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Inferring signalling networks from images
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Summary

The mapping of signalling networks is one of biology’s most
important goals. However, given their size, complexity and dy-
namic nature, obtaining comprehensive descriptions of these
networks has proven extremely challenging. A fast and cost-
effective means to infer connectivity between genes on a
systems-level is by quantifying the similarity between high-
dimensional cellular phenotypes following systematic gene
depletion. This review describes the methodology used to map
signalling networks using data generated in the context of
RNAi screens.

Introduction

A central challenge in biology and medicine is to comprehen-
sively map cellular signalling networks. Signalling networks
receive input from the environment and regulate fundamental
cellular behaviours such as proliferation, metabolism, mor-
phogenesis and death. Ideally, network maps should be quan-
titative descriptions of how different components physically
interact, and be predictive of how information flows through
the network in response to stimuli. Although early studies of
signal transduction derived descriptions of hierarchical and
linear pathways consisting of a limited number of proteins
(e.g. in the order of 10–20 proteins), it is clear that these rep-
resentations are not reflective of in vivo network architecture
and dynamics. Specifically, signalling networks involve 1000s
of different components, signalling pathways are highly inter-
connected, proteins act as part of large complexes, information
propagation occurs via both linear and nonlinear ways (e.g.
by feedback and oscillations) and these networks are dynami-
cal in nature (Bork & Serrano, 2005; Ferrell et al., 2011; Vidal
et al., 2011).

Despite broad conceptual advances in our understanding
of cell signalling, most signalling networks remain unex-
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plored. It is sobering to consider that it has required a sig-
nificant effort over the last decade to generate a compre-
hensive genetic interaction map for the single cell organ-
ism Saccharomyces cerevisiae growing in one type of media
(Costanzo et al., 2010), however, networks are likely to dif-
fer tremendously based on cell-type and environmental con-
ditions. Large-scale efforts to map protein–protein interac-
tions (PPIs) cover only small portions of network space (Rual
et al., 2005; Guruharsha et al., 2011). Thus if we are to
map networks in many different cell types, from different ge-
netic backgrounds, across diverse conditions, fast and cost-
effective methods are required to infer connectivity between
components.

Genetics has always had an important role to play in describ-
ing signalling systems. The power of genetics derives from the
fact that depletion of genes encoding members of the same
signalling pathway or complex leads to similar cell and or-
ganism phenotypes. Figure 1 shows a simple example, where
depletion by RNA interference (RNAi) of RacGAP50C, Rho1,
Pbl or Pavarotti in Drosophila Kc167 cells leads to strikingly
similar phenotypes – multinucleate cells that have success-
fully progressed through mitosis (as they show normal nuclear
morphology), but failed in the late stages of cytokinesis. Thus,
based on the shapes of the nuclei and the cell itself following
gene depletion, we can infer that these genes regulate the same
function (assembly of the contractile ring during cytokinesis),
potentially make physical interactions, and may regulate the
spatiotemporal activity of each other. All of these inferences
regarding RacGAP50C, Rho1, Pbl and Pavarotti have in fact
been validated using both forward genetic and biochemical
methods in a number of different organisms (Fededa & Gerlich,
2012). Even this simple example shows how deep insights into
signalling networks can be gained from a set of static images
of mutant phenotypes.

Classically, assessment of complex cellular phenotypes such
as cell shape following genetic perturbation has been per-
formed qualitatively and in relatively low throughput. For
example, many cell biology studies still involve human in-
terpretation of images derived from a small number of experi-
ments, resulting in limited descriptions of signalling pathways.
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Fig. 1. Depleting different members of the same signalling complex leads to similar cellular phenotypes. (A) Kc167 Drosophila cells treated with dsRNA
targetting Rho1, Pbl, RacGAP50C or Pavarotti, have similar cellular phenotypes. Cells were treated with RNAi and then fixed, stained with DAPI (red),
phalloidin (blue), and anti-alpha tubulin antibody (green), and then imaged using an Opera QEHS microscope (PerkinElmer). The appearance of large,
multinucleated, round cells suggests cytokinesis, but not mitosis, has failed during cell division. Scale bars are equal to 20 µm. (B) Rho1, Pbl, RacGAP50C
and Pavarotti act as part of the same signalling complex during cytokinesis. All proteins localize to the presumptive cleavage furrow and promote
actomyosin contractile ring assembly. Red arrows indicate there is evidence for active regulation of one protein by another, such activation/inhibition or
control of localization.

However, recently developed, automated high-throughput
cellular imaging methodologies can now be used to quan-
titatively describe signalling networks following unbiased,
large-scale, systematic gene depletion by RNAi. It is these
methodologies that will be the subject of this review, with
particular focus on the initial extraction of raw data from im-
ages and the methods used to map networks following this
extraction.

Experimental set-up

Generating a dataset of images following systematic gene de-
pletion for the intent of describing signalling networks in-
volves the same methods as performing any image-based
RNAi screen. These protocols have been extensively reviewed
elsewhere and will only be discussed briefly here (Mohr et
al., 2010). In high-throughput experiments, each RNAi is
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prealiquoted in a particular well of a multiwell plate (96, 384
or 1536 wells per plate), and cells are cultured in each well
for a period of ∼2–6 days. Hundreds to thousands of cells can
be grown in each well. Given that an experiment might in-
volve imaging of 1000–1 000 000 individual wells, this is
performed using high-throughput microscopes. The inclusion
of not only appropriate controls, as well as both technical and
experimental replicates is critical to the analysis and interpre-
tation of these experiments. Technical replicates are required
to account for the high degree of variability observed between
the effects of the same RNAi in the same plate, and between du-
plicate plates that are prepared on the same day. If experiments
are performed many weeks or months apart, technical repli-
cates are also important to take ‘batch effects’ into account.
Experimental replicates, where different siRNA, shRNA or dsR-
NAs are used to target the same gene, are required to account
for off-target effects (that generate false positives) and ineffec-
tive knockdowns (that generate false negatives). Although ex-
perimental replicates are essential to the experimental design,
their inclusion also leads to specific challenges in describing
cellular phenotypes and thus network mapping, as the effects
of different RNAis can vary tremendously even though they
target the same gene. The number of genes that are analysed in
screens has a direct effect on the granularity of the outcome, or
the number of unique interactions that will be identified; pub-
lished screens have ranged in size from ∼250–25 000 genes.

It is important to differentiate attempts to map signalling
networks using high-throughput genetics from conventional
RNAi screens where the goal is to identify a limited number
of genes that contribute to a phenotype of interest. In conven-
tional RNAi screens different scoring metrics are employed
to differentiate ‘hits’ from ‘nonhits’ and great emphasis is
placed on lowering false positive rates, potentially at the risk
of increasing false negatives. From the perspective of the
data analysis, this is a ‘finding a needle in haystack’ type of
problem. However, when mapping signalling networks, the
challenge is to assign a phenotypic ‘signature’ to all genes
and determine similarities/differences in these signatures – or
a ‘hay vs. hay’ analysis.

The phenotype

An important consideration in building network maps
using imaging data is that phenotypes should have high
dimensionality to identify as many different phenotypes as
possible in the assay. By increasing the number of phenotypes,
this increases the probability that the interactions assigned
between genes based on the similarity of their phenotype
following knockdown will be indicative of a genuine bio-
chemical interaction that occurs in vivo. An analogy would
be attempting to classify different dog breeds from a mixed
population; if only differences in height from the mean is used
as a readout, the small dog and large dog group would still
contain a mix of breeds. However, if additional information,
such as coat length, colour, ear shape, etc. were used, accurate

classification is possible. However, many conventional assays
used in molecular cell biology do not satisfy this condition
of high dimensionality. For example, screens that measure
cellular viability (Boutros et al., 2004) will not provide insight
into network structure because only two different groups will
be identified; genes whose depletion increases viability, and
those who decrease it. Although some of the genes/proteins
in each of these groups are likely to make interactions in vivo,
there are a number of different means by which RNAi could
affect viability, thus assigning interactions using only two
groups will result in a number of false positive interactions.

Cellular morphology has proved to be an excellent high-
dimensional readout for network mapping studies (Bakal
et al., 2007; Fuchs et al., 2010). In large part this is because of
the fact that hundreds of different parameters describing cell
shape can be extracted from single cells that have been labelled
using any reagent (e.g. expression of EGFP, F-actin staining
by phalloidin) that allows segmentation of cellular boundaries.
Many different freely available (Bakal et al., 2007, Pau et al.,
2010; Kamentsky et al., 2011;) or commercial packages are
now available to extract such features from image datasets
in a highly automated fashion. Furthermore, because many
diverse cellular processes affect morphology (i.e. proliferation,
growth, migration, differentiation and apoptosis), cell shape
can be used to describe networks regulating these behaviours
either in isolation or in parallel with other assays. An obvi-
ous caveat to the use of cell shape as a phenotypic readout is
that genes whose depletion does not affect shape will not be
included in network maps. In addition, even when scoring a
complex phenotype such as shape, dysregulation of different
processes can potentially lead to similar cell morphologies. De-
vising and measuring specific features that describe the effects
of gene depletion, but are not necessarily affected by the overall
cellular geometry and hence are able to differentiate between
two qualitatively similar shapes can possibly address this is-
sue. One excellent example are ‘texture features”’ (Haralick
et al., 1973) where images are first filtered using particular
patterns, and pixel intensities of the filtered image are calcu-
lated (Fig. 2). Taken together, from one single cell labelled
with a single fluorescent reporter, 100–250 features can be
extracted that describe cell geometry, label/reporter intensity,
and patterns of texture. As many as ∼600 single cell features
can be generated when multiple reporters (for example, DAPI
is used to label nuclei and quantify nuclear shape) are used in
parallel. From each well/experiment many thousands of single
cells can be imaged. Thus the datasets that can be assembled
can comprise millions to even trillions of individual data points.
In fact, the bottleneck in these experiments is not in data ac-
quisition, which is both fast and relatively cost-effective, but
in data analysis.

We have recently implemented a multiplexed approach to
generate high-dimensional signatures following different gene
depletions by combining averaged single-dimensional read-
outs such as cell viability and levels of reactive oxygen species
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Fig. 2. Texture features are useful descriptors of cellular phenotypes. (A) Untreated (left panels) or Taxol treated MCF-10A cells (right panels) were
stained with DAPI (red) and antialpha tubulin antibody (yellow). Cells were imaged on an Opera QEHS microscope. ‘SER Edge’ filtered image generated in
Columbus (PerkinElmer). (B) The SER Edge feature is calculated on a single cell basis as the pixel intensity within a single object (cell segment) averaged
over the corresponding object. Scales bar are equal to 20 µm.

with basic measurements of cell morphology – all of which
were quantified in different experiments (Garcia et al., 2012).
Although these ‘virtual high-dimensional signatures’ makes
single cell analysis impossible because the same cells are not
being analysed in different assays, they allow the inference sig-
nalling networks in a similar manner as performing a single
high-content assay.

Dimensionality reduction

Just as extracting a high number of features is a potentially
powerful means to make subtle discriminations between cellu-
lar phenotypes, many of these features are likely to be uninfor-
mative (don’t vary), noisy (vary in nonmeaningful ways), and
be highly correlated. For example, in Figure 1(A) actin inten-
sity is not a useful feature to differentiate phenotypes. Return-
ing to the dog classification analogy, leg number is likely to be
an uninformative variable, whereas eye colour is a noisy vari-

able. In addition, the use of many features is not recommended
when using most machine learning and statistical analysis
methods because of ‘the curse of dimensionality’, where the
analysis power decreases with the number of features mea-
sured. The curse of dimensionality is especially problematic in
image analysis, where the number of phenotypic features that
can be measured from a single image continues to grow as
both microscopy hardware and software improves. An impor-
tant challenge is thus to transform a high-dimensional data set
derived from images to a low-dimensional informative dataset
with minimal information loss. Dimensionality reduction is
not unique to imaging studies as similar challenges are faced
in the reduction of high-dimensional datasets such as those
generated by expression profiling, where the goal is to iden-
tify a set of genes whose expression levels can be used to best
separate different samples.

Dimensionality reduction can be performed in either a su-
pervised or unsupervised fashion. In supervised methods, a set
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of mutant phenotypes must be first identified a priori, and then
algorithms are used that select a subset of features that can dis-
criminate these phenotypes from wild-type cells. Unsupervised
approaches do not require any prior knowledge about the data,
and attempt to identify the main trends of variability in the
data by representing these trends in low-dimensional space.
Principal component analysis (PCA) is a popular method of
unsupervised dimensionality reduction. However, a caveat to
using unsupervised methods like PCA is that it weighs fea-
tures based on their variance rather than their relevance to
the phenotypes of interest.

Assigning signatures to phenotypes

We have previously made use of supervised approaches where
we used machine learning algorithms to find combinations of
features, or classifiers, that best explain our data (Bakal et al.,
2007). Specifically we preselected seven different ‘reference’
or ‘exemplar’ phenotypes that human observers considered
qualitatively different from wild-type cells, as well as each
other, and then generated neural networks that identified
combinations of features which could quantitatively distin-
guish these phenotypes. Subsequently, the entire dataset was
then scored using these features. Different phenotypes were
thus classified as to how similar/different they were to the
reference phenotypes, which allowed us to quantify even sub-
tle differences between populations. That human observers
must first isolate phenotypes of choice is a considerable dis-
advantage to the use of supervised methods, especially if it
is unclear what such phenotypes might be before the images
are acquired. In the context of large screens where millions
of images are acquired, it is not feasible to examine the en-
tire dataset. Furthermore, there is a danger that the use of
such methods fails to fully classify the wide range of phe-
notypes that are actually present in the data, and that the
captured variance is heavily biased. However, we have re-
cently described the use of automated phenotypic detection
algorithms that can be implemented to identify reference phe-
notypes from a dataset of choice (Yin et al., 2008). Once the
relevant features have been identified, any cell can be assigned
a ‘phenotypic signature’, or ‘Quantitative Morphological Sig-
nature’ that describes its phenotype in a multidimensional
manner.

The challenge of phenotypic heterogeneity

A nontrivial aspect to the analysis of high-content screens
and the inference of signalling networks is how to derive a sin-
gle phenotypic signature of highly heterogeneous cell popula-
tions. The most straightforward, and frequently used, method
to calculate a single signature for a gene is to calculate the av-
erage phenotypic signature of cells from all populations where
RNAi has depleted the gene, and this has been frequently used
in the past. However, it is clear that even wild-type/untreated

cells can exhibit high levels of phenotypic heterogeneity that
may be driven by stochastic fluctuations in transcription, pro-
tein levels, signalling activity and cytoskeletal polymerisation
(Mitchison & Kirschner, 1984; Spencer et al., 2009; Altschuler
& Wu, 2010; Balazsi et al., 2011). Moreover, in some cell types
the spatial distribution of a cell within a colony can have ef-
fects on cellular behaviour (Snijder et al., 2009). In RNAi-
treated cells, heterogeneity can be further exacerbated by fac-
tors such as incomplete penetrance and pleiotropic effects of
RNAi. Notably, different RNAis (e.g. different siRNA from the
same and/or different vendors) can also often lead to different
phenotypes, even though they target the same gene (Collinet
et al., 2010). Therefore, the heterogeneity of: (i) the wild-type
population, (ii) the population in each RNAi experiment (e.g.
single wells) and (iii) different populations from technical (re-
peat wells) and experimental (different RNAi reagents target-
ing the same gene) repeats, must be accounted for to calculate
a single phenotypic signature that describes depletion of a
gene. Only then can different gene-specific signatures be com-
pared. Recent high-content screens have implemented novel
methods to determine the most common phenotype amongst
experimental replicates (Collinet et al., 2010), and to consider
the heterogeneity of different populations when measuring
the effects of gene depletion (Snijder et al., 2012). In the lat-
ter case, Snijder et al. generated models that assume different
cells will have different phenotypes following depletion of the
same gene by RNAi based on their position in multicellular
colonies. Accounting for positional effects essentially ‘normal-
izes’ some of the phenotypic heterogeneity that is commonly
observed following RNAi (Snijder et al., 2012). That popula-
tion heterogeneity can be accounted for in this manner is one
significant advantage to generating single cell high-content
data.

Grouping quantitative signatures and inferring networks

Once a multidimensional gene specific signature has been cal-
culated, measuring the similarity between signatures, and
inferring connectivity, can be straightforward. A common
method to infer interactions between genes is to use cluster-
ing methods that group gene signatures into ‘phenoclusters’
based on a given similarity metric, such as Euclidean Distance
or Pearson correlation. In a screen for genes regulating cell
morphology, we have shown that co-membership in a phen-
ocluster strongly suggests that two genes encode members of
the same signalling pathway/complex (Bakal et al., 2007). In
this case each phenocluster can also be considered a ‘local net-
work’ of proteins that act in distinct spatiotemporal manners
to regulate a specific morphological process (e.g. protrusion,
lammellipodium formation). The notion that clustering of mu-
tant phenotypes is indicative of two proteins acting as part of
the same signalling complex is further supported by yeast and
worm studies which have performed both image analysis of
mutant phenotypes in parallel with large-scale quantification
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of PPI (Gunsalus et al., 2005; Gavin et al., 2006). That protein
function, subcellular localization, and PPI can be inferred from
static images underscores the power of high-throughout and
high-content genetics.

One caveat to the use of similarity-based classification
schemes such as hierarchical clustering is that phenoclus-
ters are essentially complete graphs where each gene/protein
is connected to all other in the cluster, and all clusters are
ultimately connected to each other. Unfortunately, although
clustering recapitulates the idea that many proteins that reg-
ulate a common function often act as part of large signalling
complexes, it cannot be used to describe finer aspects of sig-
nalling network architecture and dynamics. For example, it is
unlikely that all proteins assigned to a particular phenocluster
physically interact. Moreover, using clustering it is essentially
impossible to identify situations where a particular protein
may act as an upstream regulator of another.

To overcome these problems, two methods have been suc-
cessfully implemented to use phenotypic data generated by
screens to infer more physiological aspects of signalling net-
work architecture and dynamics. The first is to integrate phe-
notypic data with other data sources, such as coexpression or
PPI data (Gunsalus et al., 2005; Fuchs et al., 2010). In the sim-
ple case, when phenotypic signatures of two genes/proteins
are highly correlated, a connection between them is inferred
only if they have previously been shown to physically in-
teract and/or be co-expressed. In more complex integration
procedures, all data sources are used in models that con-
sider the probability of each type of interaction or correla-
tion and then generate a connection based on this interac-
tion. In the latter case, if the correlation between phenotypic
signatures is high, a connection can potentially be assigned
even in the absence of any other supporting data, whereas in
simple integration schemes, one data source essentially val-
idates the other. Data integration methods are particularly
useful when attempting to map very large networks, such as
those generated by genome-wide screens. Using prior knowl-
edge is an alternative to data integration that can also be
used to infer signalling network architecture. For example,
we have previously modelled a signalling network comprised
of Rho GTPase Activating Proteins (RhoGAPs) from image-
based data by assuming that RhoGAPs act upstream of their
target Rho-family GTPases. Using image-based data we could
determine previously unknown enzyme-substrate interac-
tions and make inferences regarding signalling dynamics (Nir
et al., 2010). However, the obvious limitation to this method
is that it requires prior knowledge that may not exist for many
other types of proteins, and the final network will be con-
strained by the assumptions used to construct it. For exam-
ple, we could not incorporate into our model the fact that
RhoGTPases can also potentially act upstream of different
RhoGAPs. Devising new means of modelling signalling net-
works from imaging data is currently an intensive area of
research.

The future

In the past many groups, including our own, have been focused
on development of the methods themselves, but the challenge
now is to use these methods across many different cell lines
and/or conditions in a genome-wide fashion to gain insight
into how genetic backgrounds and environmental conditions
affect network architecture. Furthermore, it is essential that
new computational methods be developed which can be used
to model aspects of signalling dynamics such as information
flow, oscillatory behaviour and feedback. Finally, as imag-
ing instrumentation becomes faster, and data storage ever
cheaper, the task of analysing extremely large datasets in an
efficient manner will require new solutions. In particular, solv-
ing the curse of dimensionality with regards to high-content
data will require extensive collaborations between cell biolo-
gists and mathematicians.
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