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Abstract: (1) Background: Disperse Blue 14, Disperse Red 9, Solvent Red 169 and Solvent Yellow 33
have been used to color smoke; however, they have not been comprehensively assessed for their
potential health hazards. (2) Methods: To assess the effects of these dyes, zebrafish embryos were
exposed from 6 to 120 h post fertilization (hpf) to 10–55 µM Disperse Red 9, 1–50 µM Solvent Red 169,
7.5–13.5 µM Solvent Yellow 33 or 133–314 µM Disperse Blue 14. Embryos were monitored for adverse
effects on gene expression at 48 hpf as well as for mortality, development and behavior at 120 hpf.
The dyes were examined for their potential to cross the blood–brain barrier. (3) Results: Solvent
Yellow 33 and Disperse Blue 14 impaired development and behavior at all concentrations. Disperse
Red 9 impaired behavior at all concentrations and development at all concentrations except for
10 µM. Solvent Red 169 caused no effects. Mortality was only seen in Disperse Blue 14 at 261.5 and
314 µM. Gene expression indicated impacts on neurodevelopment and folate and retinol metabolism
as potential mechanisms of toxicity. (4) Conclusions: Smoke dyes have a high potential for causing
developmental changes and neurotoxicity and should be examined more closely using comprehensive
approaches as used here.

Keywords: transcriptomics; pathway; zebrafish embryo test; behavior; smoke dye

1. Introduction

Synthetic anthraquinone and quinoline dyes are used for a wide range of applications
including colored smoke for entertainment, safety or military purposes and in consumer
products including paper, plastics, leather, cosmetics, food, and the textile industry [1].
Anthraquinones are a major portion of dyes produced and the dye industry is responsible
for as much as 20% of industrial water pollution annually [2–5]. Because of the presence of
dyes in consumer products and wastewater, resistance to degradation and a relatively low
level of toxicity data, significant concern has been raised regarding their discharge into the
environment [2].

Toxicological information on dyes is limited in these broad classes of chemicals. This
is especially true for dyes used in smokes and obscurants which pose a potential inhalation
and dermal exposure risk to users in addition to ecological risks as a result of production
and use in the environment. While data for certain dyes used in smoke formulations
enable users to understand the potential hazards that the dyes pose, others have little
information. For example, the quinoline dye Solvent Yellow 33 (also known as D&C yellow
No 11), 2-(2-Quinolyl)-1,3-indandione, is a component of green and yellow dye mixtures
for smoke coloring that is also used in pesticide products, lacquers, plastics, topical drugs
and cosmetics [6]. Toxicological evidence indicates that Solvent Yellow 33 can cause contact
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dermatitis in some people [6–8]. A two-year study of F344/N rats continuously exposed to
Solvent Yellow 33 in their feed indicated some evidence of carcinogenic activity in male and
female rats [9]. Studies in human HepG2 cells indicated that Solvent Yellow 33 may cause
DNA damage by modulating genes involved in DNA repair [10]. Tarnow et al. [11] identi-
fied Solvent Yellow 33 as a potential disruptor of Aryl Hydrocarbon Receptor/Estrogen
Receptor signaling, which could have toxicological implications. Perinatal toxicity studies
of F344/N rats exposed to 0, 5, 17 or 50 g/kg Solvent Yellow 33 revealed no reproductive
and developmental effects as a result of exposure [12]. This level of information is sufficient
to enable some assessment of health risks due to exposures to Solvent Yellow 33.

Unfortunately, many dyes used in smokes and other applications have little hazard
information. For example, Disperse Red [9,1-(methylamino)anthraquinone], used in red-
and violet-colored smokes and dye formulations (NRC 1999), has been found to be a skin
irritant and sensitizer in humans but little evidence for toxic effects has been found [6].
Solvent Red 169 [1-(Isopropylamino) anthraquinone], used in dye formulations for coloring
fabrics, ink, food, plastics and making violet smoke, have no data available for toxicity [13].
Disperse Blue 14 [1,4-bis(methylamino) anthracene-9,10-dione] has been used in dye formu-
lations to make violet smokes and fireworks in addition to color fabrics and lubricants [3,14].
Disperse Blue 14 has been found to cause behavioral and developmental effects in zebrafish
embryos [15].

Recently, Dilger et al. [16] examined the breakdown of Disperse Red 9 in a mock
red flare and found that it pyrolyzed into many potentially toxic compounds including
chloro(methylamino) anthraquinone. Machine learning quantitative structure–activity rela-
tionship models were then applied to predict several toxicological endpoints for Disperse
Red 9 and its chlorinated derivative along with several other anthraquinone dyes and their
chlorinated by products. While empirical data are not available, modeling predictions
suggest that anthraquinone dyes are more toxic than previously thought, especially with
respect to developmental toxicity.

To better characterize the potential toxicity of Disperse Red 9 and the dyes Disperse
Blue 14, Solvent Red 169 and Solvent Yellow 33, we examined the effects of these dyes on
zebrafish embryo development and function. Those specific dyes were chosen as they are
used in colored smokes and there was a lack of hazard information on them. Zebrafish
embryo exposures were combined with gene expression and in vitro blood–brain barrier
permeability analysis to develop a comprehensive impact assessment.

2. Materials and Methods
2.1. Analytical Chemistry

The smoke dyes Disperse Blue 14 (DB14; CAS 2475-44-7), Solvent Red 169 (SR169;
CAS 27354-18-3), Solvent Yellow 33 (SY33; CAS 8003-22-3) and Disperse Red 9 (DR9 CAS
82-38-2) were obtained from Walrus Enterprises LLC (Northampton, MA, USA). Samples
were dissolved in dimethyl sulfoxide (DMSO) for animal exposures and then further di-
luted in methylene chloride and analyzed by an Agilent 6890 GC–MS using a poly (5%
diphenyl/95%dimethylsiloxane) column measuring 30 m × 0.25 mm × 0.25 um to deter-
mine exposure concentrations. The oven parameters were as follows: initial temperature
40 ◦C held for 0.5 min, 10 ◦C/min to 100 ◦C, 25 ◦C/min to 280 ◦C held for 3 min, 5 ◦C/min
to 300 ◦C held for 3 min, 25 ◦C/min to 325 ◦C. The analysis was performed following a
modified SW 846 Method 8270 utilizing a 5-point calibration curve and internal standards.
Data calculations were performed using Chemstation (Agilent Technologies, Santa Clara,
CA, USA). See Table 1 for summarized results of analytical chemistry. The measured
concentrations were between 33.8 and 56.6% of the nominal ones.
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Table 1. Analytical chemistry analysis showing nominal versus measured concentrations.

Name Specifications CAS
Number MW Measured

(mM)
Nominal

(mM)
% of

Nominal

Solvent Red 169 27354-18-3 265.31 13.53 40 33.8

Solvent Yellow 33 DOD-D-51485 8003-22-3 273.29 13.94 40 34.8

Disperse Blue 14 Def Std 68-58/2 2475-44-7 266.29 22.64 40 56.6

Disperse Red 9 Mil-D-3284 82-38-2 237.25 14.65 40 36.6

2.2. Zebrafish Husbandry

Tropical 5D wild-type zebrafish were housed at the Oregon State University Sinnhuber
Aquatic Research Laboratory. Adult fish were fed twice daily with Gemma Micro 500
(Skretting; Westbrook, ME, USA). The recirculating system was maintained at 28 ◦C with a
14 h light, 10 h dark cycle. The fish were kept at a density of 300 fish per 50 gallon tank filled
with system water supplemented with Instant Ocean salt (Spectrum Brands; Blacksburg,
VA, USA). The night prior, a spawning funnel was placed into the tanks. In the morning,
embryos were collected and placed into embryo medium containing 15 mM NaCl, 0.5 mM
KCl, 1 mM MgSO4, 0.15 mM KH2PO4, 0.05 mM Na2HPO4, and 0.7 mM NaHCO3 and kept
at 28 ◦C in an incubator.

2.3. Exposures

Fertilized embryos were selected and staged according to Kimmel et al. [17]. The
chorions of 4 h post fertilization (hpf) embryos were removed using 83 µL of 25.3 U/µL
pronase (Roche, Indianapolis, IN, USA) using a custom automated dechorionator as de-
scribed in Mandrell et al. [18]. At 6 hpf, the embryos were transferred into individual
wells of a round-bottom 96-well plate filled with 100 µL of embryo medium. The smoke
dyes were dispensed into each well using a HP D300 Digital dispenser. Each dye was
suspended in 100% DMSO and added to the single-use cassette wells of the D300 at
20 mM. After the dyes were dispensed, the wells were normalized with 0.64% DMSO.
Solvent Red 169 was tested at 0, 1, 5, 11.2, 35.6, and 50 µM; Solvent Yellow 33 was tested
at 0, 7.5, 9, 10.5, 12 and 13.5 µM; Disperse Red 9 was tested at 0, 10, 25, 45, and 55 µM and
Disperse Blue was tested at 0, 113, 171, 209, 261.5, and 314 µM. The concentrations were
selected from a dose range-finding study that identified the maximal tolerable concentra-
tion and then a log 1/3 dilution series (Solvent Red, Solvent Yellow 33, and Disperse Blue).
Disperse Red 9 test concentrations were determined based on a target concentration of
25 µM. For each of the dyes, embryos were exposed to 6 concentrations with 32 animals
per concentration on two replicate plates. Afterwards, parafilm was placed between the
lid and the wells to reduce evaporation. The plates were placed on an orbital shaker at
235 rpm at 28 ◦C for 16 h to create a homogenous test solution before being placed in a
static incubator until 120 hpf. It is worth noting that while these exposures were performed
under very controlled and robust conditions, abiotic environmental factors can affect the
sensitivity of fish eggs in less controlled environments.

2.4. Developmental Toxicity Assessments

After the chemical exposures were initiated, the embryos were kept in the dark. At
24 hpf, embryos were assessed for mortality or delays in development. The embryos were
placed back into the incubator and then kept in the dark until 120 hpf. At 120 hpf, dead
animals were removed and embryos were subjected to a larval photomotor response assay
(LPR) using the Viewpoint Zebrabox system (Viewpoint Life Sciences, Lyon, France). The
assay was a total of 24 min, with a datapoint recorded every 6 s. The total distance was
tracked for each of the 4 light–dark cycles, with the first 1 cycle treated as an acclimation
period and discarded from analysis. Each cycle consisted of 3 min of alternating visible
light (1000 lux) and dark (IR). Animals exhibiting morbidity or mortality were excluded
from the analysis. After LPR, the embryos were assessed for a suite of malformations [19]
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which included yolk sac or pericardial edema, bent body axis, trunk length, caudal and
pectoral fin, pigmentation, somite deformities, eye, snout, jaw, otolith malformations, gross
brain development, notochord and circulating deformities, swim bladder presence and
inflation, and the presence of a touch response. These effects were collected in a binary
manner and stored in a laboratory information management system [19]. Developmental
Lowest Observable Effect Level (LOEL) was identified as the lowest concentration level
eliciting a significant difference from control.

2.5. Blood–Brain Barrier Permeability

The ability of dyes to pass through the blood–brain barrier was determined us-
ing a blood–brain barrier parallel artificial membrane permeability assay (BBB-PAMPA).
BBB-PAMPA were performed by Creative Bioarray (Shirley, NY, USA) as described in
Rabal et al. [20] and To et al. [15]. All compounds were tested with an incubation time of
4 h and at a concentration of 10 µM with propranolol as the positive control. Briefly, the
donor solutions of smoke dye (10 µM, 150 µL in phosphate-buffered saline (PBS)/DMSO
19:1) were added to each well of the donor plate, whose polyvinylidene fluoride membrane
was precoated with 5 µL of 1% brain polar extract (porcine)/dodecane mixture. Then,
300 µL of PBS was added to each well of the polytetrafluoroethylene acceptor plate. The
donor and acceptor plates were combined and incubated for 4 h at room temperature with
shaking at 300 rpm. In each plate, dyes and the positive control were tested in duplicate.
After incubation, acceptor samples were prepared by mixing 270 µL of the solution from
each acceptor well with 130 µL of acetonitrile containing the internal standard. Donor
samples were prepared by mixing 20 µL of the solution from each donor well with 250 µL
of PBS and 130 µL of acetonitrile containing the internal standard. Then, dye concentrations
in the acceptor and the donor wells were analyzed by LC–MS/MS. The permeability rate
(Pe in nm/s) was calculated with the following equation:

Pe = C × (−ln(1 − [drug]acceptor/[drug]equilibrium)) × 107 (1)

where C = (VD × VA/((VD + VA) × area × time));

[drug]equilibrium = ([drug]donor × VD + [drug]acceptor × VA)/(VD + VA);
[drug]acceptor = (Aa/Ai × DF)acceptor;
[drug]donor = (Aa/Ai × DF)donor;
VD = 0.15 mL; VA = 0.30 mL; area = 0.28 cm2; time = 14,400 s;
Aa/Ai: Peak area ratio of NAC and the internal standard; DF: Dilution factor (13.5).

Finally, the permeability of the tested compounds was classified by their Pe as high
(Pe > 10 nm/s), moderate (1 < Pe < 10), or low (Pe < 1).

2.6. Statistical Analysis of Toxicity Endpoints

Statistical analyses were conducted in R v.3.6.1 [21]. Morphological endpoints were
compared between the treatment groups and the control group using Fisher’s Exact Test.
Significance was defined by the Bonferroni-adjusted p-value (0.05/5), which was adjusted
for the concentration within each dye. Behavior was analyzed separately for the light phase
and the dark phase. Within each phase, the distribution of average movement per fish
was compared between the treatment and control using the Kolmogorov–Smirnov test.
Significance was defined by the Bonferroni-adjusted p-value (0.05/5), which was adjusted
for the concentration within each dye. Behavioral LOELs were identified as the lowest
concentration level eliciting a significant difference from control.
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2.7. RNA Sequencing

At 48 h, 4 exposed embryos from each treatment were removed for RNA sequenc-
ing. RNA-Seq libraries for each embryo were prepared using 200 ng of total RNA and
the NEBNext® Ultra™ II RNA Library Prep (NEB, Cat: E7765S) per the manufacturer’s
instructions, with mRNA enriched via poly-A-selection using oligoDT beads. The RNA
was then thermally fragmented and converted to cDNA, adenylated for adaptor ligation
and PCR amplified. The libraries were sequenced using the NovaSeq 6000 with 150 bp
paired-end reads. RTA (version 2.4.11; Illumina, San Diego, CA, USA) was used for base
calling and analysis was completed using MultiQC v1.7 (https://multiqc.info/).

2.8. Analysis of RNA-Seq Data

Raw RNA-Seq reads were trimmed of adaptors and low-quality sequences with Trim
Galore v.0.6.5 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) using
default settings for Illumina paired-end reads. Read quality was evaluated from the
MultiQC report generated within Trim Galore (Supplemental File S1). Trimmed reads were
quantified using Salmon v.1.1.0 with the default settings for paired-ends reads in selective
alignment mode via the –validateMappings option (Supplemental File S2). Reads were aligned
to a decoy-aware transcriptome that was built using Ensembl release 97 and provided by the
COMBINE-lab (http://bit.ly/30yn3FJ, accessed on 2 July 2020, Supplemental File S3).

Transcript quantification files were prepared for analysis by following the Bioconduc-
tor vignette for preparation of Salmon quantification files for edgeR (https://bioconductor.
org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html). Briefly, quan-
tification files were imported using tximport v.1.1.4.2 and mapped to Ensembl Gene IDs
using the Bioconductor genome-wide annotation for zebrafish package org.Dr.eg.db v.3.10.0.
Gene counts were normalized for gene length and effective library size.

Transcript abundance files were prepared for analysis using tximport v.1.14.2 in R and
mapped to Ensembl Gene IDs for gene-level inference. Gene counts were normalized for
gene lengths and effective library size. Differential gene expression analysis was performed
using edgeR v.3.28.1 in R. Briefly, for each dye, read counts were fit to a quasi-likelihood
negative binomial generalized linear model with concentration groups as the dependent
variable. Each concentration group was compared to its respective control using the
empirical Bayes quasi-likelihood F test. Results from this test were filtered such that
genes with a fold change greater than 1.5 and a false discovery rate less than 0.05 were
considered differentially expressed. One sample was removed from the 12 µM Solvent
Yellow 33 treatment group after QC.

Genes identified as differentially expressed in any treatment group were selected
for further analysis. Enrichment analysis was performed for each treatment group using
topGO v.2.38.1 and the kegga function from limma v.3.42.2 in R. GO terms and KEGG
pathways were filtered such that those with a p-value < 0.01 and at least 5% of genes within
the treatment group were within the term’s annotated gene list were considered enriched.
For comparative analysis, genes that were differentially expressed in any treatment group
were grouped using K-means clustering on the log2 (fold-change) values for each treatment.
Transcriptional LOELs were identified as the lowest concentration eliciting a significant
difference from control.

3. Results
3.1. Mortality

Of the four dyes, only Disperse Blue 14 caused a significant increase in mortality
as early as 24 hpf. Significant mortality at both 24 and 120 hpf was only observed in
embryos exposed to 261 and 314 µM treatment groups (Figure 1). It should be noted
the concentration range of Disperse Blue 14 tested here (133–314 µM) was used to better
understand toxicity since the dye had little effect on zebrafish embryos at 0.56–28.3 µM [15].

https://multiqc.info/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://bit.ly/30yn3FJ
https://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html
https://bioconductor.org/packages/release/bioc/vignettes/tximport/inst/doc/tximport.html
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Figure 1. Summary of mortality at 24 and 120 hpf in Disperse Blue 14, Disperse Red 9, Solvent
Red 169 and Solvent Yellow 33 treatment groups. * Indicates statistical significance (p < 0.05/5).

3.2. Morphological Effects

Disperse Blue 14 caused yolk sac edema at all levels tested, but was not significant
for any other morphological endpoints (Figure 2a). Disperse Red 9 caused morphological
effects in all eight categories examined with a LOEL of 25 µM for yolk sac edema, pericardial
edema, trunk, snout, jaw, and caudal fin abnormalities; a LOEL of 45 µM for bent body axis
abnormalities; and an LOEL of 55 µM for pectoral fin morphological effects (Figure 2b).
Solvent Red 169 did not cause significantly higher morphological abnormalities than control
exposures at any concentration (Figure 2c). Solvent Yellow 33 caused abnormalities at
all concentrations tested for four of eight categories scored (yolk sac edema, pericardial
edema, bent body axis, and pectoral fin) (Figure 2d). No effects were seen in the eye, otolith
malformations, gross brain development, notochord and circulating deformities, swim
bladder presence and inflation, nor the presence of a touch response (data not shown).
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Figure 2. Summary of affected morphological endpoints in the Disperse Blue 14 (a), Disperse Red 9 (b),
Solvent Red 169 (c), and Solvent Yellow 33 (d) treatment groups. * Indicates statistical significance
(p < 0.05/5). The endpoints where no effects were seen are not included.

3.3. Effect of Dyes on Behavior

We examined the effect of dyes on the zebrafish embryo developing nervous system
using the larval photomotor response assay to monitor behavioral responses to light
and dark (Figure 3, Supplemental Tables S1 and S2). Disperse Blue 14 had no effect on
movement during the light phase. However, Disperse Blue 14 dramatically reduced the
dark-phase movement (hypoactive) at all concentrations tested in groups having sufficient
surviving embryos to test movement. Disperse Red 9 caused significantly higher movement
(hypoactive) at all exposures above 10 µM in the light phase, but caused significantly
lower dark-phase movement at 10 and 25 µM Disperse Red 9. Solvent Red 169 caused
significantly higher movement than controls in the light phase (hyperactive) only at the
second highest treatment group of 35.6 µM. Solvent Red 169 treatment had no effect on dark-
phase movement. Solvent Yellow 33 had no significant effect on light-phase movement,
but did dramatically lower dark-phase movement in all treatment groups (Figure 3).

The lack of movement in the dark phase observed with Disperse Blue 14 and Solvent
Yellow 33 may be due to physical defects, rather than an indication of neurotoxicity [22].
Some textile dyes have been found to impair swim bladder inflation and function [23,24].
However, no significant changes in swim bladder function were observed in any treatment
group (Table 2). In other studies, exposure of zebrafish embryos to the dyes erythros-
tominone and Solvent Violet 47 decreased dark-phase movement but did not decrease
swim bladder function; therefore, the hypoactivity was attributed to yolk sac edema and
pericardial edema [15,25]. Here, all treatment groups of Disperse Blue 14 displayed yolk
sac edema and all concentrations of Solvent Yellow 33 displayed yolk sac and pericardial
edema formation, which could therefore be a physical obstruction inhibiting swim ability.
Disperse Red 9 treatments also caused yolk sac and pericardial edemas, albeit to a lower
degree in each treatment group. However, Disperse Red 9 treatments displayed hyperactiv-
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ity in all but the 10 µM treatment groups in the light phase and hypoactivity in the dark
phase in the lowest treatment groups (10 and 25 µM). As the presence of edemas does not
appear to directly correlate with loss of activity, Disperse Red 9 is likely to impair behavior
through both physical and neurological effects.
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3.4. Blood–Brain Barrier Permeability

The blood–brain barrier (BBB) is a physical barrier formed by tight junctions of en-
dothelial cells of blood vessels in the brain. The barrier is highly selective and excludes
many substances from entering the brain, thus protecting the brain against toxic chemical
substances [26]. Chemicals that can cross the BBB could potentially compromise the central
nervous system, and lead to neurotoxicity. Here, we tested the ability of Disperse Red 9,
Disperse Blue 14 and Solvent Yellow 33 to cross the BBB in order to better understand their
potential to induce neurotoxicity and impact neurodevelopment. Artificial membranes
simulating the blood–brain barrier were highly permeable to Disperse Red 9, Disperse Blue
14 and Solvent Yellow 33, indicating that these dyes would readily cross the BBB (Table 3).
Solvent Red 169 was not tested due to its low solubility in the assay buffer. The positive
control propranolol was tested twice, both times providing a high permeability (mean Pe:
32.4 and 66.8 nm/s; mean recovery: 39.3 and 40.8%). This indicates that the dyes are able to
enter the developing zebrafish brain to cause neurotoxic effects and is consistent with the
dyes causing developmental impacts, behavioral impacts and impacts on gene expression
of neurological development and sensory processes.
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Table 2. Lowest Observable Effect Levels (LOEL) and Fisher’s Exact Test (P) p-values for morphologi-
cal endpoints. (-) indicates no significance at any concentration. At 24 hpf, embryos were assessed for
mortality (MO24), developmental progression (DP24), spontaneous movement (S24), and notochord
distortion (NC24). Additionally, at 120 hpf, embryos were assessed for mortality (MORT), and
morphological malformations including yolk sac edema (YSE), bent body axis (AXIS), eye (EYE),
snout (SNOU), jaw (JAW), otic (OTIC), pericardial edema (PE), brain (BRAI), somite (SOMI), pectoral
fin (PFIN), caudal fin (CFIN), circulation (CIRC), pigmentation (PIG), trunk length (TRUN), swim
bladder (SWIM), notochord distortion (NC), and alterations in touch response (TR).

Endpoint
Solvent Red 169 Disperse Blue 14 Disperse Red 9 Solvent Yellow 33

LOEL
(µM) p LOEL

(µM) p LOEL
(µM) p LOEL

(µM) p

MO24 - - 261.5 µM 1.20 × 10−5 - - - -

DP24 - - - - - - 10.5 0.0031

SM24 - - - - - - - -

NC24 - - - - - - - -

MORT - - 261.5 µM 0.00013 - - - -

YSE_ - - 133 µM 5.50 × 10−12 25 0.0032 7.5 5.00 × 10−14

AXIS - - - - 45 0.00065 7.5 3.30 × 10−5

EYE_ - - - - - - - -

SNOU - - - - 25 0.0079 - -

JAW_ - - - - 25 0.0079 - -

OTIC - - - - - - - -

PE__ - - - - 25 0.0032 7.5 0.00027

BRAI - - - - - - - -

SOMI - - - - - - - -

PFIN - - - - 55 0.0091 7.5 0.00027

CFIN - - - - 25 0.00018 - -

PIG_ - - - - - - - -

CIRC - - - - - - - -

TRUN - - - - 25 0.00049 - -

SWIM - - - - - - - -

NC__ - - - - - - - -

TR__ - - - - - - - -

Table 3. Blood–brain barrier permeability assay results. Pe is permeability. Low permeability: Pe < 1 nm/s.
Moderate permeability: 1 < Pe < 10 nm/s. High permeability: Pe > 10 nm/s. 1 Disperse Blue 14 data
from To et al. [15]. NT is not tested due to low solubility.

Compound Mean Pe (nm/s) % Mean Recovery Permeability

Disperse Red 9 30.891 4.7 High

Disperse Blue 14 26.259 11.5 High

Solvent Yellow 33 48.517 20 High

Solvent Red 169 NT
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3.5. Disperse Blue 14 Differentially Expressed Genes and Functional Enrichment

At 48 hpf, Disperse Blue 14 concentrations below 314 µM caused relatively few DEGs
(18–174) in comparison to 314 µM (2454 DEG; Figure 4), with the identity of most DEGs
overlapping with those from the 314 µM treatment group (Supplemental Table S5). Stress-
related impacts on gene expression were seen in the 171 and 261.5 µM treatment groups
with enrichment and upregulation of the KEGG path:dre04115 p53 signaling pathway
(5 up, 0 down; 6 up, 0 down at 171 and 261.5 µM), GO biological processes GO:0030018
inflammatory response (6 up, 0 down; 8 up, 0 down at 171 and 261.5 µM) and GO:0007050 cell
cycle arrest (2 up, 0 down; 3 up, 0 down at 171 and 261.5 µM) (Supplemental Tables S6 and S7).
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Consistent with the high mortality experienced at 314 µM of Disperse Blue 14,
DEGs of GO:0000278 mitotic cell cycle were principally downregulated (19 up, 29 down)
and GO:0009611 response to wounding was upregulated (23 up, 8 down)
(Supplemental Tables S6 and S7). Additionally, consistent with increased mortality observed
at the high dose, at 48 hpf, embryo KEGG pathways related to metabolism were down-
regulated [e.g., path:dre01100 metabolic pathways (78 up, 156 down) and path:dre00190
oxidative phosphorylation (0 up, 36 down)]. Pathways were also affected that were re-
lated to protein misfolding [path:dre04141 protein processing in endoplasmic reticulum
(10 up, 22 down)], cellular damage and senescence [path:dre04218 cellular senescence
(21 up, 13 down), path:dre04140 autophagy-animal (22 up, 9 down)] and DNA replication
and repair [path:dre03030 DNA replication (0 up, 10 down), path:dre03420 nucleotide
excision repair (2 up, 10 down) and path:dre03430 mismatch repair (0 up, 7 down)].

Notably, few GO terms or KEGG pathways related to neuronal processes were enriched
in doses below 314 µM with the exception of GO:0014004 microglia differentiation (2 up,
0 down) and GO:0048679 regulation of axon regeneration (2 up, 0 down) at 261.5 µM.
This supports the hypothesis that dark phase hypoactivity seen in all treatment groups
in the locomotor assay is likely due to physiological defects (yolk sac edema) rather than
neurotoxicological effects. Yolk sac edema is a common endpoint that many chemicals can
perturb. This is not to say that the mechanism that leads to this endpoint is always the
same. It is unknown if the yolk sac edema is a primary or secondary manifestation to the
exposure. We used the zebrafish model as a biosensor to indicate that exposure to the dyes
disrupted the most sensitive life stage and then used secondary assays and transcriptomics
to identify the pathways involved to result in a phenotype later in development.

3.6. Disperse Red 9 Differentially Expressed Genes and Functional Enrichment

At 48 hpf, Disperse Red 9 treatments had low levels of DEG in comparison to other dye
treatment groups (Figure 4). No effect on gene expression was seen in the 10 and 25 µM
treatment groups. The 35 µM group had 14 DEGs, with most overlapping in identity
with DEGs from the two higher concentration treatment groups (Supplemental Table S5).
GO terms in DEG at 35 and 45 µM were enriched for biological processes in sodium
and potassium ion homeostasis (Supplemental Table S8). At both 45 and 55 µM, DEG
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were enriched for biological processes GO:0010165 response to X-rays (3 up, 0 down; 2 up,
0 down at 45 and 55 µM) and the KEGG pathway path:dre03440 homologous recombination
(4 up, 0 down; 3 up, 0 down at 45 and 55 µM) (Supplemental Tables S8 and S9). At
55 µM, DEG were downregulated for biological processes in nerve and eye development
(GO:0002088 lens development in camera-type eye (0 up, 4 down), GO:0021545 cranial
nerve development (2 up, 2 down), and GO:0005212 structural constituent of eye lens
(0 up, 4 down)). Although no eye deformities were observed in exposed embryo, the
downregulation of nerve and eye development processes is consistent with Disperse Red 9
causing changes in light/dark locomotor responses seen in Section 3.3.

3.7. Solvent Red 169 Differentially Expressed Genes and Functional Enrichment

At 48 hpf, Solvent Red 169 principally affected genes in the two lowest treatment
groups, 1 µM (374 DEG) and 5 µM (764 DEG), where most DEGs were upregulated (926 up
vs. 512 down; Figure 4). A small number of genes (79) were also affected at the 50 µM
concentration Functional enrichment analysis indicated Solvent Red 169 impacted several
biological pathways related to regulation of gene expression and development (Supple-
mental Tables S3 and S4). DEGs in the 1 µM treatment group were principally enriched
in Gene Ontology (GO) terms for biological processes and functions related to cell cycle
[GO:0007050 cell cycle arrest (5 up, 0 down)] and transcriptional and mRNA regulation
[GO:0000122 Negative regulation of transcription by RNA polymerase II (9 up, 2 down)].
The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway dre04216 ferroptosis
(3 up, 2 down) which is involved in cell death was also enriched at 1µM Solvent Red 169.

The Solvent Red 169 5 µM treatment group was enriched for upregulated GO bio-
logical processes related to cell cycle [GO:0007050 cell cycle arrest (5 up, 0 down)], tran-
scriptional regulation [GO:0006355 regulation of transcription, DNA-templated (83 up,
5 down)], and neuronal development [GO:0050767 regulation of neurogenesis (16 up,
2 down), GO:0021884 forebrain neuron development (3 up, 0 down) and GO:0048702
embryonic neurocranium morphogenesis (3 up, 1 down)]. At 50 µM, the GO biological
processes GO:0021695 cerebellar cortex development (2 up, 0 down) and GO:0006749 glu-
tathione metabolic process (2 up, 0 down) were enriched and upregulated. While a number
of biological processes related to neurodevelopment were impacted and upregulated in
exposed embryos, this does not appear to have had measurable impacts on the develop-
mental and behavioral end points examined at 120 hpf. This suggests that detection of
transcriptional changes due to chemical exposure does not necessarily lead to adverse
effects and may reflect adaptive processes.

3.8. Solvent Yellow 33 Differentially Expressed Genes and Functional Enrichment

After 48 h of exposure to Solvent Yellow 33, embryos showed a concentration-dependent
increase in number of DEGs (Figure 4). There was a high degree of overlap (55–96%) in
identity of differentially expressed genes between the Solvent Yellow 33 treatment groups
(Supplemental Table S5). A number of KEGG pathways were enriched at all exposure
concentrations that are related to increased chemical stress (path:dre0048 glutathione
metabolism, path:dre00982 metabolism of xenobiotics by cytochrome p450, path:dre00982
drug metabolism-cytochrome P450 and path:dre00480 glutathione metabolism).

Chequer et al. [27] found that quinoline yellow (Solvent Yellow 33) can cause DNA
damage to exposed human HepG2 cells in culture to nominal concentrations of 1.8, 3.6, 7.3,
18, 37, 55 and 73 µM and found that concentrations of 7.3 uM and higher were genotoxic
and caused chromosomal damage using comet assays to detect genomic DNA degradation.
Solvent Yellow 33 induced pathways involved in DNA damage and cell death in exposed
embryos, suggesting that Solvent Yellow 33 may also be genotoxic to exposed embryos. The
KEGG pathway path:dre04216 ferroptosis, an iron-dependent regulated form of cell death
caused by the accumulation of lipid-based reactive oxygen species [28] was enriched in all
but the 12 µM treatment group (3 up, 1 down, 5 up, 1 down; 5 up, 2 down; 9 up, 1 down at
7.5, 9, 10.5 and 13.5 µM, respectively; Supplemental Table S10). The KEGG path:dre04115
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p53 signaling pathway which is induced by cell and DNA damage was upregulated in
exposed embryos at 10.5 µM and above, (8 up, 1 down; 12 up, 0 down; 12 up 1 down at
10.5, 12 and 13.5 µM, respectively; Supplemental Table S10).

Consistent with hypoactivity in dark-phase movement by exposed larva at 120 hpf
(Figure 3), there was a decrease in expression of GO biological processes related to eye
development/function in all treatment groups at 48 hpf [GO:0061074 regulation of neural
retina development (0 up, 2 down; 1 up, 2 down and 1 up, 2 down at 7, 9 and 10.5 µM);
GO:0071482 cellular response to light stimulus in (1 up, 6 down; 2 up, 7 down; 2 up, 6 down
and 1 up, 8 down at 9, 10.5, 12, 13.5 µM) and GO:0007602 phototransduction (0 up, 5 down
at 9; 0 up, 6 down; 0 up, 7 down at 9, 10.5, 13.5 µM) Supplemental Table S11)].

Solvent Yellow 33 reduced expression of metabolic pathways essential in embryo de-
velopment including KEGG path:dre00790 folate synthesis (1 up, 4 down in all treatments),
path: dre00360 phenylalanine metabolism (1 up, 2 down; 1 up, 3 down; 1 up, 3 down; 1 up
and 3 down at 7.5, 9, 10.5 and 12 µM), path:dre00830 4etinol metabolism (4 up 8 down, 4 up,
6 down, 4 up 7 down at 9, 10.5 and 12 µM) (Supplemental Table S10). Disruption of folate
synthesis causes developmental defects such as ventral edema, dorsal curvature, a short-
ened anterior–posterior axis and cardiac defects [29]. Disruption of retinoic acid signaling
in the embryo has been found to cause deformations in pectoral fins [30] and impair eye
development [31,32]. The effects of Solvent Yellow 33 exposure include pericardial edema
(cardiac defects), bent body axis (dorsal curvature), pectoral fin deformation and downreg-
ulation of pathways related eye development/function, suggesting that disruption of folate
synthesis and retinol metabolism may contribute to the developmental toxicity associated
with Solvent Yellow 33.

4. Discussion

We examined the effect of three anthraquinone and one quinoline dye on the develop-
ment, behavior and gene expression of zebrafish embryos to better understand the potential
toxicity of the dyes. The combination of embryo testing with transcriptomics and in vitro
assays for BBB permeability has allowed us to develop a more accurate understanding of
the potential hazards of these dyes. The four dyes had a wide range of toxicity, with all but
Solvent Red 169 causing adverse effects on development and behavior.

Solvent Red 169 had the least impact, with no effect on mortality or morphology, a
slight effect on behavior and moderate, mostly upregulated, effects on gene expression
(0–764 DEG) at the range of concentrations tested (1–50 µM). Transcriptomics did not
identify any potential negative impacts of Solvent Red 169.

Disperse Red 9 had no effect on mortality at the 10–55 µM range tested, a LOEL of
25 µM for morphological abnormalities where it affected 8 of 13 categories, a LOEL of
25 µM for hyperactivity in light and hypoactivity in the dark phase of locomotor tests
and a LOEL of 35 µM for a relatively low number of DEG (14–255 DEG per treatment).
Gene expression analysis indicated that DNA damage and disruption of nerve and eye
development may be occurring at the 55 µM dose tested at 48 hpf.

Disperse Blue 14 had a greater impact than Solvent Red 169 and Disperse Red 9 on the
endpoints tested. Disperse Blue 14 had a LOEL of 261.5 µM for mortality, caused yolk sac
edema and hypoactivity in the dark phase at all concentrations and had a LOEL of 133 µM
for gene expression, with 314 µM affecting the most DEGs (2454 DEG vs. 18–174 for other
treatment groups) at the 133–314 µM range tested. Gene expression analysis indicated that
the dye caused toxic effects at all concentrations but few effects on neurodevelopmental
processes. Our previous assessment of Disperse Blue 14 indicates that the dye causes
developmental and behavioral effects at much lower concentrations, with a LOEL of
20.2 µM for developmental effects and hyperactivity in light and 0.66 µM for hypoactivity
in dark [15].

While Solvent Yellow 33 had no effect on mortality, it was the most potent dye
tested. It caused abnormalities in 4 of 13 categories at all concentrations tested (LOEL
7.5 µM), dark-phase hypoactivity at LOEL of 17.5 and affected a number of genes at each
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dose (268–1513 DEG) at the 7.5–13.5 µM range tested. At all concentrations, Solvent Yellow
33 decreased expression of metabolic pathways essential to embryo development (folate and
retinol), whose disruption is known to cause developmental effects seen in exposed embryos.

Gene expression and enrichment analyses could also provide some insights into
potential treatments. For instance, both Solvent Red 169 and Solvent Yellow 33 exposures
affected glutathione metabolism pathways. Treatments that help replenish glutathione
levels (such as N-acetylcysteine) could be used to validate or disprove the particular
pathway as well as potentially be considered to counteract the adverse effects [33,34].

Anthraquinone and quinoline dyes are widely used across the world and potentially
pose human and environmental hazards due to their use in commercial products and
discharge into the environment. The analyses presented here indicate that certain dyes
may have significant impacts on the development and behavior of zebrafish embryos.
Since the developing zebrafish embryo is a model system to understand potential effects in
mammalian systems, this indicates that these dyes also pose potential hazards to humans.
This work demonstrates that the application of embryo testing with transcriptomics can
deepen our understanding of the potential health hazard of dyes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxics10050210/s1, File S1. RNA-Seq MultiQC report
generated within Trim Galore. File S2. Supporting file for quantification of trimmed RNA-Seq reads
using Salmon v.1.1.0, File S3. Supporting file for alignment if RNA-Seq reads to a decoy-aware
transcriptome. Table S1: Summary of light-phase movement for surviving embryos and results of
the Kolmogorov–Smirnov test of movement between treatment and control. Bolded values indicate
significant differences in average movement at the Bonferroni-adjusted threshold (0.05/5). Table S2:
Summary of dark-phase movement for surviving embryos and results of the Kolmogorov–Smirnov
test of movement between treatment and control. Bolded values indicate significant differences in av-
erage movement at the Bonferroni-adjusted threshold (0.05/5). Table S3: Summary of Gene Ontology
(GO) terms enriched in differentially expressed genes in embryos exposed to Solvent Red 169 until
48 h post fertilization. BP = biological process, MF = molecular function and CC = cellular component.
Table S4: Summary of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in
differentially expressed genes in embryos exposed to Solvent Red 169 until 48 h post fertilization.
Table S5: Number of differentially expressed genes shared between all treatment groups. Table S6:
Summary of Gene Ontology (GO) terms enriched in differentially expressed genes in embryos ex-
posed to Disperse Blue 14 until 48 h post fertilization. BP = biological process, MF = molecular
function and CC = cellular component. Table S7: Summary of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways enriched in differentially expressed genes in embryos exposed to Dis-
perse Blue 14 until 48 h post fertilization. Table S8: Summary of Gene Ontology (GO) terms enriched
in differentially expressed genes in embryos exposed to Disperse Red 9 until 48 h post fertilization.
BP = biological process, MF = molecular function and CC = cellular component. Table S9: Summary
of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in differentially expressed
genes in embryos exposed to Solvent Yellow 33 until 48 h post fertilization. Table S10: Summary
of Gene Ontology (GO) terms enriched in differentially expressed genes in embryos exposed to
Solvent Yellow 33 until 48 h post fertilization. BP = biological process, MF = molecular function
and CC = cellular component. Table S11: Summary of Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways enriched in differentially expressed genes in embryos exposed to Disperse Red 9
until 48 h post fertilization.

Author Contributions: Conceptualization, N.G.-R., E.J.P., L.T. and R.L.T.; methodology, K.T.T., L.T.,
C.H.L. and N.G.-R.; validation, L.S.M., K.T.T. and A.J.B.; formal analysis, K.T.T. and C.H.L.; resources,
K.T.T.; data curation, K.T.T., A.J.B. and L.T.; writing—original draft preparation, E.J.P., K.T.T. and
N.G.-R.; writing—review and editing, all; supervision, N.G.-R. and L.T.; project administration,
N.G.-R.; funding acquisition, N.G.-R. and E.J.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the US Army Installations and Operational Environment Program
and the National Institute of Environmental Health Sciences of the National Institutes of Health
under Award Numbers P30ES030287.

https://www.mdpi.com/article/10.3390/toxics10050210/s1


Toxics 2022, 10, 210 14 of 15

Institutional Review Board Statement: All experiments were performed according to Oregon State
University Institutional Animal Care and Use Protocol #5113.

Data Availability Statement: RNA-Seq data reported here have been deposited in NCBI’s Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo) and are accessible through the GEO
Accession number GSE166302.

Acknowledgments: The authors would like to thank Walrus Enterprises LLC for the generous
donation of dyes. The authors also thank David Reif and Skylar Marvel (North Carolina State
University) for providing their analysis code for our use. The authors also thank Mitchell Wilbanks
for assistance. The use of trade, product, or firm names in this report is for descriptive purposes only
and does not imply endorsement by the U.S. Government. Permission was granted by the Chief of
Engineers to publish this information. The findings of this report are not to be construed as an official
Department of the Army position unless so designated by other authorized documents.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sabnis, R.W. Manufacture of dye intermediates, dyes, and their industrial applications. In Handbook of Indus-Trial Chemistry and

Biotechnology; Kent, J., Bommaraju, T., Barnicki, S., Eds.; Springer: Cham, Switzerland, 2017.
2. Routoula, E.; Patwardhan, S.V. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye

Degradation with Industrial Potential. Environ. Sci. Technol. 2020, 54, 647–664. [CrossRef] [PubMed]
3. Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications

for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [CrossRef] [PubMed]
4. Zaharia, C.; Suteu, D. Textile organic dyes—Characteristics, polluting effects and separation/elimination pro-cedures from

industrial effluents—A critical overview. In Organic Pollutants Ten Years after the Stockholm Con-Vention—Environmental and
Analytical Update; Puzyn, T., Ed.; InTechOpen: London, UK, 2012.

5. Siddiqui, S.I.; Chaudhry, S.A. Arsenic: Toxic Effects and Remediation. In Advanced Materials for Wastewater Treatment; John Wiley
& Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–27.

6. National Research Council. Toxicity of Military Smokes and Obscurants: Volume 3; The National Academies Press: Washington, DC,
USA, 1999. [CrossRef]

7. Matsunaga, K.; Hosokawa, K.; Suzuki, M.; Arima, Y.; Hayakawa, R. Occupational allergic contact dermatitis in beauticians.
Contact Dermat. 1988, 18, 94–96. [CrossRef] [PubMed]

8. Gatica-Ortega, M.E.; Pastor-Nieto, M.A.; Sánchez-Matas, I.; Torres-Aranda, R.; Vergara-De-La-Campa, L.; Martínez-Camacho, M.;
Pérez-Hortet, C. Erythroderma caused by allergic contact dermatitis from Solvent Yellow 33 in a patient with psoriasis. Contact
Dermat. 2021, 84, 454–456. [CrossRef]

9. National Toxicology Program. NTP Toxicology and Carcinogenesis Studies of D&C Yellow No. 11 (CAS No. 8003-22-3) in F344/N
Rats (Feed Studies). Nat. Toxicol. Prog. Tech. Rep. Ser. 1997, 463, 1–190.

10. Chequer, F.M.; Venancio, V.P.; Almeida, M.R.; Aissa, A.F.; Bianchi, M.L.P.; Antunes, L.M. Erythrosine B and quinoline yellow dyes
regulate DNA repair gene expression in human HepG2 cells. Toxicol. Ind. Health 2017, 33, 765–774. [CrossRef]

11. Tarnow, P.; Zordick, C.; Bottke, A.; Fischer, B.; Kühne, F.; Tralau, T.; Luch, A. Characterization of Quinoline Yellow Dyes as
Transient Aryl Hydrocarbon Receptor Agonists. Chem. Res. Toxicol. 2020, 33, 742–750. [CrossRef]

12. Eastin, W. NTP technical report on the toxicity studies of D&C Yellow No. 11 in F344/N Rats and B6C3F1 Mice (Feed Studies)
(CAS No. 8003-22-3). Toxic. Rep. Ser. 1991, 8, 1–32.

13. Domanico, J.A.; Redding, D.R.; Diviacchi, G. Low Toxicity, Environmentally Friendly Violet Smoke Generating Com-Positions
and Methods of Making the Same. U.S. Patent 10,663,272, 26 May 2020.

14. ECHA. Skin Sensitising, Irritative and/or Corrosive—Registry of Restriction Intentions until Outcome—ECHA. Available online:
https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e182446136 (accessed on 22 January 2022).

15. To, K.T.; Mary, L.S.; Wooley, A.H.; Wilbanks, M.S.; Bednar, A.J.; Perkins, E.J.; Truong, L.; Tanguay, R.L.; Garcia-Reyero, N.
Morphological and Behavioral Effects in Zebrafish Embryos after Exposure to Smoke Dyes. Toxics 2021, 9, 9. [CrossRef]

16. Dilger, J.M.; Martin, T.M.; Wilkins, B.P.; Bohrer, B.C.; Thoreson, K.M.; Fedick, P.W. Detection and toxicity modeling of an-
thraquinone dyes and chlorinated side products from a colored smoke pyrotechnic reaction. Chemosphere 2022, 287, 131845.
[CrossRef]

17. Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev.
Dyn. 1995, 203, 253–310. [CrossRef] [PubMed]

18. Mandrell, D.; Truong, L.; Jephson, C.; Sarker, M.R.; Moore, A.; Lang, C.; Simonich, M.T.; Tanguay, R.L. Automated Zebrafish
Chorion Removal and Single Embryo Placement: Optimizing throughput of zebrafish developmental toxicity screens. J. Lab.
Autom. 2012, 17, 66–74. [CrossRef] [PubMed]

19. Truong, L.; Reif, D.M.; Mary, L.S.; Geier, M.C.; Truong, H.D.; Tanguay, R.L. Multidimensional In Vivo Hazard Assessment Using
Zebrafish. Toxicol. Sci. 2014, 137, 212–233. [CrossRef] [PubMed]

https://www.ncbi.nlm.nih.gov/geo
http://doi.org/10.1021/acs.est.9b03737
http://www.ncbi.nlm.nih.gov/pubmed/31913605
http://doi.org/10.1016/j.scitotenv.2020.137222
http://www.ncbi.nlm.nih.gov/pubmed/32084689
http://doi.org/10.17226/9645
http://doi.org/10.1111/j.1600-0536.1988.tb02747.x
http://www.ncbi.nlm.nih.gov/pubmed/2966708
http://doi.org/10.1111/cod.13755
http://doi.org/10.1177/0748233717715186
http://doi.org/10.1021/acs.chemrestox.9b00351
https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e182446136
http://doi.org/10.3390/toxics9010009
http://doi.org/10.1016/j.chemosphere.2021.131845
http://doi.org/10.1002/aja.1002030302
http://www.ncbi.nlm.nih.gov/pubmed/8589427
http://doi.org/10.1177/2211068211432197
http://www.ncbi.nlm.nih.gov/pubmed/22357610
http://doi.org/10.1093/toxsci/kft235
http://www.ncbi.nlm.nih.gov/pubmed/24136191


Toxics 2022, 10, 210 15 of 15

20. Rabal, O.; Sánchez-Arias, J.A.; Eneriz, E.S.J.; Agirre, X.; De Miguel, I.; Garate, L.; Miranda, E.; Sáez, E.; Roa, S.; Martínez-Climent,
J.A.; et al. Detailed Exploration around 4-Aminoquinolines Chemical Space to Navigate the Lysine Methyltransferase G9a and
DNA Methyltransferase Biological Spaces. J. Med. Chem. 2018, 61, 6546–6573. [CrossRef]

21. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. Available online:
http://www.r-project.org/index.html (accessed on 18 April 2022).

22. Granato, M.; van Eeden, F.; Schach, U.; Trowe, T.; Brand, M.; Furutani-Seiki, M.; Haffter, P.; Hammerschmidt, M.; Heisenberg, C.;
Jiang, Y.; et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Dev. Camb. Engl. 1996,
123, 399–413. [CrossRef] [PubMed]

23. de Oliveira, G.A.R.; de Lapuente, J.; Teixidó, E.; Porredón, C.; Borràs, M.; de Oliveira, D.P. Textile dyes induce toxicity on zebrafish
early life stages. Environ. Toxicol. Chem. 2016, 35, 429–434. [CrossRef] [PubMed]

24. Abe, F.R.; Mendonça, J.N.; Moraes, L.A.; de Oliveira, G.A.; Gravato, C.A.; Soares, A.M.; de Oliveira, D.P. Toxicological and
behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life. Chemosphere 2017, 178,
282–290. [CrossRef]

25. Shen, B.; Liu, H.-C.; Ou, W.-B.; Eilers, G.; Zhou, S.-M.; Meng, F.-G.; Li, C.-Q.; Li, Y.-Q. Toxicity induced by Basic Violet 14, Direct
Red 28 and Acid Red 26 in zebrafish larvae. J. Appl. Toxicol. 2015, 35, 1473–1480. [CrossRef]

26. Eliceiri, B.P.; Gonzalez, A.M.; Baird, A. Zebrafish Model of the Blood-Brain Barrier: Morphological and Permeability Studies.
Methods Mol. Biol. 2010, 686, 371–378. [CrossRef]

27. Chequer, F.M.; Venâncio, V.; de Souza Prado, M.R.; Campos da Silva e Cunha Junior, L.R.; Lizier, T.M.; Zanoni, M.V.; Rodríguez
Burbano, R.; Bianchi, M.L.; Antunes, L.M. The cosmetic dye quinoline yellow causes DNA damage in vitro. Mutat. Res. Genet.
Toxicol. Environ. Mutagen. 2015, 777, 54–61. [CrossRef]

28. Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med. 2019, 133, 130–143. [CrossRef]
[PubMed]

29. Lee, M.S.; Bonner, J.R.; Bernard, D.J.; Sanchez, E.L.; Sause, E.T.; Prentice, R.R.; Burgess, S.M.; Brody, L.C. Disruption of the folate
pathway in zebrafish causes developmental defects. BMC Dev. Biol. 2012, 12, 12. [CrossRef] [PubMed]

30. Vandersea, M.W.; Fleming, P.; McCarthy, R.A.; Smith, D.G. Fin duplications and deletions induced by disruption of retinoic acid
signaling. Dev. Genes Evol. 1998, 208, 61–68. [CrossRef]

31. Muralidharan, P.; Sarmah, S.; Marrs, J.A. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and
folic acid supplement. Alcohol 2015, 49, 149–163. [CrossRef] [PubMed]

32. Ghyselinck, N.B.; Duester, G. Retinoic acid signaling pathways. Development 2019, 146, dev167502. [CrossRef]
33. Altinoz, E.; Turkoz, Y.; Vardi, N. The protective effect of N-acetylcysteine against acrylamide toxicity in liver and small and large

intestine tissues. Bratisl Lek Listy 2015, 116, 252–258. [CrossRef] [PubMed]
34. Faria, M.; Prats, E.; Gómez-Canela, C.; Hsu, C.-Y.; Arick, M.A.; Bedrossiantz, J.; Orozco, M.; Garcia-Reyero, N.; Ziv, T.; Ben-Lulu,

S.; et al. Therapeutic potential of N-acetylcysteine in acrylamide acute neurotoxicity in adult zebrafish. Sci. Rep. 2019, 9, 16467.
[CrossRef]

http://doi.org/10.1021/acs.jmedchem.7b01925
http://www.r-project.org/index.html
http://doi.org/10.1242/dev.123.1.399
http://www.ncbi.nlm.nih.gov/pubmed/9007258
http://doi.org/10.1002/etc.3202
http://www.ncbi.nlm.nih.gov/pubmed/26267709
http://doi.org/10.1016/j.chemosphere.2017.03.030
http://doi.org/10.1002/jat.3134
http://doi.org/10.1007/978-1-60761-938-3_18
http://doi.org/10.1016/j.mrgentox.2014.11.003
http://doi.org/10.1016/j.freeradbiomed.2018.09.043
http://www.ncbi.nlm.nih.gov/pubmed/30268886
http://doi.org/10.1186/1471-213X-12-12
http://www.ncbi.nlm.nih.gov/pubmed/22480165
http://doi.org/10.1007/s004270050155
http://doi.org/10.1016/j.alcohol.2014.11.001
http://www.ncbi.nlm.nih.gov/pubmed/25541501
http://doi.org/10.1242/dev.167502
http://doi.org/10.4149/BLL_2015_049
http://www.ncbi.nlm.nih.gov/pubmed/25773954
http://doi.org/10.1038/s41598-019-53154-w

	Introduction 
	Materials and Methods 
	Analytical Chemistry 
	Zebrafish Husbandry 
	Exposures 
	Developmental Toxicity Assessments 
	Blood–Brain Barrier Permeability 
	Statistical Analysis of Toxicity Endpoints 
	RNA Sequencing 
	Analysis of RNA-Seq Data 

	Results 
	Mortality 
	Morphological Effects 
	Effect of Dyes on Behavior 
	Blood–Brain Barrier Permeability 
	Disperse Blue 14 Differentially Expressed Genes and Functional Enrichment 
	Disperse Red 9 Differentially Expressed Genes and Functional Enrichment 
	Solvent Red 169 Differentially Expressed Genes and Functional Enrichment 
	Solvent Yellow 33 Differentially Expressed Genes and Functional Enrichment 

	Discussion 
	References

