
similar to methods for regulatory network inference (Song et al.,
2009). We term this the Dynamical Hierarchical Agglomerative
Clustering (DHAC) method. Finally, we solve the general problem
of matching clusters across time points with a new belief propagation
method, MATCH-EM, that extends Expectation-Maximization and
belief propagation for bipartite matching (Bayati et al., 2008) to
consistently match multiple time-evolving clusters. We apply these
methods to real biological data to discover the dynamical structure
of protein complexes.

2 APPROACH

2.1 Dynamic network clustering
Our approach uses stochastic block models, in which interactions
are conditionally independent given group membership. These
models can be hierarchical, with larger complexes containing
sub-complexes with more fine-grained interaction probabilities.
Networks are observed at specific time points, termed ‘snapshots’,
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and the goal is to infer or estimate the time-dependent block model
given the snapshots. The model itself is generative. While others
have explored networks generated from a pre-specified model
(Leskovec et al., 2005), the focus here is on network inference.

The observed snapshots are a series of T time-ordered graphs,
{G(t) : t=1,...,T }. Each single network G(t)= (V (t),E(t)) consists
of undirected and unweighted binary edges E(t) and vertices
V (t). Vertices correspond to proteins, and edges represent possible
protein–protein physical interactions (PPI). For an arbitrary pair,
t �= t′, G(t) and G(t′) can have different vertices and edges.
Generalizations to additional vertex classes (transcripts, genes,
metabolites) and edge types (directed, weighted, epistatic or
regulatory interactions) follow directly but are not considered here.

The goal is to infer a corresponding sequence of time-evolving
stochastic block models, {M (t) : t=1,...,T }, where each M (t) is a
good network-generative model for G(t). Many methods maximize
the model for each snapshot independently, obtaining M̂ (t) as
argmaxM P(M |G(t)), then attempt to stitch together the results.
Here, we show that introducing explicit coupling between time
points improves dynamic network clustering.

3 METHODS

3.1 DHAC
A stochastic block model M is a generative model for a network G. The
number of vertices is V and the number of possible blocks, groups or clusters
is K . Typically, indices u,v,w∈1...V denote vertices, and indices i,j,k∈
1...K denote clusters. The notation u∈ i indicates that vertex u is in cluster
i, and ni is the number of vertices assigned to cluster i.

The probability that a vertex is in cluster k is πk , the parameter for the k-
th cluster in a multinomial distribution, with

∑
kπk=1. The parameter θij=

θji ∈[0,1] gives the probability of an undirected, unweighted edge between
any pair of vertices u∈ i and v∈ j, modeled as independent Bernoulli trials
for each pair. This model M generates a network G by first sampling the
membership of each vertex u with probability πk for cluster k, then sampling
each edge euv=0 or 1 as a Bernoulli trial with success probability θij for u∈ i
and v∈ j.

Edge counts are summarized at the cluster level as nij=∑
u∈i,v∈j euv for i �=

j, or
∑

u≤v∈i euv for i= j. It is convenient to keep track of the corresponding
number of non-edges, or ‘holes’, hij , with eij+hij= tij , the total possible
number of edges. For i �= j, tij=ninj . For i= j, tii=ni(ni±1)/2, with the ‘+’
term for graphs with self-edges and the ‘−’ for graphs without self-edges.
Using these sufficient statistics, the probability of a network G given the
structural model and parameters is

P(G|{θ},{π},M ) =
K∏

k=1

π
nk
k

∏
i≤j

θ
eij
ij (1−θij)

hij .

3.1.1 Maximum likelihood guide tree Vertices are merged into
increasingly large clusters based on the model likelihood with maximum
likelihood parameters π̂k=nk/V and θ̂ij=eij/tij . The change in log-
likelihood upon merging existing clusters 1 and 2 into a new cluster 1′ is

λS
12 = ln

[
n

n1′
1′

nn1
1 nn2

2

]
+ln

⎡⎣ ∏
j �=1,2

PML
1′j

PML
1j PML

2j

⎤⎦ (1)

where PML
ij ≡e

eij
ij h

hij
ij /t

tij
ij and the superscript S indicates a single snapshot.

The first term, arising from the multinomial cluster membership model and
favoring balanced merges, was not included in HAC but is included in
DHAC.

3.1.2 Bayesian collapsing criterion A Bayes factor selects the model
complexity (Kass and Raftery, 1995). Integration of parameter θ on a

single Bernoulli likelihood with a uniform prior, or Beta(1,1), results in∫ 1
0 θ

e(1−θ )hdθ= Beta(e+1,h+1), or e!h!/(e+h+1)! for integer values.
Therefore the marginal likelihood is

P(G|M )=
∏
k≤k ′

∫ 1

0
dθP(ekk ′ ,hkk ′ |θ )P(θ |1,1)

=
∏
k≤k ′

Beta(ekk ′ +1,hkk ′ +1).

A similar procedure integrating out the nuisance parameters πk with an
uninformative prior would yield the additional contribution

∏
k�(nk+

1)/�(V+K). Alternatively, integrating out the nuisance parameters using a
strong prior, P({πk })∝∏

kπ
ν
k with pseudocount ν	V , yields a contribution

that is independent of {nk }. The Bayesian likelihood for the edge terms
provided sufficient collapsing; we did not include the vertex assignment
term in the Bayesian likelihood, equivalent to a strong prior. The Bayesian
log-likelihood ratio for collapsing groups 1 and 2 into 1′ is

φS
12= ln

⎡⎣ PB
1′1′

PB
11PB

12PB
22

∏
j �=1,2

PB
1′j

PB
1jP

B
2j

⎤⎦ (2)

where the superscript B indicates Bayesian, S indicates a single snapshot,
and PB

ij ≡Beta(eij+1,hij+1). This score is additive, and summing over all φ
scores from the bottom clusters (individual vertices) upwards is equivalent
to the log-likelihood ratio for the model with collapsed versus uncollapsed
fine structure, with the collapsed vertices being the top-level groups in a
stochastic block model. The guide tree is collapsed from the bottom up,
in the order that groups were merged, to identify a local optimum of the
cumulative φ score.

Our initial methods used the Bayesian likelihood for both the greedy guide
tree and the collapsing step. A problem with this approach is that the Bayesian
likelihood includes a contribution, asymptotically the Bayes Information
Criterion (BIC) correction (Schwarz, 1978), that favors merges of larger
clusters with different connectivity patterns over merges of smaller clusters
with identical connectivity patterns. Consequently, using the Bayesian
likelihood optimized the local Bayes factor but gave a worse global Bayes
factor than the maximum likelihood approach, which also has less expensive
function evaluations. We therefore used maximum likelihood for the guide
tree and Bayesian likelihood for collapsing.

3.1.3 Kernel-reweighted scores Kernalization of the scores λ and φ

couples nearby snapshots, also providing noise reduction and smoothing.
Merging and collapsing scores were kernelized using Gaussian Radial
Basis functions with width parameter τ , w(	t,τ )∝exp{−|	t|/τ }, where for
simplicity 	t is the difference in snapshot indices. The kernelized merging
score λK (t) and collapsing score φK (t) for the t-th snapshot (K denotes
kernelized) are

λK
12(t;τ )=

T∑
s=1

w(t−s,τ )λS
12(s) (3)

φK
12(t;τ )=

T∑
s=1

w(t−s,τ )φS
12(s). (4)

Although the same clustering is used across all T time points, the scores will
differ when proteins (or interactions) are present in one time point and absent
in another. Kernels are normalized as

∑T
s=1 w(t−s,τ )=1. As τ→0, λK→

λS and φK→φS . Since λS is statistically consistent (see Supplementary
Material for proof), λK is statistically consistent as nk→∞ and τ→0.
Collapsing is then performed as for single snapshots, stopping at the
maximum of the bottom-up sum, termed φK (t;τ )=∑

(i,j)∈collapsedφ
K
ij (t;τ ).

The overall algorithm is summarized in Algorithm 1.
In the DHAC-local method, the bandwidth parameter τ for snapshot t was

selected from a grid-search over τ values 0.5,1.0,1.5,...,3.5 to maximize
φK (t;τ ), with smaller τ favored when the network changes quickly. For
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the network considered here, τ≈ 1 to 2 depending on t. Alternatively, a
constant value of τ may be used for all values of t, which we termed DHAC-
constant. We set τ=1 for DHAC-constant, although in principle τ could be
optimized by maximizing

∑
tφ

K (t;τ ). In practice, results were very robust
to the value of τ , and the performance of DHAC-local was nearly identical
to DHAC-constant with τ=1 (see Section 4).

Algorithm 1 DHAC

for t←1...T do
Set each vertex to be a single cluster
Let φcum←0 be cumulative model comparison score [Equation (4)]
Compute merging scores [Equation (3)] of paris having an edge or one
or more shared neighbors
repeat

Pick a pair i,j of maximum λK
ij (t;τ )

Update scores of affected pairs after merging i,j
Merge i,j to i′
Compute merging scores i′,j for all j with ei′j>0 or with∑

k ei′k ekj>0.
Update φcum(t;τ )←φcum+φK

ij (t;τ )
until no more pairs to merge
Output group structure M (t;τ ) at which φcum(t;τ ) was maximum

end for

3.2 Cluster matching algorithm
DHAC-constant and DHAC-local output T models, {M1,...,MT }, and many
groups will change slowly between time points. The total number of groups
may differ between time points, however, and even if the number of groups
and the group membership are nearly identical, group order may be permuted
across time points. Matching similar groups across time points remains a
general problem for dynamic networks.

For T=2 groups, reasonable yet ad hoc procedures are to match groups
based on shared members, Jaccard correlation of shared neighbors or
maximum weighted matching of shared neighbors or other pairwise scores
(Bayati et al., 2008). Here, we extend these ideas to multi-partite matching
based on a novel probabilistic model that introduces some rigor to the time
course matching problem.

The goal is to find most probable mapping of cluster i at time t to a globally
consistent index k. Let z(t)

ik =1 if cluster i of snapshot t is assigned to k, and

0 otherwise, with normalization
∑

k z(t)
ik =1. Conversely, the sum over local

clusters,
∑

i z
(t)
ik , is not fixed because the global cluster may be absent at time

t (sum = 0) or it may be broken into multiple smaller clusters (sum > 1).
Each cluster i contains original network vertices {u}⊆V , and n(t)

ij counts
the number of shared members between group i at time t and group j at time
t+1. The probability that a vertex makes a transition from global state k to
state k ′ between two snapshots is ψkk ′ , with normalization

∑
k ′ψkk ′ =1. For

simplicity, ψkk ′ is independent of t. When groups do not change over time,
ψkk ′ =δkk ′ , 1 if k=k ′ else 0. Similarly, the time-independent parameter νuk

is the probability that vertex u is in global group k, with
∑

k νuk=1.
The matching probability under consistent indexing is

P({Mt},{z(t)
ij }|ν,ψ)=

K∏
k=1

T∏
t=1

∏
i∈St

∏
u∈Ci

ν
z(t)
ik

uk × (5)

K∏
k=1

K∏
k ′=1

T−1∏
t=1

∏
i∈St

∏
j∈St+1

ψ
n(t)

ij z(t)
ik z(t+1)

jk′
kk ′

where St denotes the set of clusters at snapshot t and Ci the set of vertices
in one of these clusters.

We solved the maximum a posteriori (MAP) inference problem using
Expectation-Maximization (EM). The M-step updates are

νuk ∝
T∑

t=1

∑
i∈St

z(t)
ik I{u∈Ci}, (6)

ψkk ′ ∝
T−1∑
t=1

∑
i∈St

∑
j∈St+1

nijz
(t)
ik z(t+1)

jk ′ . (7)

The E-step for zik (t) is more complicated. If the state at time t is represented
as the assignment matrix {zik (t)}, then the probability structure is a hidden
Markov model (HMM). This state space is large, however, on the order
of KK ∼K !, because each of the approximately K clusters at time t may be
assigned to one of K global clusters, and the transition matrix is of order K2K .
Instead, we simplify the state space by considering each zik (t) independently
and introducing additional couplings that create loops in the corresponding
graphical model, no longer permitting a dynamic programming solution.
When groups are stable over time, however, the topology is close to a tree
structure and belief propagation (BP) works well (Yedidia et al., 2005).

For max-product BP algorithm we reformulate the above Markov Random
Field, or joint probability [Equation (5)], constructing a factor graph
consisting of factors (hyper-edges) and variables (latent variables). Latent
variables z(t)

i take on values from 1,...,K , or succinctly [K]. In other words,

z(t)
i provides the index k of the global cluster for which z(t)

ik =1. Parameters
{ν} are used to represent singleton factors and {ψ} pairwise factors. A certain
latent variable z(t)

i depends on neighboring pairwise factors N (i,t−1) from
the previous snapshot and N (i,t+1) from the subsequent snapshot. MAP
inference is carried out by sending messages from i to j via pairwise factor
e. The update equations of the message mi→e from variable i at time t to
factor e and then the message me→j from e to variable j at time t+1 is

mi→e(k)∝
∏
u∈Ci

νuk

∏
f ∈N (i,t−1)∪N (i,t+1)\{e}

mf→i(k) (8)

me→j(k)∝max

{
l∈[K] :ψn(t)

ij
lk mi→e(l)

}
. (9)

For variable j at time t−1, the message me→j is

me→j(k)∝max

{
l∈[K] :ψn(t−1)

ji
kl mi→e(l)

}
. (10)

The belief bi of a certain variable i at snapshot t is the product of incoming
messages,

bi(k)∝
∏

e∈N (i,t−1)∪N (i,t+1)

me→i(k), (11)

normalized as
∑

k bi(k)=1. To prevent the MLEs and BP steps from
overshooting, parameters and messages were updated as 1/10 of the full
change, with updates to messages performed on a logarithmic scale (Koller
and Friedman, 2009). We call this EM method MATCH-EM (Algorithm 2).

3.3 Dynamic network data generation
Dynamic biological networks were obtained by combining experimental
gene expression time series data with static protein interaction networks
to project out the consistent edges, both active (two interacting proteins
are expressed) and inactive (neither protein is expressed). This method
assumes that presence of a protein is related to transcriptional abundance
of the corresponding transcript at a nearby time, with possible delays due
to translation and protein lifetimes. More realistic models are possible and
should yield more accurate results (see Section 5).

Time-series measurements of the expression levels of N genes across
T time points generates a N×T matrix X . Each element Xut corresponds
to the expression of gene u at snapshot t. The matrix X is assumed to
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Algorithm 2 MATCH-EM

Initial greedy matching
Initialize ν and ψ
repeat

repeat
while forward and backward visit of factors do

Calibrate messages i to j [Equations (8), (9), (10)]
end while
for each variable i do

Update belief bi [Equation (11)]
end for

until convergence of BP
Update latent variables zik=1 with k=argmax

l
bi(l) and zik ′ =0 for

other k ′ �=k.
Update ν̂,ψ̂ by MLE [Equations (6), (7)]

until convergence of EM

be preprocessed and normalized, here performed with gcrma quantile-
normalization (Wu et al., 2004). Next it is row-standardized to have zero
mean,

∑
t Xut=0, and equal variance,

∑
t X 2

ut=T−1, for each gene.
The dynamics of the network were then inferred from X , under the

assumption that proteins in a complex have correlated gene expression
profiles (Jansen et al., 2002). To account for transient complexes and
cases where delays due to translation and protein lifetime are important,
correlations were averaged over a bandwidth τ ,

X̃uv(t)=
T∑

s=1

w(t−s,τ )XusXvs

with the Gaussian kernel function w(	t,τ )∝exp(−|	t|/τ ) and normalized
to 1. Although this bandwidth τ has a similar role to the bandwidth for
likelihood kernelization, it was not optimized but rather set to 1.5. Results
were quantitatively similar for τ from 1.2 to 2. Smaller values of τ result in
stricter co-expression requirements and result in a sparser network.

Each edge is then declared present or absent based on the value of X̃uv(t):
for each snapshot t=1,...,T , a dynamic edge euv(t)=1 if and only if X̃uv(t)>
0 and euv=1 in static network. This procedure retains edges at time t where
both proteins are present (Xus,Xvs>0) or both absent (Xus,Xvs<0) for times
s close to time t. We found that using the negative evidence improved the
prediction of protein complexes, and that the transcriptional data could then
be used to identify which complexes or subunits were present or absent at
each time point. Results were stable for less stringent thresholds, X̃uv(t)>
−0.5. While this method is appropriate for periodic processes, other methods
for extracting time-dependent interactions may be more appropriate for more
general processes (see Section 5).

3.4 Performance evaluation
3.4.1 Held-out link prediction Link prediction accuracy for held-out
edges provides an objective measure of clustering performance for real-world
data where the true group structure is fundamentally unknown (Henderson
et al., 2010; Park and Bader, 2011).

At each time point, we randomly select pairs of vertices (u,v), some
connected at time t with euv(t)=1, and others unconnected with euv(t)=0,
the relative fraction of connected pairs (edges) and unconnected pairs (holes)
matching the network as a whole. These pairs are then a test set, and the
remaining edges serve as the training set. After clustering based on the
training set, vertex u will be assigned to some group i, and vertex v will
be assigned to group j. The maximum likelihood probability of the (u,v)
edge, denoted ê(t)

uv , is then ê(t)
ij =e(t)

ij /(e
(t)
ij +h(t)

ij ).

Varying a threshold θ for ê(t)
uv , or in practice ranking pairs in decreasing

order of ê(t)
uv , the true positive count is TP= I{ê(t)

uv >θ ∧ e(t)
uv=1}, the false

positive count is FP= I{ê(t)
uv >θ ∧ e(t)

uv=0}, the true negative count is TN=
I{ê(t)

uv ≤θ ∧ e(t)
uv=0}, and the false negative count is FN= I{ê(t)

uv ≤θ ∧ e(t)
uv=1}.

A precision–recall curve (PRC) is then created from the precision and recall,

Precision= TP
TP+FP

, Recall= TP
TP+FN

.

Similarly, a receiver operating characteristic (ROC) curve is generated from
the true-positive and false-positive rates,

TPR= TP
TP+FN

, FPR= FP
FP+TN

.

The dynamic clustering methods are then compared using the area under
the PRC (AUPRC) and the area under the ROC (AUROC). The AUPRC
measures the average precision for known positives, which is a useful
measure for link prediction where classes are skewed with far fewer known
positives than known negatives. Interaction data are very skewed, with only
about 1% fraction of positives. The AUROC has the theoretical benefit of
being invariant to class bias. It is less informative in practice but is included
here because its use has become standard.

3.4.2 Competing methods We compared the following algorithms:
DHAC-constant, dynamic clustering with a constant fixed bandwidth (τ=1
for the link prediction experiments); DHAC-local, bandwidths adaptively
optimized for each snapshots (τ=0.5,1.0,1.5,...,3); HAC, DHAC with
bandwith τ=0, similar to HAC-ML method but using bottom-level clusters
for link prediction (Park and Bader, 2011); and CNM, fast modularity
optimization (Clauset et al., 2004). We initially considered Variational Bayes
Modularity (VBM, Hofman and Wiggins, 2008) but did not include it because
it is slower and is often trapped in bad local optima. Initially we attempted to
model network dynamics with a Markov model, similar to a Markov chain of
static exponential random graph model (Hanneke et al., 2010). We found that
kernelization, used previously in the KELLER algorithm for transcriptional
networks (Song et al., 2009), provides better performance. In contrast, the
Markov chain approach performed worse than DHAC and only slightly better
than HAC (results not shown) and is not included in the comparison. For
more extensive comparison of other static clustering methods we refer to
our previous studies, which identified HAC-ML as the best-performing link-
prediction method for large networks, including cluster-free link prediction
by graph diffusion kernels (Park and Bader, 2011).

4 RESULTS

4.1 Link prediction performance
4.1.1 Drosophila networks As a proof of concept we first tested
our algorithm on a dynamic network for Drosophila development,
for which a gene expression time course is available (Arbeitman
et al., 2002). Rather than analyzing the expression data directly,
we relied on previous analysis using KELLER to identify time-
varying regulatory interactions between genes, yielding a network
with 66 time points and 588 gene vertices (Song et al., 2009). Thus,
genes u and v are connected at time t∈1...66 according to these
previous results, defining a sparse time-varying network with mean
vertex degree ≈6.5. Since gene interactions were generated with
time smoothing, DHAC-constant and DHAC-local are expected to
outperform static methods.

In extensively cross-validated link prediction performance,
DHAC-constant and DHAC-local are seen to be far superior to the
next-best method, HAC, which in turn dominates CNM until∼30%
of the true edges are removed (Fig. 1). To perform these studies, from
5% to 80% of the known edges were removed; results were averaged
over the 66 time points; and the entire procedure was repeated more
than 10 times.
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Fig. 1. Link prediction results for Drosophila networks. (A) average AUPRC
scores for different methods (y-axis) along different missing link ratios (x-
axis); (B) AUROC scores for different methods (y-axis) along different
missing link ratios (x-axis). Points and lines: averge time-cumulative
performance; shaded area: 1-standard error. See Section 3 for details

The similar results of DHAC-constant and DHAC-local point to
robust behavior with respect to the kernelization parameter τ . The
improved performance of CNM relative to HAC at a high frequency
of missing links may be due to the tendency of CNM to generate
large clusters and to lose resolution. The resolution limit is usually
a drawback, but here is beneficial for link prediction in a sparsified
network. Even in this limit, however, DHAC remains superior by
drawing information from adjacent timepoints.

4.1.2 Yeast Metabolic Cycle networks We then tested link
prediction accuracy on Yeast Metabolic Cycle (YMC) networks.
The YMC networks started with a large-scale protein–protein
interaction dataset (BioGrid 3.1.81 with 63 410 physical interactions
and 4342 proteins, Stark et al., 2006). Requiring support by
two or more publications, a criterion used previously by others
(Bandyopadhyay et al., 2010), retained 13 401 interactions and 3248
proteins. This physical network was combined with data from YMC
gene expression microarrays over 36 time points showing 3510
significantly periodic genes, of which 2979 occur in the physical

network (Tu et al., 2005). We retained edges e(t)
uv that connected

periodic genes and were observed for at least two values of t.
Snapshots on average contained 1380 proteins with degree 1.8,
sparser than the Drosophila network. The union over all snapshots
contained 1575 proteins.

As before, DHAC methods clearly outperform static clustering
methods for link prediction on YMC data (Fig. 2). The performance
of DHAC-local is slightly better than DHAC-constant. HAC
performs better than CNM for AUPRC, but CNM performs better
for AUROC. This follows the trend seen with the Drosophila data,
where resolution loss improves the relative performance of CNM
for sparse networks.

4.1.3 Static versus dynamic edge removal The link prediction
results described above used a protocol in which the held-out edges
were resampled for each snapshot. Thus, noise is uncorrelated
between snapshots, and dynamic smoothing suppresses the noise
by time-averaging because the full gold standard changes slowly
(due to kernelization with KELLER) or not at all (with the yeast
physical interaction network). We therefore tested an alternative
link prediction scheme for the YMC data in which the held-out
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Fig. 2. Link prediction results for YMC networks. (A) average AUPRC
scores for different methods (y-axis) along different missing link ratios
(x-axis); (B) AUROC scores for different methods (y-axis) along different
missing link ratios (x-axis). Points and lines: average performance; shaded
area: 1-standard error. See Section 3 for details

edges are systematically removed across all snapshots, eliminating
the advantage of time averaging. In this case, dynamic smoothing is
not expected to help, and the performance of DHAC indeed fell to
the performance of the static HAC algorithm (results not shown).

4.2 YMC dynamics
YMC transcriptional profiling reveals three dominant metabolic
states: reductive building (RB, 977 genes); reductive charging (RC,
1510 genes); and oxidative (OX, 1023 genes) (Tu et al., 2005).
Almost a half of total genes oscillate along this cycle, indicating
that a broad swath of processes are involved but making it difficult
to extract specific dynamical modules from expression data alone.

Prior to clustering, the network used for link prediction was
made less sparse by applying an iterative degree cutoff (≥3).
Combining with the 36 time-varying snapshots, 3 complete cycles
of 12 snapshots each, reduced the size of the network from 1380
proteins per snapshot to 480±14 and increased the mean vertex
degree from 1.8 to 6.6. Networks were clustered by DHAC-local.
Clusters were matched across time points using MATCH-EM to
yield 31 complexes with a total of 613 proteins.

We checked robustness using a bootstrapping procedure in which
a fraction α of edges are randomly rewired according to the degree-
consistent configurational model (Karrer et al., 2008). We used
α=0.01 and performed 500 bootstraps, with ∼80% co-membership
conserved across bootstraps at each snapshot.

4.2.1 Macro-view of YMC complexes We recovered 31 dynamic
complexes with at least 3 proteins and bootstrap co-membership
∼80% (Fig. 3). Many of the complexes have cluster-specific gene
ontology (GO) keywords with P-value ≤0.05. Organizing clusters
by average gene expression at each time point separates those that
are active in each phase. RB clusters, #1 to #10, are related to cell
cycle checkpoints and mitochondrial translation. OX clusters, #11
to #20, include ribosome metabolism, DNA replication/repair, and
translation. RC clusters, #23 to #31, include stress response and
transport.

Most of the complexes can be matched across the entire time
course, but some disappear then reappear. An example is complex
#4, annotated for DNA repair that is most active at the end of each
12-point cycle. This behavior required the MATCH-EM algorithm

i44



Copyedited by: GS MANUSCRIPT CATEGORY:

[11:21 31/5/2012 Bioinformatics-bts211.tex] Page: i45 i40–i48

How networks change with time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

RbRbRc Rc Rc Rc Rc OxOxOxRbRbRbRbRc Rc Rc Rc Rc OxOxOxRbRbRbRbRc Rc Rc Rc Rc OxOxOxRbRb

Time points

C
lu

st
er

s

  4

  8

 16

 32

Size

 64 and above

−2.0

−1.3

−0.7

0.0

0.7

1.3

2.0

Expression

chromosome segregation; endosome transport; regulation of cell cycle

transcription elongation, DNA−dependent; transcription from RNA polymerase II promoter

transcription elongation, DNA−dependent; transcription from RNA polymerase II promoter

protein phosphorylation; DNA replication; DNA repair

regulation of cell cycle; protein phosphorylation; invasive growth in response to glucose limitation

mitochondrial translation

mitochondrial translation

mitochondrial translation; DNA recombination

DNA replication; protein phosphorylation; DNA repair

DNA replication; DNA repair

ribosomal subunit export from nucleus; transcription elongation, DNA−dependent

translational initiation; regulation of translation

translational initiation; regulation of translation

rRNA processing; RNA modification

transcription from RNA polymerase II promoter; rRNA processing

ribosomal large subunit biogenesis; cytoplasmic translation

transcription from RNA polymerase II promoter; mRNA processing

rRNA processing; ribosomal small subunit biogenesis

transcription from RNA polymerase II promoter; transcription from RNA polymerase III promoter

ribosomal subunit export from nucleus; invasive growth in response to glucose limitation

tRNA processing; rRNA processing

cell budding

protein folding; endocytosis; response to osmotic stress

exocytosis; endocytosis; protein folding

endocytosis; response to osmotic stress; response to heat

peroxisome organization

 1

 2

 3

 5

 6

10

11

12

16

21

23

25

28

29

 4

 8

 9

13

15

17

18

19

26

30

31

 7

14

20

22

24

27

Fig. 3. Dynamic network clustering reveals a detailed global view of periodic protein complexes during the yeast metabolic cycle. Squared nodes represent
clusters matched across time points, showing only clusters having at least three genes/proteins. Cluster order: clusters are organized by peak activity in RB
phase (#1 to #10), OX phase (#11 to #20) and RC phase (#23 to #31). (Color code of cluster index: predicted clusters were matched with known complexes (see
the text); cluster indexes are differently color-coded by Jaccard correlation; yellow for a good match (Jaccard correlation≥80%), green for moderate similarity
(correlation ≥20% and <80%), and gray for poor overlap (correlation <20%)). Node size: number of genes/proteins contained in this cluster. Node color:
average standardized gene expression level at time t. Edge width: Jaccard coefficient (or coherence) between clusters of adjacent snapshots. Gene Ontology:
cluster-specific GO keywords were identified by hypergeometric tests. The right panel shows the top three enriched GO categories with P-value ≤0.05

for globally consistent clusters, and would have been impossible to
resolve given matching to nearest neighbors alone.

We ascertained whether the complexes predicted by our methods
correspond to known complexes obtained from manual curation,
CYC2008, or from high-throughput experiments, YHTP2008 (Pu
et al., 2009). The 408 manual and 400 high-throughput complexes
were filtered to retain the periodic proteins from YMC data, and then
the catalog complex with the best Jaccard correlation was identified
for each predicted complex. Of the 31 predicted complexes, 14 are
poorly represented in the catalogs (Jaccard correlation <20%), 11
are only moderately similar (correlation ≥20% and <80%) and 6
have a good match (correlation ≥80%). The predicted complexes
with poor overlap often recombine subunits from multiple catalog
complexes (see #16 below).

To test the effects of the filtering, we also performed clustering
using all 63 410 BioGrid interactions and including all genes
with YMC data, periodic or non-periodic, yielding a network
of 54 758 interactions among 4987 proteins. Clustering this
network and retaining complexes with at least three proteins and
edge density >0.1 yields 20–40 clusters at each snapshot with
900±100 proteins included. Most clusters in the unfiltered network
contains a high-degree core from the filtered network. Occasionally
multiple cores are combined by low-degree connections, making
the cluster count smaller than in the filtered network. The
overlap with protein complex catalogs is similar to the unfiltered
network.

4.2.2 Micro-views of YMC dynamics The protein complex
dynamics provide a rich view of YMC providing new biological
insight, as demonstrated by in depth analysis of clusters #7, the
mitochondrial ribosome and cluster #16, the nuclear pore.

Mitochondrial ribosome complex (#7) The mitochondrial ribosome
is generally assumed to be RB-specific, with transcription switched
on briefly at the transition from OX to RB (Fig. 4). This
complex contains primarily RSMs (ribosomal small subunit of
mitochondrias) and MRPs (mitochondrial ribosomal proteins),
known components of the mitochondrial ribosome (Saveanu, 2001).

Underneath this general pattern, however, RSM22 shows
systematic expression ahead of other components. At time
points t= 9, t= 20, and t= 32, RSM22 is active whereas other
proteins are not transcribed. RSM22 is a nuclear-encoded putative
S-adenosylmethionine (SAM) methyltransferase (Petrossian and
Clarke, 2009), and methylation of the 3′-end of the rRNA of the
small mitochondrial subunit is required for the assembly and stability
of the mitochondrial ribosome (Metodiev et al., 2009). Deleting
RSM22 yields a viable cell with non-functional mitochondria.
Together, these results suggest the hypothesis that early expression of
RSM22 may provide the methylation activity necessary for assembly
of the mitochondrial ribosome.

Nuclear pore complex (#16) Most genes in the nuclear pore
complex are OX-responsive and the complex is most active at
t=9, 20, 32 (Fig. 5). Unlike the mitochondrial ribosome, where

i45



Copyedited by: GS MANUSCRIPT CATEGORY:

[11:21 31/5/2012 Bioinformatics-bts211.tex] Page: i46 i40–i48

Y.Park and J.S.Bader

t=1 [RB] t=2 [RB] t=3 [RC] t=4 [RC] t=5 [RC] t=6 [RC] t=7 [RC] t=8 [OX] t=9 [OX] t=10 [OX] t=11 [RB] t=12 [RB]

t=13 [RB] t=14 [RB] t=15 [RC] t=16 [RC] t=17 [RC] t=18 [RC] t=19 [RC] t=20 [OX] t=21 [OX] t=22 [OX] t=23 [RB] t=24 [RB]

t=25 [RB] t=26 [RB] t=27 [RC] t=28 [RC] t=29 [RC] t=30 [RC] t=31 [RC] t=32 [OX] t=33 [OX] t=34 [OX] t=35 [RB] t=36 [RB]

[RB]

RSM22

RSM7

RSM26

RSM25

MRP4

RSM27

MRPS35

MRP13

RSM23

RSM18

MRPS28

MRP1

RSM24

EHD3

RSM10

MRPS5

MRPS9

MRP21

MRPS16

MRP51

PET123RSM19

NAM9

MRPS18

MRPS17

[RC]

RSM22

RSM7

RSM26

RSM25

MRP4

RSM27

MRPS35

MRP13

RSM23

RSM18

MRPS28

MRP1

RSM24

EHD3

RSM10

MRPS5

MRPS9

MRP21

MRPS16

MRP51

PET123RSM19

NAM9

MRPS18

MRPS17

[OX]

RSM22

RSM7

RSM26

RSM25

MRP4

RSM27

MRPS35

MRP13

RSM23

RSM18

MRPS28

MRP1

RSM24

EHD3

RSM10

MRPS5

MRPS9

MRP21

MRPS16

MRP51

PET123RSM19

NAM9

MRPS18

MRPS17

−2.00

−1.33

−0.67

0.00

0.67

1.33

2.00

Expression

Fig. 4. Cluster #7, mitochondrial ribosome. Top: cluster members for the 36 gene expression snapshots. Bottom: Average expression for the three YMC
phases. Node color: standardized gene expression level. Gene names were colored red or blue if expression values are above 0.5 or −0.5 respectively
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Fig. 5. Cluster #16, nuclear pore complex. Top: cluster members for the 36 gene expression snapshots. Bottom: Average expression for the three YMC phases.
Node color: standardized gene expression level. Gene names were colored red or blue if expression values are above 0.5 or −0.5 respectively

the entire complex is generally transcribed in synchrony, this
complex shows a smaller co-expressed core that is complemented
with transient members during the OX phase. While it combines
subunits of several annotated complexes, it has poor overlap with
any single complex. Its best overlap is a 15% Jaccard correlation
with high-throughput complex CID15 from YHTP2008.

The co-expressed core includes nuclear pore complex (NPC) and
Karyopherin (KAP) proteins (Pemberton et al., 1998; Strambio-De-
Castillia et al., 2010). The physical structure of the NPC comprises

mostly NUP proteins. Among the proteins included in cluster
#16, NUP2, NUP100 and NUP116 shape the Phe-Gly passage of
the NPC (Strambio-De-Castillia et al., 2010). In contrast, KAP
proteins are not considered structural but rather mediate export
and import of RNA and proteins (Grünwald et al., 2011; Strambio-
De-Castillia et al., 2010). KAP123 and PSE1 specifically transport
ribosomal proteins (Schlenstedt et al., 1997). During the OX phases,
SRP1 and SXM1 are additionally recruited. These KAP proteins
recognize either nuclear localization sequences (NLS) or nuclear
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export sequences (NES) and direct transport into or out of nucleus
(Pemberton et al., 1998).

Other transient memberships suggest additional hypotheses.
RRP4 and RRP42 are a part of the exosome that edits RNA
molecules 3′→5′ (Mitchell et al., 1997). Our clustering predicts
that these proteins transition between the nuclear pore and other
complexes during the cycle. CSL4 was recently reported to interact
with RNA and is a possible exosome component (Liu et al., 2006).
LHP1 is a La protein that binds to RNA polymerase III transcripts
and small ribonuclear proteins (snRNPs), working as a molecular
chaperone to protect and terminate the 3′-end of transcripts (Yoo and
Wolin, 1994). These results are consistent with the hypothesis that
RNA processing is tightly coupled to transport through the nuclear
pore to the cytoplasm (Strambio-De-Castillia et al., 2010), but also
suggest that dynamic reorganization of the nuclear pore occurs
during the metabolic cycle. Additional evidence is the appearance
of a second expression peak involving a subset of nuclear pore
components at the start of the RB phase, which has not been
previously described.

5 DISCUSSION
Dynamic network clustering is an increasingly important problem
across diverse disciplines. Our algorithm optimizes the likelihood
modularity, which is asymptotically consistent (Bickel and Chen,
2009). Other machine learning and physics approaches are based on
probabilistic graphical models such as Latent Dirichlet Allocation
(LDA, Airoldi et al., 2008; Ball et al., 2011; Blei et al., 2003).
Dynamic extensions have been proposed (Fu et al., 2009), but prior
to our work have been impractical except for very small networks
with around 100 vertices and under 10 latent classes. Even efficient
variational methods such as VBM (Hofman and Wiggins, 2008)
have scaling that is far worse than a near linear or at least quadratic
run time in the number of nodes and edges.

Our DHAC algorithm scales as O(EJ lnV ), the same as HAC
(Park and Bader, 2011), with a constant prefactor for the number of
time points. This provides an excellent trade-off for genome-scale
problems. Networks considered here with 2000 vertices required
about 5 min on a single 2 GHz processor. A full-genome network
with 10 000 to 100 000 vertices could be analyzed in a day to a week
on single processor, but in practice would be much faster because
each time point could be run in parallel.

The cluster matching algorithm MATCH-EM is a second
contribution that provides a solution to the general problem of
tracing the evolution of a set of groups or clusters over time.
It generalizes a previous belief propagation method for bipartite
matching (Bayati et al., 2006). The bipartite max-product algorithm
is exact with a worst-case run-time of O(K3) for K classes. Our
generalization has an additional linear factor of the number of time
points. While it is no longer guaranteed to converge to the exact
solution, for biological networks here it converges rapidly with good
results.

Our methods applied to real biological data provide new insight.
Many transcription time course experiments reveal waves of
correlated gene expression, with no standard methods to parse a
large set of correlated genes into well-defined protein complexes.
The DHAC method is a general solution to this problem and
provides a multi-resolution view of dynamic expression and
organization of the proteome. Focusing on specific predicted

complexes reveals possible mechanisms of regulation and control.
Our analysis of the yeast metabolic cycle identifies protein
complexes with asynchronous gene expression, which suggests
RSM22 as an RNA methyltransferase whose early expression may
be required to assemble and stabilize the mitochondrial ribosome.

Our methods permit proteins to switch between complexes over
time, which we see in the dynamics of the nuclear pore. Hierarchical
methods like DHAC also provide a natural multi-scale description
of complexes, subcomplexes and proteins. A separate challenge is
introducing mixed membership, with the same protein serving as a
subunit in two distinct protein complexes (Palla et al., 2005).

Several improvements to DHAC are possible. Previous work
showed that the hierarchical structure inferred from static networks
corresponds to levels of biological organization, pathway to
complex to subcomplex and the fine structure underneath a
collapsed complex can also be used to improve link prediction
(Park and Bader, 2011). In the current work, however, we lacked
a method to match the dynamically evolving hierarchical structure
across snapshots. Consequently the focus here is on the bottom-level
clusters rather than the hierarchical structure.

This work assumes that the population average transcription
data is a good representation for the transcriptional state of each
cell. In reality, individual cells may differ from the mean. In the
yeast metabolic cycle, for example, about half of the cells undergo
cell division per metabolic cycle, potentially yielding two distinct
cell populations. More advanced methods have been proposed to
increase resolution and drive toward single-cell models (Baym
et al., 2008).

Direct measurements of protein abundance through quantitative
mass spectrometry could improve the analysis and would be
intriguing to combine with expression data. For transcription data,
protein abundance may be better estimated by a transcription-
translation model, Ṗ(t)=βR(t)−αP(t), where R(t) is the
measured transcriptional abundance, P(t) is the abundance of the
corresponding protein and β and α are production and degradation
rates. This model generates exponentially weighted smoothing of
protein abundance, similar to the exponential kernel we used for
smoothing. Since the exponential smoothing kernel already works
well, we anticipate that results should be robust to choices of β and
α, with the possibility of using consensus values for most proteins.
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