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Abstract
Background: Since high-throughput protein-protein interaction (PPI) data has recently become
available for humans, there has been a growing interest in combining PPI data with other genome-
wide data. In particular, the identification of phenotype-related PPI subnetworks using gene
expression data has been of great concern. Successful integration for the identification of significant
subnetworks requires the use of a search algorithm with a proper scoring method. Here we
propose a multivariate analysis of variance (MANOVA)-based scoring method with a greedy search
for identifying differentially expressed PPI subnetworks.

Results: Given the MANOVA-based scoring method, we performed a greedy search to identify
the subnetworks with the maximum scores in the PPI network. Our approach was successfully
applied to human microarray datasets. Each identified subnetwork was annotated with the Gene
Ontology (GO) term, resulting in the phenotype-related functional pathway or complex. We also
compared these results with those of other scoring methods such as t statistic- and mutual
information-based scoring methods. The MANOVA-based method produced subnetworks with a
larger number of proteins than the other methods. Furthermore, the subnetworks identified by the
MANOVA-based method tended to consist of highly correlated proteins.

Conclusion: This article proposes a MANOVA-based scoring method to combine PPI data with
expression data using a greedy search. This method is recommended for the highly sensitive
detection of large subnetworks.

Background
Since the advent of microarray technology, genome-wide
expression analysis has become an important tool in biol-
ogy [1]. Much of the initial research with expression data
has focused on evaluating the significance of individual
genes in a comparison between two groups of samples to
identify differentially expressed genes (DEGs). Various
statistical approaches have been proposed in the literature
[2-4]. However, the main difficulty lies not in the identifi-

cation of DEGs but in their interpretation [5]. The inter-
pretation of a long list of DEGs can be a daunting and ad
hoc endeavor, since it is dependent on the biologist's area
of expertise [6]. A compromise can be reached by con-
structing sets of individual genes (hereafter referred to as
"gene sets") from prior biological data. For example, gene
sets from a public database such as Gene Ontology (GO)
and KEGG would provide functional interpretations of
biological modules. In addition, by extending the level of
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analysis from an individual gene to multiple genes, we
can identify genes with small changes that are not identi-
fied at the single-gene level analysis [7]. Furthermore, this
multiple-gene approach is reasonable from a biological
perspective because many genes function in concert rather
than alone [8]. The hurdle, however, is that the majority
of human genes have not yet been assigned to a definite
pathway or complex. As protein-protein interaction (PPI)
data become available, integrating PPI data with genome-
wide expression data will provide new opportunities to at
least partially address this challenge [9]. The combined
analysis of expression data and PPI data allows us to
detect unknown gene sets–those not obtainable from a
public database [10]. Therefore, researchers could utilize
this approach to formulate a novel hypothesis about a
pathway.

The integration of PPI data with gene expression data
requires an adequate scoring method to measure the dis-
criminative potential of a given subnetwork or a con-
nected subgraph. Several scoring methods have previously
been proposed: combining multiple p-values [11], mutual
information [9], and edge scoring [12,13]. In addition, it
is possible to utilize protein structure information in the
scoring method. For example, the fact that no two part-
ners can interact with a given binding site at the same time
provides data that is complementary to the gene expres-
sion data. In this way, the prediction of protein-protein
interactions by utilizing the information of protein-pro-
tein interfaces in public databases provides additional
information for proper scoring [14-17]. In addition to a
proper scoring method, an effective search algorithm is
required to find the subnetworks with the maximum
scores. Various search algorithms have been suggested.
For example, simulated annealing [13], greedy search
[8,9], and exact search [10] have been proposed as search
algorithms. In particular, Chuang et al. [9] used a greedy
search with mutual information-based scoring method to
classify breast cancer metastasis. They successfully identi-
fied the subnetworks related to breast cancer metastasis
and showed the usefulness of integrated analysis for iden-
tifying a disease marker.

This paper focuses on a scoring method adopting when
using a greedy search. It has been reported that while the
correlation among the genes in a subnetwork is not con-
spicuous, it is important in assessing statistical signifi-
cance [5]. The multivariate analysis of variance
(MANOVA) model is a well-known statistical model used
to determine whether significant mean differences exist
among groups. One advantage of MANOVA is that the
correlation structure is taken into consideration. Moti-
vated by this characteristic feature of MANOVA, we pro-
pose a MANOVA-based scoring method for identifying
differentially expressed PPI subnetworks. We also suggest

several criteria appropriate for the comparison of scoring
methods in the context of a greedy search algorithm.

Results
Biological significance of identified subnetworks
Fibroblast serum response
A greedy search with our MANOVA-based scoring func-
tion identified 86 significant subnetworks with p < 0.05.
We performed the GO term enrichment analysis to inves-
tigate how well the identified subnetworks represented
the functional modules. Under the assumption of a hyper-
geometric distribution, we calculated the significance
level for the number of proteins in an identified subnet-
work that were included in each GO term in the category
of "biological process" and selected most significant GO
terms for functional annotations of the identified subnet-
work. The ten most significant subnetworks are listed in
Table 1. As shown in Table 1, the wound healing-relevant
biological processes in GO, such as "cell-cell adhesion"
(GO: 0016337), "fibroblast growth factor receptor signal-
ing pathway" (GO: 0008543), and "blood coagulation,
extrinsic pathway" (GO: 0007598), were enriched in our
subnetworks. These are known as major biological proc-
esses related to wound healing.

Prostate cancer progression
In this example, 123 significant subnetworks were identi-
fied by our method. The ten most significant subnetworks
are shown in Table 2. The "BMP signaling pathway" (GO:
0030509) and "epithelial to mesenchymal transition"
(GO: 0001837) were observed. These processes have been
reported to be essential to prostate cancer progression,
showing how our results are useful [18,19].

Comparison with other methods
Real data sets
We compared our MANOVA-based scoring method with
two other methods. Nacu et al. [8] suggested a scoring
method based on averaging gene expression levels (here-
after referred to as the TΣ-based scoring method). And
Chuang et al. proposed the mutual information-based
scoring method [9] (hereafter referred to as the MI-based
scoring method). We evaluated the performance of these
three methods and compared the number of significant
subnetworks, the size of each significant subnetwork, and
the percentage of proteins with a higher correlation coef-
ficient for a given seed protein in the subnetworks. In the
case of the prostate cancer metastasis data, we used just
two phenotypes–benign epithelium and primary prostate
cancer–because the TΣ – based scoring method can only
handle data consisting of two phenotypes. First, the
number of significant subnetworks was determined, as
shown in Table 3. The MANOVA-based scoring method
produced the smallest number of significant subnetworks
among the three methods.
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Next, we examined the sizes of the significant subnet-
works commonly identified by all three methods. Figure 1
shows the distribution of number of proteins in the com-
monly identified subnetworks. The MANOVA-based scor-
ing method usually identified subnetworks with a larger
number of nodes (genes) than the other methods. In sum-
mary, the MANOVA-based scoring method tended to
yield a smaller number of significant subnetworks with
larger numbers of proteins than the other scoring meth-
ods.

Finally, we investigated the distribution of the correlation
coefficients within the subnetworks identified as being
significant by all three scoring methods to determine the

strength of correlation among the proteins in the subnet-
works. The correlation coefficient for every protein in the
sub-networks with the seed protein was calculated. Figure
2 shows the distribution of the absolute values of the cor-
relation coefficients for the subnetworks identified by
each scoring method. The MI-based scoring method and
the MANOVA-based scoring method had higher correla-
tions than the TΣ – scoring method. We then calculated
the percentages of the correlation coefficients higher than
various thresholds. As shown by Tables 4 and Table 5, the
MANOVA-based scoring method tended to have higher
percentages than the other methods. This suggests that the
MANOVA-based scoring method tends to construct sub-

Table 1: GO functional annotations for the ten most significant subnetworks (Serum Response data).

Sub-networks GO annotation P-value (GO)

F10 F7 TFPI PRSS3 THBS1 FN1 MMP2 LTBP1 SDC2 CD36 
F2 SERPING1 C1S

blood coagulation, extrinsic pathway 0

FGF2 FGFR1 CD44 EPB41L3 FGF7 FNDC5 EGFR DEGS1 
FNDC4

fibroblast growth factor receptor signaling pathway 0

GNB1 GNG4 GNG2 GNAS SNX13 ADCY9 hormone-mediated signaling 0
MCM7 MCM4 UBE3A MCM6 UBQLN2 DNA replication initiation 0
MAP2K1 ARAF RPS6KA2 ASS MAPK1 KLF11 NEK2 MBP PRKCD protein amino acid phosphorylation 0
CEBPA CDK2 ATF2 MAPK11 DUSP14 NR3C1 HNRPU BCL2 PCNA 
TGFB1I1 SMARCA2

regulation of DNA replication 0.000003

COL4A2 CD93 CD44 FGF2 FGFR1 EPB41L3 FNDC5 EGFR 
DEGS1 FNDC4 KRT17 CAMLG

cell-cell adhesion 0.000003

DYNLL1 DNMT1 NOS1 TXNL5 BDKRB2 PCNA MSH3 RFC1 
DCC1 CDK2 PARD3 CALM2

regulation of DNA replication 0.000004

SDC3 FGF2 FGFR1 FNDC5 COL6A2 COL1A1 ITGA2 BGN 
P4HB API5

fibroblast growth factor receptor signaling pathway 0.000109

CSPG2 CD44 FGF2 FGFR1 EPB41L3 COL1A1 P4HB 
FNDC5 COL6A2 FNDC4 SDC3 MMP2

fibroblast growth factor receptor signaling pathway 0.000159

GO terms are enriched for the identified subnetworks. P-values are the results of GO term enrichment analyses. The well-known biological 
processes related to wound healing are denoted by bold-faced letters.

Table 2: GO functional annotations for the ten most significant subnetworks (Prostate Cancer Metastasis data).

Sub-networks GO annotation P-value (GO)

ACVR1 SMAD5 SMAD4 TFE3 DACH1 SPTBN1 JUN BMP2 SKIL MGP BMP signaling pathway 0
ACVR1B TGFB3 TGFB1 BGN ITGAV ACVR2A BMP7 epithelial to mesenchymal transition 0
ACVR2A BMP6 SMAD5 SMAD4 ACVR1 ACVR1B TGFB1 BMP signaling pathway 0
AKT2 PIK3R1 MME NRAS PIP5K2A TUBG1 NFKB1 TRIP4 PIK3C2B VAV2 CEBPB 
PIK4CA EGR1

phosphoinositide phosphorylation 0

ARF1 TMED2 TMED10 ARFGAP1 AP1G1 AFTIPHILIN PSCD2 vesicle-mediated transport 0
BMP2 TGFB1 ITGAV BGN GLI2 LTBP1 TGFB3 BMP7 CSNK1A1 PRKY epithelial to mesenchymal transition 0
BMP6 SMAD5 SMAD4 ACVR1 ACVR2A ACVR1B NCOA3 MYC GTF2B 
PCAF SMAD2

BMP signaling pathway 0

BMP7 ACVR1 SMAD5 SMAD4 ACVR2A ACVR1B TGFB1 BMP6 BMP2 
TGFB3

epithelial to mesenchymal transition 0

CANX MBTPS1 ITGB1 CD46 LGALS3BP ITGAV ITGB1BP1 PXN SERP1 ITGA8 cell-matrix adhesion 0
CAV1 PTPRF JUP ITGB4 COL17A1 NID1 LGALS3BP IRS1 FRS2 EDG1 PLEC1 APP 
TGFB1 CALR APPBP1

cell adhesion 0

GO terms are enriched for identified sub-networks. P-values are the results of GO term enrichment analyses. The well-known biological processes 
related to prostate cancer metastasis are denoted by bold-faced letters.
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networks containing relatively larger numbers of highly
co-regulated genes.

Simulation study
We performed a series of simulation studies to evaluate
the three scoring methods. Specifically, we focused on the
ability of each method to identify previously assumed tar-
get subnetworks. The simulation study was performed for
the PPI network in Figure 3a, which has proteins within a
depth of two from a given seed protein. For this PPI net-
work, five types of network structures were assumed to be
true target networks (Figure 3b). Expression values with
correlation coefficient ρ were assigned to the nodes of the
target networks, while expression values with correlation
coefficient ρ' were assigned to the other remaining nodes.
The expression values with correlation coefficient ρ and ρ'
were generated by the following procedure.

For the kth subnetwork, assume that there are pk nodes
(genes) among which tk nodes (genes) belong to a given
target network. For the ith gene in the phenotype group g,
let xig (i = 1, • , tk; g = 1, • , G) epresent the target node and
yig (i = 1, • , pk; g = 1, • , G) the nontarget node. Then, the
expression values are generated to obtain a correlation
coefficient of ρ for every pair in the target nodes and ρ' for

every pair in the nontarget nodes by the following formu-
las:

where the Zs are normally distributed random variables
and the c and c' are constants satisfying

For given values of ρ and ρ', we calculated c and c' by set-

ting c0 and  to be 0.001. Finally, we added the constant

value α to the target nodes to make an average difference

between the target nodes and nontarget nodes. α was
assigned a value of 0.01. A greedy search was performed
for each scoring method. Permutation tests were omitted
in the simulation study because the expression values
were generated from the normal distribution. If the iden-
tified subnetwork included all of the nodes of the target
subnetworks, we considered it to be a successful identifi-
cation. This procedure was repeated 100 times and the
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Table 3: The number of significant networks identified by each scoring method.

Dataset The number of seed proteins TΣ Mutual Information MANOVA

Serum Response 154 129 100 86
Prostate Cancer Metastasis 140 124 92 83

The distribution of the number of proteins in a subnetworkFigure 1
The distribution of the number of proteins in a subnetwork. (a) Serum response data. (b) Prostate cancer metastasis 
data.
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true positive (TP) rate was estimated as the number of suc-
cessful identifications divided by 100. In order to estimate
the false positive (FP) rate, every node (gene) in a subnet-
work, regardless of whether it was a target or nontarget
node, was assigned expression values of the same correla-

tion coefficient value (ρ = ρ' in the above formulas).

We performed the simulation study with two cases of ρ
and ρ' (0.8, 0.4; 0.8, 0.1) as shown in Table 6 and Table 7.
The MANOVA-based scoring method had the highest sen-
sitivity (TP rate) in both cases. In the case of specificity
(true negative rate), the MI-based scoring method had the
highest specificity.

Discussion
This article proposes a MANOVA-based scoring method to
identify subnetworks in a PPI network. Our method was
successfully applied to two human microarray data sets,

resulting in biologically significant PPI subnetworks. We
also compared the results with those of two other scoring
methods using a greedy search algorithm. The characteris-
tics of these scoring methods when using a greedy search
are not well known, because applying the different scoring
methods to a greedy search algorithm usually generates
subnetworks with different proteins and sizes. To our
knowledge, our research is the first comparison study to
evaluate the performance of various scoring methods in
the context of a greedy search. We believe that our results
provide a guide to develop and expedite the integration of
PPI data with other biological data using a greedy search.

In an individual gene-level analysis [1-4], a list of DEGs is
identified and examined for the enrichment of gene sets
or subnetworks. In this case, DEGs are identified under
the assumption of independence between genes. How-

The box plots of correlation coefficients between seeds and proteins in identified subnetworksFigure 2
The box plots of correlation coefficients between seeds and proteins in identified subnetworks. (a) Serum 
response data. (b) Prostate cancer metastasis data. The correlation coefficients are absolute values.

Table 4: The cumulative distribution of the number of proteins 
in the subnetworks (Serum response data).

correlation coefficient TΣ Mutual Information MANOVA

≥ 0.5 36.14 41.28 43.71
≥ 0.6 20.08 25.1 30.86
≥ 0.7 10.14 18.01 17.87
≥ 0.8 2.49 2.93 8.64
≥ 0.9 0 0 0

The numbers denote the percentages of the number of proteins 
whose correlation coefficients are above the specific values in the 
subnetworks. The correlation coefficients are absolute values. The 
largest number in each row is denoted by bold-faced letters.

Table 5: The cumulative distribution of the number of proteins 
in the subnetworks (Prostate cancer data).

correlation
coefficient

TΣ Mutual Information MANOVA

≥ 0.1 56.75 59.08 62.5
≥ 0.2 28.55 33.34 36.25
≥ 0.3 16.44 26.35 16.95
≥ 0.4 4.85 6.56 7.78
≥ 0.5 1.39 1.35 1.81
≥ 0.6 0.7 0.9 0.84

The numbers denote the percentages of the numbers of proteins 
whose correlation coefficients are above the specific values in the 
subnetworks. The correlation coefficients are absolute values. The 
largest number in each row is denoted by bold-faced letters.
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ever, as several studies have pointed out, the correlation
structure in a subnetwork is not a trivial problem in
assessing the statistical significance of subnetworks [5,8].
MANOVA takes into account the correlation between
multiple dependent variables when testing whether signif-
icant differences exist among groups. Our empirical stud-
ies showed this consistently. The MANOVA-based scoring
method provides the smallest number of significant sub-
networks. However, it tends to provide larger subnetworks
with higher correlated proteins than the TΣ – based scor-
ing method, which does not consider the correlation
among genes. In addition, the simulation study showed

that the MANOVA-based scoring method has a high sen-
sitivity for the identification of true target-networks con-
sisting of higher correlated proteins, though at the cost of
low specificity. These characteristics could be emphasized
further considering the report that hub proteins have a
tendency to exhibit low expression values even though
they are more essential [20]. Our method could detect sig-
nificant subnetworks that have essential proteins with
moderate expression levels around hub proteins by
reflecting the correlation in the construction of the sub-
networks, providing more opportunities to identify novel

The structures of the PPI network for the simulation studyFigure 3
The structures of the PPI network for the simulation study. (a) An overall PPI network for the simulation study. (b) 
Five types of target subnetworks. The red nodes represent the seeds. The five types of network structures in (b) are assumed 
to be target networks for the PPI network (a).

Table 6: Sensitivity and specificity of each method in the simulation study (ρ = 0.8, ρ' = 0.4).

Sensitivity Specificity

TΣ Mutual Information MANOVA TΣ Mutual Information MANOVA

Type I 0.36 0.27 0.56 0.66 0.69 0.5
Type II 0.07 0.04 0.18 0.9 0.94 0.79
Type III 0.01 0.01 0.07 0.98 1 0.87
Type IV 0.08 0.02 0.15 0.92 0.97 0.82
Type V 0.02 0.01 0.1 0.98 1 0.92
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pathways or complexes around hub proteins than other
methods.

Furthermore, the MANOVA-based scoring method can
deal with the data of any number of groups. Our results
show the successful identification of the subnetworks dif-
ferentiating three groups related to prostate cancer metas-
tasis, as well as two groups related to the wound response
of a fibroblast culture. Since it is common for researchers
to compare more than two experimental groups defined
by multiple experimental factors, our method could pro-
vide a useful tool for identifying subnetworks under mul-
tiple conditions.

However, there are some assumptions when using the
MANOVA approach [21]. First, it assumes a normal distri-
bution of the dependent variables. However, we adopted
a permutation test to derive p-values. Thus, the violation
of this normal assumption is not critical to our method.
Second, the correlation among the dependent variables is
linear. Note that linear correlation has been successfully
applied to the analysis of gene expression data in many
previous studies [21,22]. Therefore, the assumption of lin-
ear correlation in MANOVA is biologically acceptable.
Third, the variances and covariances of the dependent var-
iables should be homogenous across the phenotype
groups. Several tests may be applied to check the validity
of this assumption. When this homogenous assumption
is not satisfied, the transformation of the dependent vari-
ables may be recommended.

Our method adopted the greedy search for identifying PPI
subnetworks. In contrast to approaches using a predefined
gene set [5-7], greedy search has the potential to identify
novel subnetworks. However, one shortcoming is the dif-
ficulty in creating a biological interpretation of the identi-
fied subnetworks. Moreover, the greedy search algorithm
is not guaranteed to identify the highest scoring subnet-
work because it is fundamentally a heuristic algorithm. To
solve this problem, an algorithm for finding optimal-scor-
ing subnetworks has recently been suggested [10]. How-
ever, methods of this kind generally involve huge
computational complexity.

Finally, it is worth noting that other types of additional
information could be used to improve our method. For
example, managing multiple microarray experiments with
annotations of the experimental conditions [23] would
produce finer phenotype-related subnetworks. In addi-
tion, integrating other factors influencing the protein
abundance, such as the miRNA activity and degradation
rate of proteins, with the current algorithm could improve
the performance of our method, because the gene expres-
sion level does not necessarily represent the true protein
abundance.

Conclusion
A MANOVA-based scoring method with a greedy search
was proposed for combining PPI data with expression
data. Our method takes advantage of a characteristic fea-
ture of MANOVA: it considers the correlation structure of
multiple dependent variables when comparing the mean
vectors across different groups. Our method was success-
fully applied to two human microarray data sets. The
results from comparisons with two other scoring methods
showed that the MANOVA-based scoring method tends to
yield a smaller number of significant subnetworks with
larger numbers of highly coregulated proteins. It also per-
formed better in terms of sensitivity than other methods
in simulation studies. Therefore, the MANOVA-based
scoring method could provide more opportunities to
identify novel pathways or complexes, including
unknown genes or proteins related to the phenotypes of
microarray experiments.

Methods
Following the idea of Ideker et al. [11], we matched the
expression values of each gene with its corresponding pro-
tein in the PPI network. We then searched for the subnet-
works with the maximum MANOVA-based scores. The
significance of the subnetworks was determined by a per-
mutation test.

Data
Expression data
We tested our method using two real expression data sets.
One was related to the serum effect on fibroblast cultures,

Table 7: Sensitivity and specificity of each method in the simulation study (ρ = 0.8, ρ' = 0.1).

Sensitivity Specificity

TΣ Mutual Information MANOVA TΣ Mutual Information MANOVA

Type I 0.41 0.41 0.57 0.6 0.78 0.47
Type II 0.07 0.02 0.14 0.83 0.96 0.76
Type III 0.02 0.01 0.09 0.98 0.97 0.91
Type IV 0.08 0 0.24 0.87 0.98 0.77
Type V 0.02 0.01 0.04 0.94 1 0.92
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and the other involved the progression of prostate cancer
in 44 individuals.

Fibroblast serum response
Chang et al. [24] studied the relationship between tumor
growth and wound recovery using a microarray experi-
ment. In vivo cells encounter serum, the soluble fraction of
coagulated blood, when they are injured. Serum promotes
the biological processes involved in wound healing by
fibroblasts. To characterize wound response, Chang et al.
[24] investigated the effect of serum on the expression
profiles of fibroblast cultures. The expression data were
obtained from Nacu et al. [8].

Prostate cancer progression
This data set was a collection of cDNA microarray expres-
sion measurements from 22 samples of benign epithe-
lium, 32 samples of primary prostate cancer, and 17
samples of metastatic prostate cancer. The progression
was benign to prostate cancer (PCA) to metastasis [25].
The data were obtained from NCBI GEO [26], and the
accession number was GSE6099.

Protein-protein interaction data
We exploited the interaction dataset used in Nacu et al. [8]
to test our scoring method and compare it with other scor-
ing methods. To obtain human PPI network data, Nacu et
al. [8] used data from EntrezGene (December 2005) and
33 human pathways in KEGG (March 2006). After remov-
ing loops (nodes connected to themselves), a graph with
7180 nodes and 27,082 edges was obtained.

Scoring methods
A subnetwork is defined as a gene set that induces a single
connected component in the PPI network [9]. Given a set
of genes, we need to compute a score that measures how
much the set is differentially expressed. Nacu et al. [8] sug-
gested a scoring method based on averaging gene expres-
sion levels (hereafter referred to as "TΣ"). TΣ first sums the
expression levels for the genes in the subnetwork and then
computes the t statistic. Chuang et al. [24] proposed a
mutual information-based scoring method (hereafter
referred to as "MI") between the activity vector over the
samples and the phenotype. The activity vector of a given
subnetwork is defined by averaging their gene-wise nor-
malized expression values.

We propose using Wilks' Λ statistic as a MANOVA-based
score for a given subnetwork. MANOVA is an extension of
analysis of variance (ANOVA) that covers cases where
there is more than one dependent variable. In our case, we
treat each gene of a subnetwork as a dependent variable.
Suppose there are K subnetworks and G phenotype
groups. For the kth subnetwork, assume that there are pk

nodes (genes). For the ith gene in group g, let

 be the expected

value of its expression value. Then the following hypoth-
eses are of interest:

MANOVA considers the correlation structure of multiple
dependent variables when it is used to compare the mean
vectors across different groups. Because subnetworks rep-
resenting complexes or pathways usually consist of multi-
ple coexpressed genes, we propose using the MANOVA
model to consider these genes simultaneously.

Search algorithms
Given the scoring functions, a greedy search is performed
to identify subnetworks within the PPI network. In the
beginning, each candidate subnetwork has a single seed
protein. In this study, proteins with more than five inter-
actions were chosen as seed proteins. To expand the sub-
network from a seed protein, we first construct every
possible subnetwork consisting of the seed and each of its
neighboring proteins. After completing the score calcula-
tion for all of the possible subnetworks, we choose the
neighboring proteins in the subnetworks with the maxi-
mum scores and include them as members of expanded
subnetworks. This process is iterated until the termination
conditions are met. Three termination criteria are used.
First, the search stops when no addition of neighbor pro-
teins increases the score over a specified relative improve-
ment rate r, which is defined as the difference between the
previous and current scores divided by the previous score.
Second, the distance from the seed is adopted as another
criterion. That is, only proteins within a specified distance
d from the seed are added to an expanded subnetwork.
Finally, the maximum possible number of proteins in a
subnetwork is also used as a termination criterion to avoid
the singular matrix conversion in the process of calculat-
ing Wilks' Λ statistic from MANOVA. When one of the
three criteria is satisfied, the iteration stops. Given that the
median distance between any two proteins in the human
PPI network is five, we set d to be 2 to provide a sufficient
number of neighbors to keep the search local. A value of
0.05 is chosen for the parameter r [9]. The maximum
number of nodes (genes) in a subnetwork is set to one less
than the number of samples in the smallest group.
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Computing significance levels
We proposed a permutation-based test to derive the sig-
nificance levels. The permutation-based approach pro-
vided a reasonable estimate for the null distribution of the
subnetwork scores, and allowed us to compute p-values.
The iteration number for this permutation test was set to
1000.
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