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Background: Pyroptosis, as an inflammatory form of cell death, is involved in many
physiological and pathological processes. Neuroblastoma is the most common extra-
cranial solid tumor in children. In this study, the relationship between pyroptosis and tumor
microenvironment in neuroblastoma was systematically studied.

Methods: We integrated four datasets of neuroblastomas. Through robust clustering of
the mRNA expression profiles of 24 pyroptosis-related genes, a total of three pyroptosis
patterns were identified. We then constructed a novel scoring method named as
pyroscore to quantify the level of pyroptosis in neuroblastoma. Multi-omics data and
single-cell RNA sequencing were used to accurately and comprehensively evaluate the
effectiveness of pyroscore. Clinical data sets were used to evaluate the use of pyroscore to
predict the responsiveness of immune checkpoint treatment.

Results: High pyroscore was associated with good prognosis, immune activation, and
increased response to checkpoint blockade immunotherapy. Multivariate Cox analysis
revealed that the pyroscore was an independent prognostic biomarker and could increase
the accuracy of clinical prediction models. Etoposide, a drug picked up by our analysis,
could increase the sensitivity of neuroblastoma cells to pyroptosis. External verification
using four cohorts of patients who had received immunotherapy showed that high
pyroscore was significantly associated with immunotherapy treatment benefit.

Conclusions: Taken together, this study revealed that pyroptosis-related gene network
could quantify the response of neuroblastoma to immune checkpoint blockade therapy
org March 2022 | Volume 13 | Article 8457571
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and prognosis, and it may be helpful for clinical practitioners to choose treatment strategies for
neuroblastoma patients.
Keywords: neuroblastoma, pyroptosis, immunotherapy, prognosis, etoposide
INTRODUCTION

Neuroblastoma (NB) is an embryonic tumor that arises from the
developing sympathetic nervous system. It is the most common
extra-cranial solid tumor of childhood and the most common
cancer in the first year of life, occupying up to 13% of all pediatric
cancer fatalities (1, 2). During the past 30 years, increasingly
revolutionary, intensive therapeutic strategies have been
developed to treat NB patients (3), and immunotherapy is a
particularly promising therapy for fighting against NB (4–7).
Although immunotherapy has shown exciting therapeutic
prospect, not all patients receiving immunotherapy benefit from
it (8, 9). The complexity and heterogeneity of tumor
microenvironment (TME) is one of the factors that influence the
therapeutic effect. TheTME inNB includes not only tumor cells but
also vascular endothelial cells, cancer-associatedfibroblasts (CAFs),
mesenchymal stromal cells (MSCs), Schwann cells, and infiltrating
immune cells (10). Extensive studies have revealed that the TME
could influence the progression of NB and the response rate to
immunotherapy (11). Tumor-infiltrating immune cells can even
indicate the prognosis of NB (12, 13).

Pyroptosis is defined as gasdermin-mediated programmed
necrosis (14, 15). A great deal of evidence shows that pyroptosis
can affect thedevelopment of tumors (16, 17).More andmore studies
have proved that pyroptosis plays an essential role in tumor cell
proliferation, invasion, and metastasis, hence affecting the prognosis
of cancer. However, the relationship between pyroptosis and tumors
is diverse in different tissues and genetic backgrounds (18).

To date, the role of pyroptosis-related genes in neuroblastoma
remains unclear. Herein, we identified three patterns of
pyroptosis among 964 tumors from patients with neuroblastoma
and systematically associated them with pathological features and
immune cell infiltration. We then developed pyroptosis score
(pyroscore) to quantify pyroptosis patterns. Finally, four
immunotherapy cohorts were used to confirm that patients with
higher pyroscore was associated with significant therapeutic
advantages and clinical benefits. Thus, the pyroscore is proved to
be a powerful prognostic biomarker and an accurate predictor for
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s, cancer associated fibroblasts; MSCs,
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responsiveness to immunotherapy, and it may be helpful to guide
clinical medication for neuroblastoma patients.
MATERIALS AND METHODS

Neuroblastoma Data Sets and
Data Preprocessing
We collected four neuroblastoma expression profiles containing
survival data from public databases: TARGET-NB (RNA-seq),
GSE49710 (microarray), GSE16476 (microarray), and E-MTAB-
8248 (microarray). Altogether, 964 NB samples with normalized
gene expression and clinical information were procured for
further analysis. The Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) data are hosted by
Genomic Data Commons (GDC); therefore, the neuroblastoma
data TARGET-NB was downloaded from the GDC Data Portal
(https://portal.gdc.cancer.gov/). The raw data of GSE49710 and
GSE16476 were downloaded from the Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The raw
data of E-MTAB-8248 was downloaded from ArrayExpress
database (https://www.ebi.ac.uk/arrayexpress/). In order to
make the TARGET-NB data more consistent with the other
three microarray data sets, we converted fragments per kilobase
of transcript per million fragments mapped (FPKM) to
transcripts per million (TPM) values (19). The combat
algorithm of the sva R package (20) was used to integrate all
samples. Single-cell RNA-seq data of neuroblastoma was
obtained from GSE137802. The workflow of this article is
shown in a diagram (Supplementary Figure S1). It provides
an overview of procedures used in this project.

Consensus Clustering for
Pyroptosis-Related Genes
A consensus clustering algorithm (based on Euclidean distance
and Ward’s linkage) was applied to determine the number of
clusters of 24 pyroptosis-related genes (21) in meta cohort, and
the optimal cluster number was determined through the
proportion of ambiguous clustering (PAC) algorithm. The
clustering process was completed by the ConsensuClusterPlus
R package (22) and iterated 1,000 times to ensure the stability of
the results.

Immune Infiltration Inference
We used three algorithms to infer tumor immune infiltration:
ESTIMATE (23), CIBERSORT (24), and ssGSEA (25).
CIBERSORT is a tool for deconvolution of the expression
matrix of human leukocyte subtypes from bulk tissue gene
expression profiles based on the principle of linear support
vector regression. A 547 signature genes matrix containing 22
March 2022 | Volume 13 | Article 845757
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functionally defined human immune subsets (LM22) profiles
was provided as input. The data were uploaded to the
CIBERSORT web portal (http://cibersort.stanford.edu/)
and iterated 1,000 times to get the results. ESTIMATE is a
tool that uses gene expression signatures to infer the fraction
of stromal and immune cells in tumor samples. The score
derived from ssGSEA reflects the degree to which the input
immune gene signature is coordinately up- or downregulated
within a sample.

Dimension Reduction and Generation
of Pyroscore
In order to obtain the differentially expressed genes (DEGs) of
different pyroptosis groups, we carried out the following steps:
first, we conducted a pairwise difference analysis among the three
groups using limma package (26) and took the intersection to get
the preliminary gene list. DEGs were determined by the limma
package, which used linear modeling and empirical Bayesian
methods to obtain posterior variance estimates. |log2FC|>1 and
adjusted p<0.05 (Benjamini–Hochberg correction) were used to
set the threshold. Then, we divided these genes into positively or
negatively related gene sets. Finally, the Boruta algorithm was
used to perform dimension reduction to obtain the de-
redundant DEGs.

For the DEGs expression profile, the first principal component
was extracted to serve as the signature score. Principal component
analysis (PCA) transforms the original data into a new coordinate
system through orthogonal linear transformation. The first
principal component explains the maximum variance of the
original data and removes noise and redundancy while retaining
important information. The final pyroscore of each sample was
calculated by the following formula:

Pyroscore = SPC1GPPGs − SPC1BPPGs

Functional and Pathway
Enrichment Analysis
Over-representation analysis (ORA) was used to determine the
enrichment pathway by using a list of genes through the
clusterProfiler R package (27). Gene ontology (GO) terms with
adjusted p-values <0.05 were selected. In addition, gene set
enrichment analysis (GSEA) (28) was used to detect global
changes of all genes detected, so it can identify small but
coordinated ways. The enrichplot R package (https://github.
com/GuangchuangYu/enrichplot) was used to visualize the
results. At the same time, gene set variation analysis (GSVA)
was used to calculate the score of the biological process gene set
constructed by Mariathasan et al. (29).

Genomic Data Collection
and Somatic Mutation
The TARGET-NB project included genome sequencing data.
These files were downloaded through GDC Data Portal (https://
portal.gdc.cancer.gov/). The somatic mutation landscape and the
mutation frequency of each gene of the high and low pyroptosis
group was realized by the maftool R package (30).
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Drug Sensitivity Prediction
In order to predict the possible effective chemotherapy drugs, we
collected the drug sensitivity data from two databases: Cancer
Therapeutics Response Portal (CTRP v.2.0) and PRISM
Repurposing dataset (19Q4). CTRP and PRISM provide the
area under the dose–response curve (area under the curve,
AUC) values as a measure of drug sensitivity (31). We used
the pRRophetic R package (32) to construct a ridge regression
model to predict the AUC value according to cell line gene
expression profile of two databases and the meta cohort gene
expression profile. The role of candidate drugs was further
evaluated by the Connectivity Map (CMap) and displayed
therapeutic targets. By comparing the DEGs with the reference
data sets, the correlation score (−100–100) was obtained.
Negative values indicated the potential therapeutic effects of
the drug.

Immune Checkpoint Treatment Response
Tumor Immune Dysfunction and Exclusion (TIDE) (13) is an
algorithm for predicting immunotherapy response. It is a
computational framework developed to evaluate the potential
of tumor immune escape from the gene expression profiles of
cancer samples. The expression profile was uploaded to the website
of TIDE (http://tide.dfci.harvard.edu/), and the immunotherapy
response (response or not response) was predicted. The website’s
results also yielded immune dysfunction score and immune
exclusion score, MDSC score, etc. to evaluate the robustness of
immunotherapy response and immune evasion mechanisms
comprehensively. Submap inferred drug responsiveness by
comparing transcriptome similarities between the NB cohort and a
cohort receiving immunotherapy.
Cell Culture and Pyroptosis Assays
Neuroblastoma cell line SH-SY5Y was cultured and treated with
dimethyl sulfoxide (DMSO) (control) or 30 mm/60 mm etoposide
(48 h) in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum, penicillin–
streptomycin–glutamine, nonessential amino acids, sodium
pyruvate, and 2-mercaptoethanol to induce cell death. The
pyroptosis state of the cells was determined by microscopy and
lactate dehydrogenase (LDH) release assay using the LDH
Cytotoxicity Assay Kit (C0017; Beyotime) according to the
manufacturer’s protocol. The percentage of LDH release was
calculated as follows: % LDH release = (compound-treated LDH
activity − spontaneous LDH activity) (maximum LDH activity −
spontaneous LDH activity) − 1 × 100. Calcein-AM staining was
used to quantify living and dead cells for the cell death assay.
Calcein-AM can easily penetrate the cell membrane and then
form calcein, which remains in the cell and observed as green
fluorescence. Pyroptotic cells form membrane pores; then, the
green fluorescence disappears. SH-SY5Y cells were stained with
2 mM calcein-AM. The images were acquired using a
fluorescence microscope. Western blot analysis was performed
using antibodies against Caspase-3 (CST, 9662S), DFNA5/
GSDME (Abcam, ab215191), and GAPDH (Beyotime, AF1186).
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Transcriptome and Clinical Data Sets With
Immune Checkpoint Blockade
Four cohorts (IMvigor210, GSE91061, GSE78220, and
GSE35640) that had received immune checkpoint blockade
(ICB) treatment were downloaded to verify the predictive value
of the pyroscore. In IMvigor210, patients with metastatic
urothelial cancer were treated with an anti-PD-L1 agent
(Atezolizumab). The expression profile and clinical data are
packaged into R package CoreBiologies (29) based on the
Creative Commons 3.0 License. GSE91061, GSE78220, and
GSE35640 were download from GEO. In GSE91061, patients
with advanced melanoma were treated with anti-PD-1 agent
(Nivolumab). In GSE78220, patients with metastatic melanoma were
treated with anti-PD-1 agent. In GSE35640, patients with metastatic
melanoma were treated with MAGE A3 immunotherapeutic.

Statistical Analysis
All statistical methods were executed on R software (v4.0.2). For
the comparison of two or more continuous variables, the
unpaired Student’s t-test was performed for the data that obey
the normal distribution, and the Wilcoxon test or Kruskal–
Wallis test was performed for non-normally distributed data.
Correlation of two variables was measured by Spearman’s rank-
order correlation. Two-sided Fisher’s exact test was used to
measure whether there was a difference in the rate between
groups. We standardized the data by the z-score method before
their compilation. Gene ordering for GSVA is based on the
log2FC between two pyroptosis groups. Survival analysis was
performed by the survival package. Log-rank test was used to
determine whether there was a difference in survival time
between groups. The appropriate cut point was determined by
the X-tile software. The univariate and multivariate Cox
regression model was used to determine independent
prognostic factors by using the survminer package, and the
results was visualized by ggforest package. Two-tailed p<0.05
was considered as statistically significant.
RESULTS

Determination of the Association Between
Pyroptosis-Related Genes and Prognosis
in NB
In order to evaluate the possibility that pyroptosis-related genes
could be used to predict prognosis of NB patients, we identified a
total of 24 pyroptosis-related genes (21). These genes include
NLRs and inflammasome adaptors (NLRP3, PYCARD, etc.),
caspases (CASP3, CASP8, etc.), gasdermins (GSDMB,
GSDMD, and GSDME), and pro-inflammatory cytokines
(IL1B, IL6, TNF, etc.), which is a comprehensive list that
reflects levels of pyroptosis. We then collected data of 964 NB
patients with survival time from four data sets (TARGET-NB,
GSE49710, GSE16476, and E-MTAB-8248) and formed a meta-
cohort. When the 24 pyroptosis-related genes were run against
each other in the data sets, we found a good positive correlation
between these genes (Figure 1A), which indicates that these
Frontiers in Immunology | www.frontiersin.org 4
genes may play the same role together. Next, we performed
unsupervised consensus clustering for mRNA expression profiles
of the 24 pyroptosis-related genes in the meta-cohort and
generated three groups of patients (Figure 1B; Supplementary
Figures S2A, SB) with group B having the lowest overall
expression of the pyroptosis-related genes. The three groups
identified above had significant differences in survival
(Figure 1C) with group B having the lowest survival probability.
To further explore themolecular basis andvisualize the relationship
among the three groups defined by the pyroptosis-related genes,
samples were reduced to two dimensions using UniformManifold
Approximation and Projection (UMAP) analysis based on the top
3,000 most variable protein-coding genes. The results confirmed
that the three groups defined by the pyroptosis-related genes can be
clearly distinguished (Figure 1D).

Next, we explored the tumor microenvironment in the three
groups. We used the ESTIMATE algorithm to infer immune
scores and tumor purity for the three groups (Supplementary
Table S1). Pyroptosis group B had the lowest immune score and
the highest tumor purity (Figure 1E). To assess immune cell
infiltration in detail, we used two algorithms: CIBERSORT and
ssGSEA. The results of CIBERSORT are organized into four
categories (33): total lymphocytes, total dendritic cell, total
macrophage, and total mast cell. Pyroptosis group B, which
had the lowest overall expression of pyroptosis-related genes
and the lowest survival probability, was characterized by a
significantly lower density of lymphocytes and a significantly
higher infiltration of macrophages and total mast cells
(Supplementary Figure S2C). The results of both CIBERSORT
and ssGSEA further showed that pyroptosis group B exhibited
low infiltration of CD8+ T cells, memory resting CD4+ T cells,
and activated NK cells, while the scores for inhibitory cells such
as Tregs were higher (Supplementary Figures S2D, E). The
overall inactive/inhibitory immune microenvironment of tumors
in group B was consistent with the lowest survival probability of
patients in the group. The results clearly showed that there is an
association with pyroptosis and active state of immune
microenvironment in NB patients.

Development of the Pyroptosis Signature
and Functional Annotation
To identify the underlying biological characteristics of each
pyroptosis group, we extracted the DEGs among the three
groups through the limma package. A total of 910 DEGs had
been identified, which were used to cluster patients at genetic
level (Supplementary Figures S3A–C, Supplementary Table
S2). Venn diagram showed the number of DEGs among the three
clusters (Supplementary Figure S3D). We visualized the
changes between pyroptosis groups identified in the previous
section (Figure 1B) and the newly generated clusters using a
Sankey diagram (Supplementary Figure S4A) and found that
favorable consistency between the two sets of grouping could be
confirmed (c2 tests, p<2.2×10−16). Next, we applied the Boruta
algorithm to reduce the dimensionality and de-redundancy of
DEGs. A total of 436 most representative genes out of 910 DEGs
were identified finally and then used to construct our scoring
system. We divided the 436 most representative genes into two
March 2022 | Volume 13 | Article 845757
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signatures according to their correlations with the clusters
(Figure 2A). The genes that were positively related to the
clusters were named as good prognosis pyroptosis genes
(GPPGs, 352 genes) because their expressions were higher in
clusters 2 and 3 that had much better overall survival compared
with cluster 1 (Figure 2B), while the genes that enriched in
cluster 1 that had the lowest overall survival were termed as bad
prognosis pyroptosis genes (BPPGs, 84 genes) (Supplementary
Table S3). Hierarchical clustering results confirmed the division
between GPPGs and BPPGs (Supplementary Figure S4B). The
results of survival analysis shown by the Kaplan–Meier plotter
suggested that there were considerable differences among the
three clusters of patients. The patients in cluster 1 had the
shortest overall survival compared to those of the other two
clusters (log-rank test, cluster 1 vs. cluster 2, p<0.0001; cluster 1
vs. cluster 3, p<0.0001; Figure 2B). UMAP analysis confirmed
that the three clusters were separated (Figure 2C).

In order to systematically explain the biological functions of
GPPGs and BPPGs, GO analysis was performed by the
clusterProfiler R package (Supplementary Table S4). The
GPPGs, which were positively correlated with clusters 2 and 3
that had better prognosis were mainly enriched in the immune-
related pathways, especially for the activation of T cells and
antigen processing and presentation (Figure 2D). On the
contrary, BPPGs were enriched in the regulation of cell cycles,
Frontiers in Immunology | www.frontiersin.org 5
which are essential for tumor progression and deterioration
(Figure 2D). We checked the relationship between pyroptosis-
related genes (24 genes in Figure 1A) and the final 436 DEGs
that defined GPPGs and BPPGs and found seven genes in
common. There was an overlap between the pyroptosis-
related genes and the DEGs enriched in immune-related
pathways (Supplementary Figure S4C). Expression pattern
analysis of the three clusters revealed that CASP1, CASP4,
CASP5, GSDMD, NLRP3, and PYCARD had the same
expression pattern as GPPGs, and IL6 had the same
expression pattern as BPPGs (Supplementary Figure S4D).
ESTIMATE results showed that cluster 1 had the lowest
immune score and the highest tumor purity (Supplementary
Figure 2E). Correspondingly, samples in the three clusters
exhibited different immune cell infiltration landscapes
(Supplementary Figures S4E, F). Cluster 1 had the lowest
infiltration of CD8+ T cells, memory resting CD4+ T cells, and
activated NK cells, and had an increase in macrophages, which
resembles the “immune desert” phenotype reported previously
(34). Cluster 2 was characterized as the “immune exhausted”
phenotype (35) because it exhibited the highest lymphocyte
infiltration; however, the expressions of molecules that are
essential for T-cell exhaustion, including PDCD1 (PD-1),
CD274 (PD-L1), CTLA4, and LAG3, were higher as
well (Figure 2F).
A B

D EC

FIGURE 1 | Identification of three pyroptosis groups with different survival status and immune infiltration conditions in NB. (A) Correlation of mRNA expression of 27
pyroptosis-related genes. (B) Consensus clustering heatmap of 27 pyroptosis-related genes. (C) Kaplan–Meier curves for overall survival (OS) of all NB patients with
pyroptosis groups (log-rank test, p < 0.0001, * p < 0.05; **** p < 0.0001; ns, not significant). (D) UMAP of the mRNA expression profiles of pyroptosis-related genes
from the NB patients in the meta cohort. (E) The value of ESTIMATE score in three pyroptosis groups (Kruskal–Wallis test, ****p < 0.0001). The thick line represents
median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range).
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Construction of Pyroscore Based on PCA
To develop a precise and brief system to measure the genetic
interaction network that could explain the correlation of
pyroptosis to prognosis in NB, the expression data of the 436
DEGs that defined GPPGs and BPPGs were used to construct a
scoring system. We implemented the PCA algorithm to get an
individual score named as pyroscore. According to the two gene
signatures (GPPGs and BPPGs) mentioned above, the first
principal components were taken, respectively. We first tested
pathway signatures in the NB dataset to characterize the roles of
SPC1GPPGs and SPC1BPPGs individually. It can be observed that
Frontiers in Immunology | www.frontiersin.org 6
SPC1GPPGs and SPC1BPPGs were related to different pathways,
such as SPC1GPPGs was mainly related to immunity, while
SPC1BPPGs was mainly related to pathways that are beneficial
to tumor development including glycolysis and Wnt
(Supplementary Figure S5A). The pyroscore was calculated by
subtracting SPC1BPPGs from SPC1GPPGs, and pyroscore score
was much better than SPC1GPPGs and SPC1BPPGs alone to
predict prognosis (Supplementary Figures S5B–D). The final
value of pyroscore ranged from −0.155 to 0.152. After computing
the quantitative score of each patient, we observed significant
differences in the pyroscore among the three clusters of patients.
A

B

D

E F

C

FIGURE 2 | Development of the pyroptosis signature and functional annotation. (A) Consensus clustering of common DEGs among three pyroptosis groups to classify
patients into three clusters: Clusters 1–3. (B) Kaplan–Meier curves of OS time for the three clusters of patients (log-rank test, p < 0.0001, ** p < 0.01; **** p < 0.0001).
(C) UMAP plot of three clusters of patients. (D) GO enrichment analysis of the two pyroptosis-relevant signature genes: GPPGs on the left, BPPGs on the right. The x-
axis indicates the number of genes within each GO term. (E) The value of ESTIMATE score in three clusters of patients (Kruskal–Wallis test, ****p < 0.0001). (F) Immune-
checkpoint-relevant gene expression in three clusters of patients (Kruskal–Wallis test. *p < 0.05; ****p < 0.0001; ns, not significant).
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International Neuroblastoma Staging System (INSS), Children’s
Oncology Group (COG), and MYCN amplification have been
used clinically to determine the treatment plan and predict
prognosis for NB patients. Grouping by clinical characteristics
(INSS, COG, andMYCN amplification), the results revealed that
higher pyroscore was associated with milder disease state
(Figure 3A). For example, the pyroscore levels of tumors in
INSS 1–4 gradually decrease, and the pyroscore levels of patients
in INSS 4S, which was generally considered to have a better
prognosis, were higher than those of the INSS 4 stage. The
Frontiers in Immunology | www.frontiersin.org 7
pyroscore inversely correlated with COG staging as well. Cluster 1,
which has the worst prognosis, had the lowest pyroscore (Figure 3B).

We then used the X-tile software to divide the meta-cohort
based on the pyroscore of each sample. Sankey diagram was used
to visualize the association of patients with pyroscore and the
corresponding prognosis (Figure 3C). Patients who scored high
had significant different clinical characteristics from those with
low pyroscore (Supplementary Figure S6A), especially in terms
of frequency of MYCN amplifications, which is one of the most
important molecular drivers for NB. Furthermore, the patients
A

B D

E F

G H

C

FIGURE 3 | Construction of pyroscore based on PCA. (A) Violin diagram of pyroscore levels of different clinical features (Kruskal–Wallis test, *p < 0.05; **p < 0.01;
****p < 0.0001; ns, not significant). (B) Violin diagram of pyroscore levels among the three clusters of patients (Kruskal–Wallis test, ****p < 0.0001). (C) Sankey
diagram of pyroptosis clusters in groups with pyroscore and survival outcomes. (D) Kaplan–Meier curves for high and low pyroscore patient groups (log-rank test,
p < 0.0001). (E) GSEA identified immunity-related pathways enriched in the high pyroscore group. (F) GSEA showed related pathways enriched in the low pyroscore
group. (G, H) Comparisons of the mutation landscape in the TARGET-NB cohort between groups with low and high pyroscore.
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with high pyroscore levels also had higher survival probability
(log-rank test, p<0.0001; Figure 3D) and longer event-free
survival time (log-rank test, p<0.0001; Supplementary Figure
S6B). The differences in survival curves between the high and
low pyroscore patients were also verified in small cohorts
(Supplementary Figures S6C–J). GSEA results revealed that
tumors in the high pyroscore group had gene expressions
significantly enriched in the pyroptosis pathway and many
immune-related pathways such as adaptive immune response,
antigen processing and presentation, and interferon-gamma
signaling pathways (Supplementary Figure 3E, Supplementary
Table S5), whereas the low pyroscore tumors had gene
expressions enriched in cell cycle and metabolism-related
pathways like E2F targets, MYC targets, G2/M checkpoint,
oxidative phosphorylation, and MTORC1 signaling pathways
(Figure 3F). We also examined the mutation landscapes between
patients with low and high pyroscores (Figures 3G–H). Among the
genes that had different mutation frequencies between NB samples
scored high for pyroptosis and those scored low, ALK stood out in
that its mutation frequency was much lower in the high pyroscore
samples (Supplementary Figure S6K). Since ALK gene mutation
has been proven to be a susceptibility factor and an important
molecular driver for NB (36), the fact that ALKmutation frequency
negatively correlated with pyroscore further increased our
confidence in the efficacy of pyroscore as a marker for prognosis
in NB patients.

Pyroscore Is Associated With Tumor
Immune Features
Since the above results showed that pyroscore and immunity
seemed to be highly correlated, we further explored the
relationship between them. First, through the ESTIMAT
algorithm, it was concluded that the immune score in the high
pyroscore group was significantly higher than that in the low
pyroscore group, but the tumor purity in the high pyroscore
group was lower than that in the other group (Figure 4A). Then,
we evaluated the expression levels of immune checkpoints and
immune-activity-related genes. The results revealed that most
of these genes were expressed relatively higher in the high
pyroscore group (Figure 4B). We also estimated the immune
cell infiltration both in high and low pyroscore groups,
respectively, by the CIBERSORT and ssGSEA algorithm. The
proportions of CD8+ T cells, CD4+ T cells, and activated NK
cells in the high pyroscore group were higher than those in the
other group (Supplementary Figures S7A, B). More tumor
immune characteristics were evaluated by the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm (Supplementary
Figure S7C). The results showed that the pyroscore negatively
correlated with suppressive immune cells (M2 TAM and
DMSC) and exclusion score, which is a score to evaluate
the degree of excluding T cells from infiltrating tumors
(Supplementary Figure S7D–F). In order to assess tumor-
infiltrating lymphocytes more accurately, we analyzed the
single-cell RNA-seq data of NB from dataset GSE137804
(Figure 4C; Supplementary Figure S7G). The results further
confirmed that the pyroscore of NB patients was positively
Frontiers in Immunology | www.frontiersin.org 8
correlated with the proportion of T cells and negatively correlated
with the proportion of mononuclear macrophages (Figures 4D, E).

Patients under 18 months of age are more likely to experience
spontaneous regression of tumors, which may be due to
activation of immune system (11). The survival analysis of age
groups and pyroscore groups revealed that the survival
advantage of the high pyroscore group was independent of age
grouping by 18 months (children under 18 months are more
likely to have a better outcome than older children) (Figure 4F).

In order to quantify the response rate of patients to
immunotherapy, we examined the prediction results of
TIDE algorithm for immunotherapy response in more details.
The TIDE algorithm can predict a patient’s response to
immunotherapy by computing several published markers based
on the expression profile before tumor treatment. The response
of each patient to immunotherapy (response or not response)
can be evaluated. As expected, a higher pyroscore was associated
with better response to cancer immunotherapy (two-sided
Fisher’s test, p=0.01536; Figure 4G; Supplementary Figure
S7H). By comparing the similarity with the expression profile
of a cohort that received immunotherapy, the patients in the high
pyroscore group were obviously linked with the patients who
were responsive to anti-CTLA4 therapy (p = 0.048, Figure 4H),
which suggests that pyroscore may be used to predict a patient’s
response to immunotherapy, especially immune checkpoint
inhibitors like anti-CTLA4.

Pyroscore Is an Independent Prognostic
Factor for NB
Given that the pyroscore is related to the clinical and immune
characteristics, we tried to determine its role in serving as an
independent prognostic factor for NB. First, univariate Cox
hazard analysis was applied to the pyroscore, INSS, COG,
MYCN amplifications, sex, and age grouping (Supplementary
Figure S8A). The prognostic factors with p-value <0.05 in
univariate Cox analysis were included in multivariate Cox
regression analysis. The results of multivariate Cox regression
indicated that the pyroscore was a significant protective factor
for NB (Figure 5A). Furthermore, a total of 33 cancers
(Supplementary Table S6) from The Cancer Genome Atlas
(TCGA) database were also used to evaluate the validity and
universality of the pyroscore. The pyroscore had a significant
effect on prognosis in 17 of the cancers, and in all of them, the
pyroscore performed as a protective factor (Figure 5B).

In addition, we built two models to assess the benefit of
pyroscore to predict prognosis in NB. The classic model included
the variables that are currently recognized and had significant
differences in univariate Cox analysis (INSS, COG, MYCN
amplifications, and age grouping), whereas the new model
included the pyroscore besides the four factors used in classic
model. Net reclassification index (NRI) was used to measure the
improvement of the new model in predictive efficacy. The 3- and
5-year NRI were 0.224 and 0.148, respectively, meaning that the
proportion of the new model that had been properly classified
increased by 22.4% and 14.8%. The overall improvement of the
new model was determined by Integrated Discrimination
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Improvement (IDI), and the results showed that the IDI>0 and
p<0.05 (IDI=0.012, p=0.016), which suggests that the new model
prediction was more accurate when the pyroscore was added. At
the same time, the receiver operating characteristic (ROC) curves
were executed, and the time-dependent area under the curve of
ROC (time-dependent AUC) values of the two models
(Supplementary Figures S8B, C) confirmed that the new
model was a better one.

In order to make the new model (pyroscore, INSS, COG,
MYCN amplifications, sex, and age grouping) more widely
applicable to clinical practice, we constructed a nomogram plot
to predict the survival rate of NB patients (Figure 5C). Each
patient was assigned a comprehensive score, which was
calculated by adding the corresponding scores for each variable
Frontiers in Immunology | www.frontiersin.org 9
in the nomogram plot. The accuracy and clinical usefulness of
the comprehensive score and the new model were determined by
3- and 5-year calibration curves (Figure 5D). Time-dependent
C-index curves with more time points also showed better
performances in the new model (Figure 5E). Decision curve
analyses (DCAs) of 3- and 5-year showed the net benefit
provided by each prediction factor (Figures 5F, G), with
pyroscore being a good one.

Prediction of Drug Sensitivity in
Pyroptosis Groups
Next, we tried to find drugs that were sensitive to the pyroptosis
phenotype using the pyroscore model to guide clinical
medication for NB patients. We first used two drug sensitivity
A B

D E

F G H

C

FIGURE 4 | Pyroscore is associated with tumor immune features. (A) The value of ESTIMATE score in high and low pyroscore groups (Kruskal–Wallis test,
****p<0.0001). (B) Boxplot of immune activate genes and immune checkpoint genes between high and low pyroscore groups (Kruskal–Wallis test, ***p < 0.001;
****p < 0.0001; ns, not significant). (C) UMAP plot of the major lineages of tumor-infiltrating lymphocytes (TILs) in NB. (D) Scatterplot showing the Spearman
correlation of the proportion of T cells and the pyroscore in tumor tissues. (E) Scatterplot showed the Spearman correlation of the proportion of mononuclear
macrophages and the pyroscore in tumor tissues. (F) Kaplan–Meier curves for patients stratified by both age grouping and pyroscore. (log-rank test, p < 0.0001,
high pyroscore age >18 months versus age ≤18 months; log-rank test, p < 0.0001, low pyroscore age>18 months versus age ≤ 18 months). (G) Rate of clinical
response estimated by TIDE algorithm (response and no response) in high or low pyroscore groups. (H) Heatmap visualized the response to anti-CTLA4 and anti-
PD-1 therapies between the two groups.
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databases (CTRP and PRISM) to identify drug candidates based
on AUC values. CTRP includes 299 drugs, and PRISM includes
1,285 drugs. A total of 78 drugs after the intersection of the two
databases were selected and analyzed. By correlation and
multiple variation analysis with thresholds as r>0.2 and
log2FC>0.1, 13 drugs that overlapped in the two databases
were selected at first (Figures 6A, C), and all of them had
lower AUC values in the low pyroscore group of both databases
(Figures 6B, D). We further utilized CMap to determine the
performance of drug candidates. The CMap score inversely
correlates with the potential therapeutic effect of a drug. The
CMap values of six drugs were <0, indicating their potential
ability of inducing pyroptosis in the low pyroscore group, and the
therapeutic targets of these drugs were shown as well
(Figure 6E). The above results predict that etoposide may be
the most promising drug to induce pyroptosis in NB, especially
that it has the lowest CMap score. To verify the predicted results,
we treated human NB cell line SH-SY5Y with etoposide and
successfully induced pyroptosis. The proportion of LDH release
(Figure 6F) increased significantly after etoposide treatment.
Cells treated with etoposide exhibited large bubbles emerging
Frontiers in Immunology | www.frontiersin.org 10
from plasma membrane and cell swelling (Figure 6G). Calcein-
AM staining assay also demonstrated that etoposide induced cell
death (Figure 6G). The cleavage of GSDME and the activation of
CASP3 were simultaneously detected in cells treated with
etoposide by Western blot assay (Figure 6H). Therefore,
etoposide, which was predicted by our model that had the
ability of inducing pyroptosis in NB with low pyroscore, could
induce pyroptosis in vitro.

The Pyroscore Predicts
Immunotherapeutic Benefits
ICB therapy has shown exciting clinical outcomes in cancers, and
our previous results showed robust evidence that the patients of
high pyroscore were more likely to benefit from ICB therapies.
We decided to further explore the relationship between the
pyroscore and the benefit of ICB therapy using external
cohorts. A total of four cohorts that received immune
checkpoint treatments were collected: IMvigor210, GSE91061,
GSE78220, and GSE35640. It was demonstrated in IMvigor210
(anti-PD-L1) cohort that a higher pyroscore was associated with
a significantly better prognosis (log-rank test, p=0.003) and
A
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C

FIGURE 5 | Pyroscore is an independent prognostic factor for NB. (A) Forest plot summary of the multivariable Cox analysis of the pyroscore and
clinicopathological characteristics (*p < 0.05; **p < 0.01; ***p < 0.001). (B) Forest plot showed the univariate Cox analysis of the pyroscore in the TCGA pan-cancer
analysis. (C) Nomogram plot for predicting the probability of patient mortality at 3- or 5-year OS. (D) Calibration curves of the nomogram for predicting the probability
of OS at 3 and 5 years. (E) Time-dependent c-index of the nomogram. (F, G) Decision curve analyses (DCAs) of the nomograms based on five prognosis factors for
3- and 5-year risk.
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better response to anti-PD-L1 therapy (two-sided Fisher’s exact
test, p=0.015), indicating that the patients of high pyroscore were
more likely to benefit from ICB therapy (Figures 7A, B). ROC
curve also evaluated and proved the accuracy of pyroscore in
predicting responsiveness to ICB therapy (Figure 7C,
Frontiers in Immunology | www.frontiersin.org 11
AUC=0.640). The same conclusions were found in GSE91061
(anti-PD-1) and GSE78220 (anti-PD-1) cohorts (Figures 7D–I).
In addition, the pyroscore was associated with immune-
infiltrating phenotype in the IMvigor210 cohort (Supplementary
Figure S9A). Finally, in the GSE35640 (anti-MAGE-A3) cohort, the
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FIGURE 6 | Prediction of drug sensitivity in pyroptosis groups. (A) Scatter plot of drug prediction in CTRP database. The x-axis indicates the correlation; the y-axis
indicates log2FC. (B) The results of differential drug response analysis of candidate drugs in CTRP database (Wilcoxon test, ***p < 0.001). (C) Scatter plot of drug
prediction in PRISM database. The x-axis indicates the correlation; the y-axis indicates log2FC. (D) The results of differential drug response analysis of candidate
drugs in PRISM database (Wilcoxon test, ***p < 0.001). (E) Heatmap showed CMap scores of candidate drugs and drug mechanisms of action (rows) through the
CMap database. (F) LDH release-based cell death assay (data shown as mean ± SD from three technical replicates) in SH-SY5Y cells with 30 mm/60 mm etoposide
(***p < 0.001). (G) Images of etoposide induced pyroptosis in SH-SY5Y cells. Calcein-AM staining was used for the cell death assay; green indicates living cells. (H)
Western blot analysis of proCaspase-3, cleaved caspase-3, and GSDME in SH-SY5Y cells in 48 h after treating with 30 mm/60 mm etoposide.
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pyroscore was significantly higher in the group that responded to
ICB therapy (Supplementary Figures S9B, C). Similarly, ROC
curve showed that pyroscore had a good predictability for
immunotherapy benefits (Supplementary Figure S9D). Taken
together, our data strongly suggested that the pyroscore could be
a good predictor of response to immune checkpoint
blockade treatments.
DISCUSSION

Pyroptosis that was initially studied in macrophages was
redefined in 2017 (37). It has been found that pyroptosis is
closely related to some diseases like autoimmune diseases and
Frontiers in Immunology | www.frontiersin.org 12
hearing loss (38, 39). Recently, more and more reports have
studied the role of pyroptosis in cancers, but the conclusions are
not consistent. Pyroptosis may play an anti- or pro-tumor roles
in different cancers depending on cellular background (15, 40).
On the one hand, the inflammatory mediators released during
pyroptosis are favorable for tumor cell growth and thus promote
the development of tumors. On the other hand, pyroptosis as a
type of cell death can inhibit the occurrence and growth of tumor
cells. Thus, the role of pyroptosis in tumor deserves further
study. Recent studies have demonstrated that induction of
pyroptosis in malignant cells could kill cancer cells and may
function as a tumor suppressor (41). Many studies indicate that
therapeutic regimens such as chemotherapy, radiotherapy and
immunotherapy could trigger pyroptosis in tumor, which further
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FIGURE 7 | The pyroscore predicts immunotherapeutic benefits. (A) Kaplan–Meier curves for patients with high and low pyroscore in the IMvigor210 cohort
(log-rank test, p=0.003). (B) Rate of clinical response [complete response (CR), partial response (PR), stable disease (SD), progressive disease (PD)] to
immunotherapy in high or low pyroscore groups in the IMvigor210 cohort. (C) ROC curve of the pyroscore in the IMvigor210 cohort. (D) Kaplan–Meier curves for
patients with high and low pyroscore in the GSE91061 cohort (log-rank test, p< 0.001). (E) Rate of clinical response (CR and PR with SD and PD) to immunotherapy
in high or low pyroscore groups in the GSE91061 cohort. (F) ROC curve of the pyroscore in the GSE91061 cohort. (G) Kaplan–Meier curves for patients with high
and low pyroscore in the GSE78220 cohort (log-rank test, p=0.003). (H) Rate of clinical response (CR and PR with SD and PD) to immunotherapy in high or low
pyroscore groups in the GSE78220 cohort. (I) ROC curve of the pyroscore in the GSE78220 cohort.
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potentiate its anti-tumor immunity (42, 43). In this study, we
determined the cell non-autonomous tumor suppressor effect of
pyroptosis in NB. We proposed that pyroptosis of NB cells can
trigger an immune response and is related to the benefit
of immunotherapy.

In this study, consensus clustering analysis of pyroptosis genes
wasused todetermine threepyroptosis groups,whichweredifferent
in survival time and immune cell infiltration. To further explore the
underlying molecular mechanisms of different pyroptosis groups,
we obtained differentially expressed genes among the three groups.
Three patient clusters were defined by consensus clustering of
differentially expressed genes. The cluster of patients with the
worst overall survival time had a higher proportion of suppressive
immune cells such as macrophages and Tregs. Finally, non-
redundant biomarkers were determined through the Boruta
algorithm and used to construct a pyroscore.

The complex gene network needed to be quantified by a single
indicator. Principal components analysis is a reliable machine
learning method that can reduce the dimensionality of data
through linear transformation and has been widely used for
biological quantification (44). Through the PCA algorithm, we
established a novel scoring method called pyroscore to quantify
the pyroptosis subtypes. GSEA results showed that genes in the
high pyroscore group were significantly enriched in the immune-
related pathways for active immune environment, such as T-cell
activation, adaptive immune response, and antigen processing
and presentation. Whereas in the low pyroscore group, genes
were enriched in the DNA replication and glycolysis pathways,
which were generally considered to indicate a poor prognosis
(45, 46) because increased DNA replication and glycolysis by
tumors may raise immune resistance (47). The pyroscore was
also significantly related to the clinicopathological characteristics
of NB patients. The NB staging factoring currently includes
INSS, COG, MYCN amplification, and age grouping. The
pyroscore that we constructed inversely correlates with INSS,
COG, MYCN amplification, and age grouping and is
independent of sex, suggesting it is a protective factor for NB.
When the pyroscore was included into the traditionally used
model (INSS, COG,MYCN amplification, and age grouping), the
new model showed a better predict accuracy for prognosis.

The relationship between pyroscore and tumor immunity was
evaluated from multiple perspectives. High pyroscore was
associated with high immune score, low tumor purity, and
high infiltration of CD8+ T cells/CD4+ T cells/resting dendritic
cells, which indicates that pyroptosis is associated with active
immune environment. The results from our analysis are
consistent with several recent published studies showing that
pyroptosis may induce antitumor immunity and reduce tumor
load in mouse models (15, 41, 48). It is known that NB patients
in different age groups exhibit different immune status (11).
Survival analysis of age grouping and pyroscore groups revealed
in this study that pyroscore was a good prognostic factor
independent of age, which has long been used as a prognostic
factor because NB patients with age ≤18 months are associated
with good prognosis. Therefore, pyroptosis is another protective
factor for NB besides age ≤18 months.
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Comprehensive and systematic clinical model evaluation
indicators were used in this study to assess the pyroscore,
which has been proven to have good clinical effect. The
pyroscore serves as an independent prognostic factor in NB
and could accurately predict the survival status of NB patients.
The new model, which incorporated the pyroscore, performed
better predictive effect than the classic model built by INSS,
COG, MYCN amplification, and age grouping.

We screened out etoposide, a topoisomerase II inhibitor,
which had the lowest CMap score based on the two drug
sensitivity databases. A great number of studies have
demonstrated that etoposide can induce apoptosis rather than
pyroptosis, and etoposide treatment did not activate CASP1 in
bone-marrow-derived macrophages (49, 50). However, some
literatures report that etoposide can induce cells change from
apoptosis to pyroptosis (42, 51). It is interesting that we found
that etoposide had the ability of inducing pyroptosis in NB.

TIDE and Submap algorithms predicted that patients in the
group with high pyroscore had a better response to ICB therapy.
Four cohorts that had received ICB therapy treatments were used
to evaluate and verify the predictive value of the pyroscore.
Consistent with previous studies (52) and with our prediction,
levels of pyroscore were associated with the expression of
immune checkpoint genes. Published clinical trials have shown
that PD-L1 inhibitors combined with chemotherapy can kill
cancer cells by triggering the pyroptosis of cancer cells. This may
improve the survival of patients and increase the efficiency of
PD-L1 inhibitors (53). We observed a significantly higher
pyroscore in responders than in non-responders undergoing
ICB therapy, indicating that single-agent immunotherapy
might be beneficial for the patients with high pyroscore.

This study has produced some insights into the
comprehensive assessment of cellular and molecular factors
related to pyroptosis, revealing that tumor pyroptosis triggers a
gene network associated with active immune response and
responds to immunotherapy, and may help clinical
practitioners choose to appropriate treatment plan and predict
prognosis for NB patients.
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46. Martıńez-Reyes I, Chandel NS. Cancer Metabolism: Looking Forward. Nat
Rev Cancer (2021) 21(10):669–80. doi: 10.1038/s41568-021-00378-6

47. Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C, et al.
Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T
Cell Therapy. Cell Metab (2018) 27(5):977–87.e4. doi: 10.1016/
j.cmet.2018.02.024

48. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme A From
Cytotoxic Lymphocytes Cleaves GSDMB to Trigger Pyroptosis in Target
Cells. Science (2020) 368(6494):eaaz7548. doi: 10.1126/science.aaz7548
Frontiers in Immunology | www.frontiersin.org 15
49. Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and Apoptosis
Pathways Engage in Bidirectional Crosstalk in Monocytes and Macrophages.
Cell Chem Biol (2017) 24(4):507–14.e4. doi: 10.1016/j.chembiol.2017.03.009

50. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces
Apoptosis in Activated Human Hepatic Stellate Cells. via ER Stress Sci Rep
(2016) 6:34330. doi: 10.1038/srep34330

51. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri
ES. Cleavage of DFNA5 by Caspase-3 During Apoptosis Mediates Progression
to Secondary Necrotic/Pyroptotic Cell Death. Nat Commun (2017) 8:14128.
doi: 10.1038/ncomms14128

52. Li L, Jiang M, Qi L, Wu Y, Song D, Gan J, et al. Pyroptosis, a New Bridge to
Tumor Immunity. Cancer Sci (2021) 112(10):3979–94. doi: 10.1111/cas.15059

53. Reck M, Schenker M, Lee KH, Provencio M, Nishio M, Lesniewski-Kmak K,
et al. Nivolumab Plus Ipilimumab Versus Chemotherapy as First-Line
Treatment in Advanced Non-Small-Cell Lung Cancer With High Tumour
Mutational Burden: Patient-Reported Outcomes Results From the
Randomised, Open-Label, Phase III CheckMate 227 Trial. Eur J Cancer
(2019) 116:137–47. doi: 10.1016/j.ejca.2019.05.008

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Luo, Wang, Gao, Su, Lu, Zheng, Yin, Zhao, Li, Da and Li. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
March 2022 | Volume 13 | Article 845757

https://doi.org/10.7150/ijbs.33568
https://doi.org/10.7150/ijbs.33568
https://doi.org/10.1146/annurev-immunol-073119-095439
https://doi.org/10.1038/s41419-019-1883-8
https://doi.org/10.1038/s41586-020-2071-9
https://doi.org/10.1038/nature22393
https://doi.org/10.1016/j.canlet.2019.02.014
https://doi.org/10.1186/gb-2006-7-10-r93
https://doi.org/10.1200/jco.19.03285
https://doi.org/10.1200/jco.19.03285
https://doi.org/10.1038/s41568-021-00378-6
https://doi.org/10.1016/j.cmet.2018.02.024
https://doi.org/10.1016/j.cmet.2018.02.024
https://doi.org/10.1126/science.aaz7548
https://doi.org/10.1016/j.chembiol.2017.03.009
https://doi.org/10.1038/srep34330
https://doi.org/10.1038/ncomms14128
https://doi.org/10.1111/cas.15059
https://doi.org/10.1016/j.ejca.2019.05.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Using a Gene Network of Pyroptosis to Quantify the Responses to Immunotherapy and Prognosis for Neuroblastoma Patients
	Introduction
	Materials and Methods
	Neuroblastoma Data Sets and Data Preprocessing
	Consensus Clustering for Pyroptosis-Related Genes
	Immune Infiltration Inference
	Dimension Reduction and Generation of Pyroscore
	Functional and Pathway Enrichment Analysis
	Genomic Data Collection and Somatic Mutation
	Drug Sensitivity Prediction
	Immune Checkpoint Treatment Response
	Cell Culture and Pyroptosis Assays
	Transcriptome and Clinical Data Sets With Immune Checkpoint Blockade
	Statistical Analysis

	Results
	Determination of the Association Between Pyroptosis-Related Genes and Prognosis in NB
	Development of the Pyroptosis Signature and Functional Annotation
	Construction of Pyroscore Based on PCA
	Pyroscore Is Associated With Tumor Immune Features
	Pyroscore Is an Independent Prognostic Factor for NB
	Prediction of Drug Sensitivity in Pyroptosis Groups
	The Pyroscore Predicts Immunotherapeutic Benefits

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


