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Abstract
Stroke attracts neutrophils to the injured brain tissue where they can damage the integrity of the blood–brain barrier and 
exacerbate the lesion. However, the mechanisms involved in neutrophil transmigration, location and accumulation in the 
ischemic brain are not fully elucidated. Neutrophils can reach the perivascular spaces of brain vessels after crossing the 
endothelial cell layer and endothelial basal lamina of post-capillary venules, or migrating from the leptomeninges follow-
ing pial vessel extravasation and/or a suggested translocation from the skull bone marrow. Based on previous observations 
of microglia phagocytosing neutrophils recruited to the ischemic brain lesion, we hypothesized that microglial cells might 
control neutrophil accumulation in the injured brain. We studied a model of permanent occlusion of the middle cerebral 
artery in mice, including microglia- and neutrophil-reporter mice. Using various in vitro and in vivo strategies to impair 
microglial function or to eliminate microglia by targeting colony stimulating factor 1 receptor (CSF1R), this study dem-
onstrates that microglial phagocytosis of neutrophils has fundamental consequences for the ischemic tissue. We found that 
reactive microglia engulf neutrophils at the periphery of the ischemic lesion, whereas local microglial cell loss and dystrophy 
occurring in the ischemic core are associated with the accumulation of neutrophils first in perivascular spaces and later in 
the parenchyma. Accordingly, microglia depletion by long-term treatment with a CSF1R inhibitor increased the numbers 
of neutrophils and enlarged the ischemic lesion. Hence, microglial phagocytic function sets a critical line of defense against 
the vascular and tissue damaging capacity of neutrophils in brain ischemia.
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Introduction

Neutrophil infiltration under conditions of sterile inflam-
mation can contribute to tissue injury. Neutrophils are 
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rapidly attracted to the injured brain peaking between 1 and 
3 days post-ischemia [10, 23, 24, 51]. Compelling evidence 
suggests that neutrophils are contributors to tissue damage 
after ischemic stroke [35, 44, 51, 61, 64], in spite of the 
fact that diverse experimental strategies inhibiting neutro-
phil activation or depleting neutrophils provided conflicting 
results [16, 61]. Likely, the differences between experimen-
tal studies depend on the efficacy and potential side effects 
of the diverse neutrophil depleting or inhibiting strategies, 
status of capillary reperfusion, lesion severity, and integ-
rity of the blood–brain barrier (BBB). Moreover, several 
aspects of neutrophil infiltration after acute ischemic brain 
damage remain controversial. Neutrophils accumulate in 
perivascular spaces in murine and human strokes [17, 55]. 
The presence of neutrophils in the brain parenchyma has 
been reported in rodent models of permanent ischemia [23, 
51, 55], but it is more controversial in experimental models 
of transient ischemia [17, 64]. Several studies reported the 
presence of neutrophils in the brain parenchyma in post-
mortem samples of patients deceased between day 1 and 5 
[55], or 3 days after stroke onset but not at other time points 
[56, 76]. In other studies, neutrophils were not detected in 
the brain parenchyma of stroke patients [17]. Therefore, the 
molecular determinants underlying perivascular neutrophil 
accumulation and the conditions facilitating the potential 
access of neutrophils to the brain parenchyma need further 
clarification.

The observation that microglia phagocytose neutro-
phils in the ischemic brain [50–52] led us to hypothesize 
that microglia function may be critical to explain neutro-
phil accumulation in the injured brain tissue. Microglial 
cells react to brain ischemia in different ways depending 
on the regional location and temporal course of the lesion. 
Microglial cells are vulnerable to ischemia and previous 
reports showed death of microglia after oxygen and glu-
cose deprivation in tissue slices [18] and cell cultures [41, 
73]. In addition, microglial reduction has been reported 
after transient MCAo [43], and microglial dysfunction and 
loss was detected in classical neuropathological studies of 
brain ischemia in rodents and primates [3, 4]. Classical his-
topathological studies have shown long-lasting microglio-
sis surrounding the infarction several days after ischemic 
stroke onset. However, the progression of this reaction from 
the very acute phase of stroke is less precisely determined 
mainly due to the fact that microglia and infiltrating mac-
rophages show many common features and markers leading 
to the frequent terminology of microglia/macrophages to 
describe the mononuclear myeloid cell reaction that follows 
stroke. Microglia have a unique transcriptomic signature dis-
tinguishable from that of macrophages or monocytes [7, 32]. 
Therefore, reactive microglia and infiltrating macrophages 
likely play different functions in the injured brain tissue. 
Current developments allow the distinction between these 

cells with antibodies against more specific microglia mark-
ers [1, 7], availability of fluorescent reporter mice [74], or 
transfer of fluorescent reporter leukocytes [46]. By exploit-
ing some of these novel experimental possibilities, we 
investigated the neutrophil–microglia crosstalk after brain 
ischemia. The results show that microglial cells effectively 
remove brain-infiltrating neutrophils, hence microglia dys-
function or death is associated with neutrophil accumulation 
into the injured brain tissue.

Materials and methods

Animals

We used adult male mice on the C57BL/6 background. Mice 
expressing tamoxifen-inducible Cre recombinase under the 
direction of the Cx3cr1 promoter in the mononuclear phago-
cyte system (Cx3cr1cre/ERT2) [74] (#020940 JAX®Mice) 
were crossed with either Ai9 mice harboring a loxP-flanked 
STOP cassette that prevents transcription of the red fluores-
cent protein tdTomato (tdT) (B6.Cg-Gt(ROSA) 26Sortm9 
(CAG-tdTomato)Hze/J (#007909 JAX®Mice) [42], or col-
ony stimulating factor 1 receptor (CSF1R)+/flox mice (B6.Cg-
Csf1rtm1Jwp/J, #021212 JAX®Mice). We used heterozygous 
CatchupIVM mice expressing tdT in Ly6G+/− neutrophils 
[26]. Homozygous CatchupIVM (Ly6G−/−) mice were crossed 
with Cx3Cr1gfp/gfp mice to obtain double heterozygous 
mice with red fluorescent neutrophils and green fluores-
cent microglia [50, 75]. We also obtained cells from DsRed 
mice constitutively expressing the red fluorescent protein 
DsRed under the control of the actin promoter [8]. Wild-
type mice were obtained from a commercial source (Janvier, 
France). Mice were maintained in the animal house of the 
School of Medicine of the University of Barcelona under 
controlled SPF conditions. Animal work was conducted with 
the approval of the ethical committee of the University of 
Barcelona (CEEA) and the Direcció General de Polítiques 
Ambientals i Medi Natural, Departament de Territori i Sos-
tenibilitat de la Generalitat de Catalunya. Studies complied 
with the “Principles of laboratory animal care” (NIH pub-
lication No. 86-23, revised 1985), and the Spanish National 
law (Real Decreto 53/2013).

Stroke patients

The brains of six patients suffering from acute ischemic 
stroke who died between 1 and 6 days after stroke onset 
at the Stroke Unit of the Hospital Clinic of Barcelona 
were used after obtaining written consent from their rela-
tives or legal representatives for tissue removal after death 
at the Neurological Tissue Bank of the Biobank-Hospital 
Clinic-Institut d’Investigacions Biomèdiques August Pi i 
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Sunyer (IDIBAPS). The Ethics Committee of this Hospital 
approved the study. Online Resource 1 shows a summary 
of patient characteristics. The elapsed time from death to 
autopsy was 2–8 h. An expert neuropathologist dissected 
the ischemic core, periphery, and a portion of non-ischemic 
tissue (control) obtained from a region distant to infarction, 
as described [55]. Samples were embedded in OCT and 
immediately frozen in liquid nitrogen for sectioning at 5 µm 
in a cryostat.

Generation of chimeric mice

The bone marrow of transgenic DsRed mice [46] was used 
to generate chimeric mice, as reported [37]. In brief, recipi-
ent adult (2-month old) wild-type mice received three intra-
peritoneal injections of the chemotherapeutic agent busulfan 
(30 mg/g body weight) 7, 5 and 3 days prior to transfer via 
the tail vein of five million bone marrow cells from DsRed 
donor mice. Mice were used 8 weeks after grafting and 
reconstitution was assessed by flow cytometry analysis.

Drug treatments

To impair microglial function, mice received a daily oral 
administration by gavage of the CSF1R inhibitor GW2580 
[12] (75  mg/kg body weight in a volume of 0.2  mL) 
(#S8042, Selleckchem) for 4 days, which is a dosing regi-
men that does not challenge microglial survival [54]. Treat-
ment controls received the same volume of the vehicle (0.5% 
hydroxypropylcellulose, 0.1% Tween-80). Treatment started 
2 h prior to induction of ischemia, it was randomly allocated, 
and was administered in a blinded fashion.

For microglia depletion, mice received the CSF1R inhibi-
tor PLX5622 (Plexxikon) following previously reported pro-
tocols [15, 33, 69]. The inhibitor was mixed into AIN-76A 
standard chow at 1200 ppm (Brogaarden, Denmark). Mice 
(8-week-old) received the diet ad libitum for 3 weeks prior 
to induction of ischemia and the diet was maintained until 
the mice were killed. Treatment controls received AIN-76A 
diet for the same period of time. Both diets were given in 
parallel in groups of five animals per cage.

Brain ischemia

Surgery was carried out under isoflurane anaesthesia and 
mice received analgesia (buprenorphine, 140  µL of a 
0.015 mg/mL solution, via s.c.). Permanent occlusion of the 
middle cerebral artery (MCAo) was induced by coagulation 
of the distal portion of the right MCA together with ligation 
of the ipsilateral common carotid artery. This experimental 

model induces a focal cortical lesion in the ipsilateral 
hemisphere.

Lesion volume

A subset of mice receiving the above diets (control or 
PLX5622) was used to study the volume of the lesion 1 day 
after induction of ischemia by T2w MRI in a 7.0 T BioSpec 
70/30 horizontal animal scanner (Bruker BioSpin, Ettlin-
gen, Germany), as reported [13]. Sample size was calculated 
using G*power 3.1 software (University of Dusseldorf) with 
an alpha level of 0.05, statistical power of 0.95, and estimat-
ing a size effect of 1.8 based on SD of previous results from 
our laboratory and published data on the effect of microglia 
depletion on infarct volume in other stroke models [65]. 
One mouse died (control diet), and one mouse was excluded 
(PLX5622 diet) due to surgical problems.

In vivo BrdU incorporation

Bromodeoxyuridine (BrdU) (10 mg/mL) (#550891, BS 
Pharmingen) was daily injected (150 μL) via i.p. into mice 
starting 1 day after MCAo until day 4. One-hour after the 
last BrdU administration mice were killed and processed 
for immunofluorescence. BrdU was detected in brain tissue 
sections using a rat monoclonal FITC-anti-BrdU antibody 
(1:50, #ab74545, Abcam, Cambridge, UK) [46].

Flow cytometry

Mouse blood and brain tissue were processed for flow 
cytometry as described [46]. Fc receptors were blocked by 
previous incubation for 10 min with CD16/CD32 (clone 
2.4G2, BD Pharmingen) in FACS buffer (PBS, 2  mM 
EDTA, 2% FBS) at 4 °C. Live/dead Aqua cell stain (Molec-
ular Probe, Invitrogen) was used to determine the viability 
of cells. Cells were incubated with the following mix of 
primary antibodies: CD11b (clone M1/70, APC-Cy7, BD 
Pharmingen), CD45 (clone 30-F11, Brilliant Violet 786, 
BD Horizon), Ly6G (clone 1A8, PE-Cy7, BD Pharmingen), 
F4/80 (clone BM8, Brilliant Violet 605, Biolegend), CD115 
(clone AFS98, APC, Biolegend), CD3 (clone 17A2, violet-
Fluor 450, Tonbo Biosciences), CD45R (clone RA3-6B2, 
Alexa fluor 488), Ly6C (clone HK1.4, eFluor 450, eBioSci-
ence), CD161 (NK1.1, clone PK136; PerCP/Cy5.5, Tonbo 
Biosciences) and CD335 (NKp46, clone 29A1.4, PerCP/
Cy5.5, BD Pharmingen). Data was acquired in a BD LSRII 
cytometer using the FacsDiva software (BD Biosciences, 
San Jose, CA, USA). Data analyses were performed with 
FlowJo software (version X, FlowJo LLC, Ashland, OR, 
USA).
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Adult microglia culture

Microglia cells from adult mice (9–14 weeks old) were 
isolated and cultured using immunomagnetic separation 
(Miltenyi Biotec, Germany). Mice were perfused via the 
left ventricle with 60 mL of cold saline and collected in 
Hanks’ balanced salt solution (HBSS) buffer without cal-
cium/magnesium (#14175-05; Life Technologies). The brain 
tissue was enzymatically dissociated using the Neural Tissue 
Dissociation Kit-P (#130-092-628; Miltenyi Biotec). The 
gentleMACS™ Dissociator with Heaters (#130-096-427; 
Miltenyi Biotec) was used for mechanical dissociation steps 
during 30 min at 37 °C. The digested tissue was filtered 
(70 µm) with HBSS buffer with calcium and magnesium 
(#14025-050; Life Technologies) and prepared for myelin 
removal process (Myelin Removal Beads II, #130-096-733; 
Miltenyi Biotec). Then, cells were magnetically labeled with 
CD11b microbeads (#130-093-634; Miltenyi Biotec) diluted 
in PBS supplemented with 0.5% BSA for 15 min in the dark 
in the refrigerator (2–8 °C). CD11b+ cells were collected 
using magnetic field columns (Miltenyi Biotec). Cell sus-
pensions (35 μL) were then plated in complete medium con-
sisting of DMEM medium (#10569010; Gibco-BRL) sup-
plemented with 10% fetal bovine serum (FBS; Gibco-BRL) 
containing 40 U/mL penicillin and 40 μg/mL streptomycin 
(#15140122; Gibco-BRL) added as a drop in the middle 
of each well of a poly-l-lysine (#P4832; Sigma) pre-coated 
8-well plate (µ-Slide 8 Well, IBIDI #80826). Cells were 
incubated for 30 min at 37 °C and then 250 µL of complete 
medium were carefully added to each well. Twenty-four 
hours later, we replaced 50% of complete medium, and we 
did a full medium change at day 5. The cells were main-
tained at 37 °C in a humidified atmosphere of 5% CO2 for 
7 DIV.

Human microglia culture from a stroke patient

We obtained human microglial cells from the ischemic tis-
sue of one patient deceased 5 days after fatal stroke. Fresh 
brain tissue (about 500 mg) was harvested at autopsy (8 h 
after death) and was placed in a falcon tube with sterile cold 
RPMI 1640 medium (#21875-034, GIBCO). Visible menin-
ges were removed, the tissue was cut in small pieces using 
a scalpel and incubated in a 0.25% trypsin–EDTA solution 
in PBS at RT for 30 min. Then, DMEM/F12 (#11330032; 
Gibco-BRL) with 20% FBS and DNase I (200 units/mL) 
was added (1:1), the tissue was disaggregated, centrifuged 
for 7 min at 250×g and the pellet was re-suspended in 30 mL 
DMEM/F12 supplemented with 10% FBS, 10% L-Cell 
conditioned medium obtained from the L929 cell line, and 
100 U/mL penicillin/100 μg/mL streptomycin (#15140122; 
Gibco-BRL). Cells were seeded in poly-l-lysine coated T25 
flasks, incubated in 5% CO2 at 37 °C and allowed to adhere. 
Culture medium was changed twice a week and at 7DIV the 
cells were scrapped and seeded in a 8-well plate (µ-Slide 8 
Well, IBIDI #80826) previously coated O/N with poly-l-ly-
sine. A time-lapse microscopy study was initiated 6 h later 
after addition of fresh bone marrow neutrophils. Afterwards, 
we fixed the cells for an immunofluorescence study with 
antibodies against the purinergic receptor P2Y, G-protein 
coupled, 12 (P2RY12) (1:200, #AS55042A, Anaspec).

Neutrophil isolation and staining

Neutrophils were obtained from the bone marrow of adult 
(10–14 weeks old) mice. The bone marrow was flushed 
using a 25-gauge needle with RPMI 1640 (#21875-034, 
GIBCO) supplemented with 10% FBS onto a 50 mL falcon 
tube through a 70-μm cell strainer. Cells were centrifuged 
at 300×g for 5 min. The supernatant was discarded and 
cells were then incubated for 2 min with an Erythrocyte 
Lysis Solution (150 mM NH4Cl, 1 mM KHCO3, 0.1 mM 
EDTA). After washing with cold PBS supplemented with 
2% FBS, cells were incubated at 4 °C for 15 min with a 
mix of FcBlock (1/200; Clone 2.4G2; BD Pharmingen; BD 
Bioscience), and the antibody Ly6G (clone 1A8, FITC; BD 
Pharmingen) with 10 µL/107 cells. Cells were washed with 
PBS-0.5% BSA, and were then incubated with anti-FITC 
MicroBeads (#130-048-701, Miltenyi Biotec) for 15 min at 
4 °C with 10 µL microbeads/107 cells. After washing, the 
fraction of positive Ly6G cells was magnetically collected 
and prepared for immediate use or cells were frozen in FBS 
serum with 10% of DMSO until the day of the experiment. 
Human neutrophils were isolated from the blood by density 
gradient centrifugation. Human and mouse neutrophils were 
stained with CellTracker™ Green CMFDA (#C2925; Ther-
moFisher Scientific).

Fig. 1   Localization of microglia and infiltrating leukocytes. We gen-
erated chimeric mice by administering DsRed fluorescent bone mar-
row cells to 2-month old wild-type receptor mice (n = 10). After 
2 months, we induced ischemia and 4 days later we studied the brain 
by immunofluorescence (n = 5) (a, b) and flow cytometry (n = 5) 
(c, e). a CD45hiCD11bhi cells infiltrating the ipsilateral hemisphere 
are mostly DsRed+ whereas CD45dimCD11bdim microglial cells are 
DsRed−. b Flow cytometry shows an increase in infiltrating DsRed 
leukocytes (CD11bhiCD45hi) (Mann–Whitney test, **p = 0.008). c 
Immunostaining of astrocytes (GFAP, green) showed the presence of 
DsRed cells at the border and core of the lesion separated from the 
peripheral area that shows a prominent astroglial reaction. d Micro-
glial cells were stained with an antibody against P2RY12 (green), 
which did not co-localize with DsRed+ leukocytes. The morphology 
of the microglia in the different regions is illustrated with representa-
tive images. Cell nuclei were stained with To-Pro3 (blue). e P2RY12+ 
microglial cell at the border of the lesion nearby DsRed+ infiltrating 
leukocytes. f Schematic representation of the distribution of microglia 
(green) and infiltrating leukocytes (red) in the different regions of the 
ischemic hemisphere. Scale bar c 50 µm; d, e 10 µm

◂
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Fig. 2   Morphology and number of microglial cells in the differ-
ent brain regions after MCAo. a, b Images of microglia (red) of 
CX3CR1cre/ERT2-Rosa26:tdT mice (n = 3) in different brain regions. 
Nuclei are stained with DAPI (white). Confocal microscope images 
(a) and 3D-reconstruction (Imaris) of a representative microglial 
cell per region (b). c–f Analysis of microglial morphology in the 
core and periphery of the ipsilateral cortex  and the  contralateral 
cortex (Contral.) (n = 25–49 cells per region of 5 different mice 
represented by the different colors) using ImageJ tools. g, h Imaris 
analysis of 3D-reconstructions of the above cells (b). i Counting the 
number of microglial cells per area showed an increased microglial 
density in the periphery and a decrease in the core (n = 17–27 fields 
in 5 different mice). Statistical analyses in c–i were carried out with 
the Kruskal–Wallis test followed by the Dunn’s test. **p < 0.01 and 
***p < 0.001 vs. contralateral microglia; &&p < 0.01 and &&&p < 0.001 

vs. peripheral microglia. j Flow cytometry after dissecting out the 
core and periphery regions of the ipsilateral hemisphere and mirror 
regions of the contralateral hemisphere 1 and 4 days after MCAo in 
an independent group of mice (n = 5 mice per time point). For com-
parative purposes the number of microglial cells (CD45lowCD11b+) 
is expressed by mg of brain tissue. Data analysis was conducted with 
two-way ANOVA by region (p < 0.0001) and time point (p = 0.039) 
followed by the Bonferroni test. The number of microglia was higher 
in the periphery than the core of infarction 1  day (&&p < 0.01) and 
4  days (&&&p < 0.001) after MCAo. Furthermore, the number of 
microglia decreased in the core of infarction versus the corresponding 
contralateral region 1  day (**p < 0.01) and 4  days (*p < 0.05) post-
ischemia. In the periphery, the number of microglia cells increased 
in the ipsilateral versus the corresponding contralateral hemisphere at 
day 4 (#p < 0.05). Scale bar 10 μm
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Time‑lapse microscopy studies

Isolated and stained neutrophils (75,000 cells/mL) were 
added to the adult microglia cultures at 7DIV. Automated 
multiposition live cell imaging was carried out using a Leica 
TCS SP5 confocal microscope (Leica Microsystems, Hei-
delberg, Germany) equipped with Adaptive Focus Control 
to keep the specimen in focus and an incubation system with 
temperature and CO2 control. Cells were subjected to a time-
lapse study while maintained at 37 °C in a humidified atmos-
phere of 5% CO2. All images (3–4 z sections) were acquired 
using a APO 63 × (numerical aperture 1.3) glycerol immer-
sion objective lens, pinhole set at 1.5 Airy units. Images 
of CMFDA and DsRed were acquired sequentially line by 
line using 488 and 561 laser lines and detection ranges at 
500–550 and 570–650, respectively. Simultaneously, bright 
field images were acquired. Multiposition confocal images 
were acquired every 4 min during 12–14 h, with an image 
matrix of 512 × 512 pixel; 600 Hz; 2 × line average and auto-
focus control. Manual analysis was performed using FIJI 
software (Version 2.0.0-rc-67/1.52d). We recorded 3–4 time-
lapse videos per well and analysed 180–210 frames in each 
video. In every frame, manual tracking of neutrophils was 
performed using the MTrackJ plugin [45] to identify phago-
cytosis of neutrophils by microglial cells. We studied in par-
allel four wells per genotype (CSF1R+/+ or CSF1R+/− micro-
glial cells) in each independent experiment and conducted 
five independent experiments. The analysis was performed 
in a blinded fashion by assigning a code to each video that 
did not reveal the identity of the genotype.

Phagocytosis assay with fluorescent beads

We used green fluorescent zymosan A bioparticles (#Z-
23373; Thermo Fisher Scientific) in the phagocytosis assay. 
At 7 DIV, microglial cells were exposed to zymosan fluo-
rescent beads (75,000 particles/mL) for 1 h. Following 3–4 
washes to remove all the non-phagocyted particles, cells 
were fixed with cold 4% paraformaldehyde for 20 min, per-
meabilized with 0.2% Triton X-100 (Sigma) in PBS 0.1 M 
for 15 min, blocked with 3% goat serum in PBS for 1 h, and 
incubated overnight at 4 °C with the primary rabbit antibody 
against the P2RY12 receptor (1:200, #AS55042A, Anaspec). 
The next day, cells were washed and incubated with red flu-
orescence Alexa Fluor® 546 dye-labelled goat anti-rabbit 
IgG antibody (#A10036, Life Technologies) for 1 h at room 
temperature. DAPI (#D3571, Life Technologies) stained 
was performed to visualize the cell nuclei. Cells were then 
covered using Fluoromount-G® (Southern Biotech, Birming-
ham, AL, USA). Images were obtained with a fluorescence 
inverted microscope (Leica CTR 40000).

Immunofluorescence in brain tissue sections

Mice were perfused via the left heart ventricle with 40 mL 
of cold saline (0.9%) followed by 20 mL of cold 4% para-
formaldehyde (PFA) diluted in phosphate buffer (PB) pH 
7.4. The brain was removed, fixed overnight with the same 
fixative, and immersed in 30% sucrose in PB for cryopro-
tection for at least 48 h until the brains were completely 
sunk to the bottom of the tube. After that, brains were 
frozen in isopentane at − 40 °C. Cryostat brain sections 
(14-μm thick) were fixed in ethanol 70%, blocked with 3% 
normal serum, and incubated overnight at 4 °C with pri-
mary antibodies: rat monoclonal antibodies against Ly6G 
(clone 1A8, 1:100, #127601, Biolegend) or NIMP-R14 
(anti-Ly6G/C, 1:100, #ab2557, Abcam); goat polyclonal 
antibodies against α4-laminin (1:50, #AF3837, R&D), or 
PDGFRβ (1:100, #AF1042; R&D); rabbit polyclonal anti-
bodies against P2RY12 (1:250, #AS-55043A, AnaSpec 
Inc.), ionized calcium-binding adapter molecule-1 (Iba-1) 
(1:100, #016-20001, Wako Chemicals), glial fibrillary acidic 
protein (GFAP) (1:400, #Z0334, Dako), or pan-laminin 
(1:100, #Z0097, Dako). To amplify the signal of the DsRed 
cells we used a goat polyclonal anti-DsRed antibody (#sc-
33354, Santa Cruz Biotechnology, Inc.) diluted 1:100. The 
secondary antibodies were: Alexa Fluor 488, 546, or 647 
(Molecular Probes; Life Technologies S.A.) diluted 1:500. 
Cell nuclei were stained with DAPI or To-Pro3 (Invitrogen). 
Cryostat sections from human brain tissue were processed 
for immunofluorescence as described above with a rab-
bit polyclonal antibody against P2RY12 (1:200, #5042A, 
AnaSpec) and a mouse monoclonal antibody against Ki67 
(1:400, #9449, Cell Signaling Tech). Consecutive sections 
were stained with thionine for examination of the lesion at 
the light microscope. Confocal images were obtained (TCS-
SPE-II or SP5 microscopes from Leica Microsystems; or a 
Zeiss LSM880 microscope) and were not further processed 
except for enhancing global signal intensity in the entire 
images for image presentation purposes using LAS soft-
ware (Leica), ImageJ, or Adobe Photoshop. For estimation 
of the density of P2RY12+ cells and Ki67+ cells in human 
brain sections, images were obtained (40 × objective), the 
number of immunostained cells and cell nuclei per image 
were counted in ten different fields per brain region of each 
subject, and average values per region and time group were 
calculated. For cell counting in mouse brain sections, we 
obtained 5–6 confocal images of the immunostaining (63 × 
objective) in three different brain sections per mouse.

Analysis of microglia morphology

Microglia morphology was assessed using FIJI software 
(Version 2.0.0-rc-67/1.52d) and IMARIS software (IMA-
RIS BITPLANE v.9.0). Basic shape descriptors such 



328	 Acta Neuropathologica (2019) 137:321–341

1 3



329Acta Neuropathologica (2019) 137:321–341	

1 3

as the Circularity Index (CI) or the area were performed 
with the plugin Shape Descriptors [68]; other parameters, 
such us the Ramification Index (RI), were obtained using 
the Sholl analysis plugin [21]. Parameters such as volume 
or sphericity index were measured using Imaris Software 
after creating a 3D surface in the maximum intensity pro-
jection image. Then, microglial cells were thresholded by 
the Huang method [34] to generate a binary mask (with a 
1.5 mean filter). The CI parameter was calculated by the 
Shape Descriptors plugin (4p[area]/[perimeter]2). The high-
est count of intersections (Max inters) reflects the highest 
number of processes in the cell.

Statistics

Two-group comparisons were carried out with the 
Mann–Whitney U test. For multiple group comparisons 
we used the Kruskal–Wallis test followed by the Dunn’s 
test. Comparisons were two-sided. Comparisons of groups 
by brain region and time were carried out with two-way 
ANOVA followed by the Bonferroni post-hoc analysis. Two-
way ANOVA by genotype and experiment, with an exper-
iment-matched design, was used to analyze quantification 
of in vitro studies. Statistical analyses were performed with 
GraphPad software. The specific test used in each experi-
ment and n values are reported in the figure legends.

Results

Microglia cells degenerate in the core of infarction

To unequivocally distinguish microglia from infiltrating leu-
kocytes we generated chimeric mice with the hematopoietic 
system derived from fluorescent (DsRed) donor mice where 
microglia remained non-fluorescent, whereas a high pro-
portion of peripheral myeloid cells were DsRed+ (Fig. 1a; 

Online Resource 2). Most myeloid cells infiltrating the ipsi-
lateral brain hemisphere were DsRed+ 4 days after MCAo, 
as assessed by flow cytometry (Fig. 1a, b), and they were 
preferentially located in the lesion core where the expression 
of GFAP is lost (Fig. 1c). We stained microglia with anti-
P2RY12 antibodies [7, 28, 59] and verified that the infiltrat-
ing DsRed+ cells were not P2RY12+. Microglia and infiltrat-
ing DsRed+ leukocytes co-existed at the border of infarction, 
whereas microglia were abundant at the infarct periphery 
but scarce in the core of the lesion (Fig. 1d–f). Microglia 
acquired a reactive phenotype at the periphery and border of 
infarction with thicker ramifications compared to microglia 
of the contralateral hemisphere. In contrast, microglial cells 
in the infarcted core showed a dystrophic morphology since 
the cell body became smaller and there were only a few long 
ramifications showing an appearance of discontinuity as if 
they were broken or beaded, and the density appeared to be 
reduced (Fig. 1d).

To ensure that in wild-type mice we did not miss micro-
glial cells in the infarcted core due to downregulation of 
the markers used to label microglia, i.e. Iba1 and P2RY12, 
we studied the CX3CR1cre/ERT2 mice [74] crossed with 
floxed Rosa26:tdT reporter mice [42], which express the 
red fluorescent protein in microglia (Fig. 2a, b; Online 
Resource 3) obtaining the same findings as in wild-type 
mice. Next, we analysed microglia morphology (Online 
Resource 4) in the contralateral hemisphere, and in dif-
ferent zones of the ipsilateral hemisphere, i.e. periphery 
and infarcted core, 4 days after MCAo (Fig. 2c–h). Shape 
descriptors showed increased circularity and reduced area 
of microglia in the ipsilateral hemisphere that was more 
marked in cells located in the core region (Fig. 2c, d). A 
Sholl analysis showed that ischemia reduced the number 
of ramifications, and maximal intersections per micro-
glial cell, and again the changes were greater in the core 
(Fig. 2e, f). Analysis of 3D-reconstructions of the cells 
showed a reduced volume and higher sphericity index 
after ischemia, particularly in the core (Fig. 2g, h). Fur-
thermore, the quantification of cells per area showed that 
while microglial cell density increased in the periphery, it 
was reduced in the core of the lesion (Fig. 2i). This result 
was confirmed by flow cytometry after excising the core 
and periphery of the ipsilateral hemisphere and mirror 
regions of the contralateral hemisphere 1 and 4 days after 
MCAo. Microglia cell number was severely reduced in the 
core of the lesion at 1 and 4 days post-ischemia (Fig. 2j). 
Altogether, these findings show that microglial cells are 
sensitive to persistent ischemic conditions and are lost in 
the infarcted core.

Fig. 3   Microglial proliferation after ischemic stroke in mouse and 
human brain. Immunofluorescence in mouse (a–c) and human 
(d–g) brain tissue. a–c BrdU incorporation (green) in DsRed− rami-
fied microglial cells expressing P2RY12 (blue). d Human tissue of 
stroke patients deceased at different time points after stroke onset. 
The brains were grouped according to the day of death after stroke 
in ‘1–3  days’ (n = 3) and ‘4–6  days’ (n = 3) groups. The number of 
P2RY12+ cells per area tended to decrease in the core of the lesion 
in both groups and to increase at the periphery of infarction in the 
‘4–6 days’ group. **p < 0.01 vs. periphery. The percentage of Ki67+ 
cells among the P2RY12+ cell population increased at the periphery 
of infarction in the ‘4–6 days’ group (***p < 0.001 vs. control and vs. 
core). e–g Representative images of double-immunopositive P2RY12 
(green) and Ki67 (red) microglial cells (arrowheads) at the periphery 
of infarction from different stroke patients deceased 5 (e–f) or 6 (g) 
days after stroke. Nuclei are stained with To-Pro3 (blue). Scale bar 
10 µm
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Microglia cells proliferate at the periphery 
of infarction

In contrast to the lesion core, the microglial cell number 
increased at the periphery of infarction 4 days post-ischemia 
(Fig. 2i, j). This effect was attributable to microglial pro-
liferation as shown in DsRed chimeric mice that received 
injections of the cell proliferation marker BrdU after MCAo 
(Fig. 3a–c). By cell counting, we calculated that 26.8 ± 8.8% 
(mean ± SD, n = 3 mice) of the microglial cells at the periph-
ery of infarction incorporated BrdU suggesting microglial 
proliferation, in agreement with previous reports [14, 40]. 
In contrast, microglial cells were BrdU− in the contralateral 
non-ischemic hemisphere. Notably, BrdU was found in rami-
fied microglial cells suggesting that microglia could undergo 
cell division without regression of their differentiation sta-
tus. We extended the results to the human brain by showing 
an increased number of microglial cells and proliferating 
Ki67+ microglia at the periphery of infarction in post-mor-
tem human brain tissue of stroke patients (Fig. 3d–g). We 
also found reduced microglial cell numbers in the lesion core 
of stroked human brains (Fig. 3d) thus supporting that the 
findings in mice might be relevant to human stroke.

Reactive microglial cells engulf infiltrating 
neutrophils at the periphery of infarction

Our data identified the edge of the lesion as a site for pos-
sible interactions between microglia and leukocytes since 

both cell types were abundant in this zone. Indeed, we 
observed numerous microglial cell processes surrounding 
the blood vessels and getting into contact with infiltrating 
DsRed+ leukocytes by sampling the DsRed+ cells adjacent 
to the vascular endothelium (Online Resource 5). Further-
more, we detected microglial processes surrounding DsRed+ 
cells suggestive of engulfment of leukocytes (Fig. 4a–c; 
Online Resource 6). 3D-reconstructions of confocal images 
showed phagosomes completely wrapping DsRed+ leuko-
cytes (Fig. 4b, c). The CSF1R signaling pathway is critical 
for survival of microglia and maintenance of their functions 
[2], including endocytic processes [60]. Consequently, by 
interfering with microglial function after oral administration 
of the CSF1R inhibitor GW2580 [12] for 4 days, we found 
more DsRed+ cells at the periphery of infarction not sur-
rounded by microglia or in apparent contact with microglia, 
suggesting that microglia dysfunction impaired the process 
of phagocytosis of leukocytes (Fig. 4d).

Neutrophils showed bright DsRed fluorescence in the 
DsRed chimeric mice, as assessed by flow cytometry and 
immunofluorescence 4 days post-ischemia (Fig. 5a). We 
detected Ly6G+ DsRed+ neutrophils shrouded by micro-
glia at the periphery of infarction (Fig. 5b, c). Furthermore, 
processes of microglial cells located nearby the surface of 
the cortex seemed to traverse the external cortical basement 
membrane and surround neutrophils located in the subpial 
space (Fig. 5d). CatchupIVM mice crossed with transgenic 
Cx3Cr1gfp/gfp mice allowed obtaining heterozygous double 
reporter mice with red fluorescent neutrophils and green 
fluorescent microglia [50, 75]. In these mice, we observed 
microglia (green) adjacent to the basal lamina of blood ves-
sels and surrounding extravasated neutrophils (red) after 
MCAo (Fig. 5e–i; Online Resource 7).

Microglia phagocytose neutrophils in vitro 
and the process is impaired in CSF1R+/− microglia

To further investigate the phagocytosis of neutrophils by 
microglia, we carried out an in vitro study using time-lapse 
confocal microscopy. We isolated microglia from adult 
mouse brains, cultured the cells in vitro for 7 days, and 
exposed them to freshly isolated bone marrow neutrophils 
(stained with CMFDA) to study phagocytosis. Microglial 
cells phagocytosed neutrophils in vitro (Fig. 6a, b, and time-
lapse microscopy movie in Online Resource 8). By follow-
ing neutrophil trajectories along time (time-lapse micros-
copy movie in Online Resource 9), we counted the number 
of neutrophils phagocytosed by microglia. We validated that 
allogenicity in the phagocytosis experimental design was 
not interfering with the assay by comparing phagocytosis 
of neutrophils obtained from different mice with the phago-
cytosis of neutrophils from the same mouse. We found no 
differences, ruling out prime effects of allogenicity in the 

Fig. 4   Microglia cells phagocytose infiltrating DsRed leukocytes. 
a–c Chimeric mice were generated by bone marrow transfer from 
donor DsRed mice to recipient wild type mice and were subjected to 
ischemia (n = 5). Immunofluorescence showing Iba1+ DsRed− micro-
glial cells engulfing DsRed leukocytes at the periphery of infarction 
at day 4 after MCAo. a Confocal images of an Iba1+ (green) DsRed− 
microglial cell engulfing a DsRed leukocyte. The images correspond 
to different z planes. b 3D-reconstructions of Iba1+ DsRed− micro-
glial cells (blue) engulfing DsRed+ leukocytes (red). c Microglial 
cell (Iba1+, blue) with engulfed red cells in several prolongations. 
Nuclei are stained with DAPI (white). Magnified details of engulfed 
DsRed cells are shown on the right hand side. f DsRed chimeric mice 
received oral administration of either the CSF1R inhibitor GW2580 
or the vehicle (n = 5 per group) starting 2 h prior to MCAo and then 
daily for 3  days. The brain was studied 4  days post-ischemia by 
immunofluorescence using anti-P2RY12 antibody to label microglia 
(green), DsRed for infiltrating leukocytes, and To-Pro-3 for stain-
ing the cell nuclei (blue). The image shows a microglial cell at the 
periphery of infarction engulfing DsRed leukocytes. Schematic rep-
resentation of this cell illustrating: (A) a DsRed cell completely sur-
rounded by a microglial process; (B) a microglial process making 
apparent contact with a DsRed leukocyte (touching); and (C) a Dsred 
leukocyte separated from microglia (free). Counting the number of 
DsRed cells in the above status (A-C) in relation to microglia showed 
that the CSF1R inhibitor increased (***p < 0.001) the number of free 
DsRed cells. Two-way ANOVA by treatment and condition followed 
by the Bonferroni test. Scale bar corresponds to a, b 5 µm; c 10 µm 
for left image and 5 µm for the magnifications on the right; d 10 µm
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phagocytosis of neutrophils by microglia (Online Resource 
10). Given that we observed signs of impaired phagocytosis 
of neutrophils in vivo after ischemia in mice after short-
term treatment with a CSF1R inhibitor (Fig. 4d), we inves-
tigated in vitro the role of CSF1R in this process. To this 
end, we obtained microglia from adult mice with heterozy-
gous CSF1R+/− microglia (obtained by crossing CX3CR1cre/

ERT2 with CSF1Rflox/+ mice). Less neutrophils were phago-
cytosed by CSF1R+/− microglia compared to CSF1R+/+ 
microglia, as assessed by time-lapse microscopy where we 
counted the neutrophils phagocytosed by microglia during 
the 14-h duration of the experiment (Fig. 6c). In addition, 
CSF1R+/− microglia showed reduced phagocytic activity 
in a phagocytosis assay with fluorescent beads (Fig. 6d–f). 
We then studied the potential relevance of these findings 
for human cells by obtaining human microglia from the 
post-mortem brain of an ischemic stroke patient deceased 
5 days after stroke onset. After maintaining the human cells 
in culture for 7 days, we exposed the cells to neutrophils 
obtained from blood of a donor control subject. We observed 
very active phagocytosis of neutrophils (Fig. 6g, h and time-
lapse microscopy movie in Online Resource 11). By immu-
nofluorescence after the ex vivo assay, we detected P2RY12 
expression in the cells and observed that they contained 
material from neutrophils (Fig. 6i).

Post‑ischemic microglial dystrophy/loss 
was associated with neutrophil accumulation

Neutrophil numbers were higher in the core of infarction 
than the periphery 1 and 4 days after MCAo, as assessed 
by flow cytometry after dissection of these brain regions 
(Fig. 7a). Neutrophils were seen in perivascular spaces of 
venules (Fig. 7b) but also in the parenchyma outside the 
basement membrane in the core of the lesion (Fig.  7c, 
d). Strikingly, neutrophils were found in the brain paren-
chyma in zones of the core where microglia was absent or 
showed signs of dystrophy, as assessed in immunostained 
brain sections of wild-type mice and reporter mice, includ-
ing the CX3CR1cre/ERT2-Rosa26:tdT mice (Fig. 7e) and the 
CatchupIVM-CX3CR1+/− double reporter mice (Fig. 7f–h). 
At the periphery of infarction neutrophils were surrounded 
by reactive microglia, suggesting that microglia phagocy-
tosed neutrophils thereby preventing their accumulation in 
this region. In contrast, in the core of infarction, dysfunc-
tion or loss of microglia might facilitate the accumulation 
of neutrophils.

Microglia depletion increases the numbers 
of neutrophils in the ischemic brain tissue 
and augments brain injury

To obtain further evidence that microglia remove neutro-
phils after ischemia, we depleted microglia by feeding the 
mice for 3 weeks with a diet containing a CSF1R antago-
nist (PLX5622) [15, 33, 69]. PLX5622 diet caused a strong 
reduction (90%) of the microglia population (Fig. 8a) but 
did not affect blood leukocyte counts (Online Resource 
12 shows the gating strategy and cell quantifications are 
shown in Online Resource 13), in agreement with previ-
ous reports [20, 70]. However, we detected a reduction of a 
minor subset of blood Ly6C− monocytes (Online Resource 
13), which is dependent on CSF1R [39]. In brain tissue, 
PLX5622 diet reduced the numbers of infiltrating monocytes 
(40%) and F4/80+ macrophages (60%) versus the control 
diet 4 days post-ischemia (Online Resource 14), in agree-
ment with previous findings suggesting a role for micro-
glia in the recruitment of monocytes into the brain [20]. In 
contrast, the PLX5622 diet increased the numbers of neu-
trophils in the brain tissue after ischemia, as assessed by 
flow cytometry at day 4 (Fig. 8b). Immunofluorescence in 
CX3CR1cre/ERT2:R26-tdT mice showed extravasated neutro-
phils that seemed more abundant in the absence of microglia 
(Fig. 8c, d). By counting the number of neutrophils located 
either in the parenchyma or associated with blood vessels 
(hence not crossing the parenchymal basal lamina) we found 
an increase in the percentage of parenchymal neutrophils 
in the absence of microglia 1 and 4 days post-ischemia 
(Fig. 8e). Of note, neutrophils were often observed on the 

Fig. 5   Microglia engulf neutrophils. a–c Chimeric mice generated 
by transfer of DsRed bone marrow cells to wild type recipients. a 
Flow cytometry shows CD11b+ Ly6G+ DsRed neutrophils in the 
ipsilateral but not the contralateral hemisphere (Mann–Whitney 
test, **p = 0.008, n = 5) 4  days post-ischemia. Infiltrating neutro-
phils (NIMP-R14+, Ly6G+) are DsRed+. b, c P2RY12+ microglial 
cells (blue) engulf neutrophils at the periphery of infarction. Images 
obtained 4  days after MCAo representative of n = 5 chimeric mice. 
d Image of a CX3CR1cre/ert2:Rosa26-tdT mouse 4 days after MCAo 
showing a microglial cell (red) sending a process across the exter-
nal basal lamina of the cortex (α4-laminin, blue) to trap a neutro-
phil (Ly6G+, green) in the subpial space. e–i Images obtained from 
CX3CR1gfp/+/Catchup mice, which have gfp+ microglia (green) 
and tdT+ neutrophils (red) 1 day after MCAo. Sequence of confocal 
z-images showing the basal lamina (pan-laminin, blue) of a capil-
lary with a neutrophil in the lumen and an extravasated neutrophil, 
surrounded by a microglial cell (e). z projections of one plane and 
confocal projection illustrating interaction of microglia with basal 
lamina and neutrophils (f–g). 3D-reconstructions showing the micro-
glial cell (green) attached to the capillary (blue) and intraluminal (h) 
and extravasated (i) neutrophils (red). Nuclei are stained with DAPI 
(white). Images were obtained from superficial cortical layers (a–c, 
e–i) and the brain surface (d) in zones corresponding to the core of 
the lesion (a), border of the lesion (d–i), and periphery (b, c). Scale 
bar 10 μm
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basement membrane of capillaries (Fig. 8d) and venules 
(Fig. 8f) suggesting a possible interaction of these cells 
with basal lamina components. In line with this, microglia 
depletion increased the size of the ischemic lesion (Fig. 8g), 

further supporting a beneficial effect of microglia at the 
periphery of the infarction.
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Discussion

This study supports the concept that microglia phagocytose 
and remove neutrophils after brain ischemia [14, 50–52] 
and demonstrates that neutrophil accumulation in the brain 
parenchyma is associated with reduced microglial phago-
cytic activity, attributable to ischemia-induced microglial 
cell dysfunction due to loss or dystrophy. Morphometric 
analysis of microglia showed changes in the periphery of 
the lesion compatible with microglial reactivity and simi-
lar to those reported [27]. Overall, morphological changes 
of microglia within the lesion core were larger than in the 
periphery, for instance regarding the notable loss of ramifi-
cations and reduced cell size. Such profound morphologi-
cal changes of microglia in the lesion core might indicate a 
further process of transformation from reactive microglia to 
dystrophic microglia, potentially associated with cell dys-
function. Furthermore, we found reduced microglial cell 

numbers in the core of infarction. While our results sup-
port microglial degeneration in the infarcted core, micro-
glial cells proliferated and accumulated at the periphery of 
infarction in mouse and human brain, in agreement with 
previous findings in the mouse brain [14, 40]. These reac-
tive microglial cells at the periphery of infarction phagocy-
tosed neutrophils, suggesting that the phagocytic activity of 
microglia prevented neutrophil accumulation in this region. 
Accordingly, the numbers of neutrophils were higher in the 
core than the periphery of the lesion. Microglial activity 
and survival are critically dependent on CSF1R [12]. Con-
sequently, drug-induced inhibition of CSF1R or genetic 
reduction of CSF1R expression in microglia impaired their 
phagocytic capacity in vivo and in vitro. Previous studies 
reported that CSF-1 promotes phagocytosis of Ab1–42 pep-
tide by primary human microglia in vitro [62], and it regu-
lates cell motility in macrophages [58]. CSF1R is a tyros-
ine kinase that upon activation shows phosphorylation of 
several intracellular tyrosine residues [77]. Upon activation, 
CSF1R associates with several signaling molecules, notably 
phosphoinositide 3-kinase (PI3K) [58]. CSF1R also acti-
vates Akt [11], and it induces ERK1/2-mediated signaling 
in microglia [9]. Akt [22, 67] and ERK1/2 [19] are involved 
in the phagocytic process. However, the specific signaling 
molecules downstream of CSF1R participating in phago-
cytosis in microglia after brain ischemia, and the precise 
step(s) of the phagocytic process affected by CSFR1 remain 
to be identified. Microglia depletion induced by long-term 
inhibition of CSF1R in vivo [15, 33, 65, 69] increased the 
numbers of neutrophils in the ischemic brain tissue, further 
supporting the view that microglial cells contribute to neu-
trophil removal.

Neutrophils are attracted to the injured brain after acute 
stroke [10, 23, 30, 31, 50, 51]. Thereby, neutrophils adhere 
to venules and migrate through the vessel wall to reach 
perivascular spaces [17]. In addition, neutrophils access 
perivascular spaces of penetrating cortical vessels from 
the leptomeninges [55]. Accumulation of neutrophils in 
the leptomeninges might be due to extravasation from pial 
vessels. In addition, neutrophil migration from the skull 
bone marrow through direct anatomic connections [29] 
might explain the presence of neutrophils in the subarach-
noid space, although migration of neutrophils from there 
to perivascular spaces of cortical vessels still needs fur-
ther investigation. Subpial neutrophils are separated from 
the brain parenchyma by the basement membrane and glia 
limitans. Likewise, the parenchymal basal lamina and sur-
rounding astrocyte end-feet separate perivascular cells 
from the brain parenchyma. Interestingly, we observed 
ramifications of microglial cells apparently crossing 
the basal lamina suggesting the possibility that reactive 
microglia might sample the perivascular space and also 
the subpial space after brain ischemia. Using intravital 

Fig. 6   Microglia phagocytose neutrophils in  vitro under the con-
trol of microglial CSF1R expression. Microglial cells were obtained 
from adult mice (a–f) or a human stroke patient deceased 5  days 
after ischemic stroke (g–i). After 7  days in culture, the cells were 
exposed to corresponding control mouse or human neutrophils and 
studied by time-lapse confocal microscopy for 14  h. a, b Microglia 
were obtained from DsRed mice (red) and neutrophils were stained 
with CMFDA (green). 3D-reconstructions of image sequences (1–5) 
of the time-lapse video (see supplementary video 3 and 4) illustrat-
ing the phagocytosis of neutrophils by mouse microglia (a). The time 
point of each image is indicated (hours:minutes). An original confo-
cal image is shown b for illustrative purposes. c Microglia cultures 
were obtained from CSF1R+/+ (WT) and CSF1R+/− littermate mice 
(n = 5 mice per genotype) and the cell cultures were exposed to neu-
trophils and studied by time-lapse microscopy, where microglial 
cells were seen by phase contrast and neutrophils were stained with 
CMFDA and detected by green fluorescence. We studied four wells 
per mouse in each independent experiment (n = 5), recorded 3–4 
videos of different fields per well, and analysed 180–210 frames per 
time-lapse video. Quantification of the number of neutrophils phago-
cytosed by microglia (normalized by the number of microglia in each 
well) shows that heterozygous CSF1R+/− microglia phagocytose less 
neutrophils than WT microglia. Two-way ANOVA by genotype and 
experiment, with an experiment-matched design, show a genotype 
effect ***p < 0.0001. d–f Cultures of WT and CSF1R+/− microglia 
were exposed to green fluorescent zymosan beads (n = 3 independ-
ent experiments). At the end of the experiment cells were fixed and 
immunostained with anti-P2RY12 antibodies (red) and the number 
of cells containing fluorescent beads was counted. Compared to WT 
microglia (d), CSF1R+/− microglia (e) also shows a reduced capacity 
to phagocytose zymosan beads (green) (f). Two-way ANOVA by gen-
otype and experiment, as above, shows a significant genotype effect 
**p < 0.01. g Sequential snapshot images (1–6) of human microglia 
obtained during the 12 h time-lapse microscopy study in which 720 
frames were studied. The images illustrate neutrophil phagocytosis by 
human microglia at the indicated times (hours:minutes). h Magnifi-
cation of the indicated part of sequence 6 in g is shown to illustrate 
the engulfment of a neutrophil by a human microglial cell. i After 
the time lapse-experiment, human cells were fixed and stained with 
anti-P2RY12 antibodies (red). Nuclei are shown in blue (DAPI). The 
microglial cells contain material (green fluorescence) derived from 
digested neutrophils. Scale bar 20 μm
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microscopy, we previously found evidence that micro-
glia phagocytosed neutrophils before they extravasated to 
the brain parenchyma [50, 51]. However, further studies 
are required to demonstrate whether microglia can really 

cross the external cortical basement membrane after brain 
ischemia. Although we detected engulfment of complete 
cells by microglia, some of the images suggest that micro-
glia may take portions of the neutrophils while they are 
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located in the perivascular or subpial spaces, potentially 
through a process of trogocytosis [71].

The blood vessel glycocalyx and basement membrane 
composition varies between organs and inflammatory con-
ditions suggesting that leukocytes may have to use diverse 
strategies to access different inflamed tissues [53]. In the 
brain, neutrophils cross the endothelial cell layer and the 
endothelial basal lamina of venules to reach the perivas-
cular spaces after ischemia [17]. Then, they accumulate in 
the perivascular spaces because they do not seem to readily 
cross the parenchymal basal lamina [17], at least not at the 
same pace as they transmigrate through the former layers. 
However, the precise molecular determinants of this pro-
cess remain to be identified. The different molecular com-
position of the two layers of basal lamina surrounding the 
perivascular spaces, local molecular diversity, and the find-
ing that certain basal lamina components inhibit leukocyte 
transmigration [63], might explain why neutrophils have 
more difficulty to cross the parenchymal than the endothe-
lial basal lamina after brain ischemia. In a model of tran-
sient ischemia, there is evidence suggesting that neutrophils 
are kept in the perivascular spaces without infiltrating the 
brain parenchyma [17], whereas other studies suggested that 

neutrophils reach the brain parenchyma [64]. It is plausible 
that stroke severity, status of microglia function, and time 
point of the study are critical determinants of the presence 
of neutrophils in the brain parenchyma. Neutrophils located 
in the perivascular spaces might damage the basement mem-
brane by releasing proteolytic enzymes and/or undergoing 
NETosis [55]. However, at this stage we cannot exclude the 
possibility that neutrophils gained access to the brain paren-
chyma in a passive fashion after loss of vessel integrity in 
the ischemic core. Several lines of evidence support that 
after brain ischemia neutrophils release proteolytic enzymes, 
promote matrix metalloproteinase (MMP) activation, and 
cause BBB breakdown [25, 35, 36, 57, 66, 72]. Accord-
ingly, blocking neutrophils or neutrophil-derived MMP-9 
is markedly protective in models of systemic inflammation 
and stroke, e.g. [35, 44]. Furthermore, pharmacological inhi-
bition of neutrophil elastase or genetic deficiency of this 
enzyme reduced BBB disruption and vasogenic edema after 
transient MCAo [64] suggesting that neutrophils contributed 
to vascular damage following stroke.

In this study we showed that, after permanent ischemia, 
neutrophils gained access to the brain parenchyma of the 
lesion core when it was already severely damaged and 
microglia was lost due to persistent ischemia. Under these 
conditions, parenchymal neutrophils might be bystanders of 
severe tissue damage. Therefore, it is likely that preventing 
the access of neutrophils to the brain parenchyma in this 
model would not have a major impact on the size of the 
brain lesion since the damage is already established by the 
time the cells reach the parenchyma and the core of infarc-
tion will not recover. This possibility agrees with the finding 
that inhibition or deficiency of neutrophil elastase was not 
protective in models of permanent MCAo [64]. In contrast, 
inhibiting microglial phagocytic activity in this model might 
bear negative effects by favoring neutrophil accumulation 
in the ischemic periphery. Accordingly, detrimental effects 
of neutrophils became apparent in our study after micro-
glia depletion causing an abnormal increase in neutrophils 
and larger ischemic lesions. A limitation of our study is that 
we did not assess stroke outcome in the long term. Future 
work should investigate how microglia depletion affects the 
progression of the ischemic brain lesion and the neurologi-
cal deficits. The results highlight an aspect of microglia 
phagocytic function that may be beneficial for the ischemic 
tissue. Nonetheless, several mechanisms can contribute to 
the detrimental effect of microglia depletion and CSF1R 
deficiency. For instance, pioneer studies demonstrated 
increased ischemic lesions related to reduced production of 
neurotrophic factors after depleting proliferating microglia 
[38], and neuroprotective functions mediated by CSF1R 
[47]. Moreover, we previously identified that absence of 
microglia significantly augmented infarct size in a model 
of transient ischemia, in part mediated by dysregulation of 

Fig. 7   The presence of neutrophils in the brain parenchyma is associ-
ated with dystrophy and loss of microglia. a Flow cytometry analysis 
of CD11b+ Ly6G+ neutrophils in the core and periphery of infarc-
tion and in mirror regions of the contralateral hemisphere 1 and 
4 days after MCAo (n = 5 mice per time point) shows that ischemia 
increases the number of neutrophils in the core of infarction more 
than the periphery (two-way ANOVA, Bonferroni test, ***p < 0.001). 
b–d Brain confocal images  1  day after MCAo (n = 8) show Ly6G+ 
neutrophils (green) in the perivascular space of a venule (b) and the 
parenchymal side of capillaries (c, d). The basal lamina is stained 
with Pan-laminin (red) and nuclei are stained with To-Pro3 (blue). e 
Neutrophil (Ly6G+, green) accumulation is higher at the border (dot-
ted line) of the infarcted core than the periphery, whereas microglia 
(red cells, CX3CR1cre/ert2:Rosa26-tdT mice) accumulate in the infarct 
periphery and are scarce in the core. The vascular basal lamina is 
shown in blue (pan-laminin). f–h Images obtained from Catchup mice 
crossed with CX3CR1gfp/gfp mice at day 1 (f, g) and day 4 (h) post-
ischemia. Extravasated neutrophils (red) away from the vascular basal 
lamina (pan-laminin, blue) are seen in the core of the lesion where 
microglia (green) is absent or dystrophic, whereas neutrophils are 
surrounded by reactive microglial cells in the periphery (f). g Exam-
ples (1–5) of microglial cells sending prolongations towards neutro-
phils 1 day after pMCAo. Neutrophils located in perivascular spaces 
extend protuberances crossing the basal lamina (1). Extravasated 
neutrophils are seen near vessels with discontinuous basal lamina (2). 
They are surrounded by reactive microglia at the border of the lesion 
(2–4), but dystrophic microglia seem to be unable to fully reach the 
extravasated neutrophils (5). h At day 4, microglial cells sending pro-
longations towards neutrophils are seen at the border of the lesion 
(1). Extravasated neutrophils are seen in zones where microglia is 
dystrophic (1–2) or absent (3–5). The vascular basal lamina is hardly 
detected at places where the neutrophils are located (3). Arrowheads 
indicate neutrophils, whereas arrows indicate microglia. The cell 
nuclei (DAPI, white) are shown in g (4–5) and h (1–3). Scale bar 
10 μm
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neuronal activity [65]. The latter model caused moderate 
leukocyte infiltration and we failed to observe a significant 
impact of microglia depletion on BBB injury and leukocyte 
recruitment, at least at the times examined [65]. In contrast 
to the findings suggesting beneficial effects of microglia in 
brain ischemia, several lines of evidence support that the 
phagocytic activity of microglia could exert negative effects 
by removing viable neurons through phagoptosis [5, 6, 48, 
49]. It is possible that any negative consequences of phago-
ptosis of neurons might predominate under mild ischemic 
conditions where the inflammatory response is low, vascular 
integrity is preserved, and neutrophil attraction to the brain 
is negligible.

Collectively, our results support a model where microglia 
removes neutrophils from the parenchyma and perivascular 
and subpial spaces after brain ischemia. Severe ischemic 
conditions induce local microglia loss/dystrophy facilitat-
ing the presence of neutrophils in perivascular spaces first 
and in the brain parenchyma later. Overall, this study shows 
that reactive microglial cells phagocytose and remove neu-
trophils, whereas microglial loss or dysfunction enhances 
neutrophil accumulation in the ischemic lesion. Our results, 
hence, suggest that microglia function is critical to prevent 
neutrophil infiltration to the brain parenchyma and to mini-
mize the negative impact of neutrophils in the vascular bed 
after ischemic stroke.
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