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Background-—Thiazide and thiazide-like diuretics are first-line medications for treating uncomplicated hypertension. However, their
use has been associated with adverse metabolic events, including hyperglycemia and incident diabetes mellitus, with incompletely
understood mechanisms. Our goal was to identify genomic variants associated with thiazide-like diuretic/chlorthalidone-induced
glucose change.

Methods and Results-—Genome-wide analysis of glucose change after treatment with chlorthalidone was performed by race
among the white (n=175) and black (n=135) participants from the PEAR-2 (Pharmacogenomic Evaluation of Antihypertensive
Responses-2). Single-nucleotide polymorphisms with P<5910�8 were further prioritized using in silico analysis based on their
expression quantitative trait loci function. Among blacks, an intronic single-nucleotide polymorphism (rs9943291) in the HMGCS2
was associated with increase in glucose levels following chlorthalidone treatment (ß=12.5; P=4.17910�8). G-allele carriers of
HMGCS2 had higher glucose levels (glucose change=+16.29 mg/dL) post chlorthalidone treatment compared with noncarriers of
G allele (glucose change=+2.80 mg/dL). This association was successfully replicated in an independent replication cohort of
hydrochlorothiazide-treated participants from the PEAR study (ß=5.54; P=0.023). A meta-analysis of the 2 studies was performed
by race in Meta-Analysis Helper, where this single-nucleotide polymorphism, rs9943291, was genome-wide significant with a meta-
analysis P value of 3.71910�8. HMGCS2, a part of the HMG-CoA synthase family, is important for ketogenesis and cholesterol
synthesis pathways that are essential in glucose homeostasis.

Conclusions-—These results suggest that HMGCS2 is a promising candidate gene involved in chlorthalidone and
Hydrochlorothiazide (HCTZ)-induced glucose change. This may provide insights into the mechanisms involved in thiazide-induced
hyperglycemia that may ultimately facilitate personalized approaches to antihypertensive selection for hypertension treatment.

Clinical Trial Registration-—URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00246519 and NCT01203852. ( J Am
Heart Assoc. 2018;7:e007339. DOI: 10.1161/JAHA.117.007339.)
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I n the United States and worldwide, hypertension is a
common condition that strongly influences risk for coro-

nary heart disease, stroke, peripheral vascular disease, heart
failure, renal insufficiency, retinal bleeding, and visual
impairment.1,2 Of the treatment options available, thiazide
diuretics are among the most commonly prescribed antihy-
pertensive medications and remain a first-line treatment
option in the current Joint National Committee recommenda-
tions for treatment of uncomplicated hypertension.3 Their use,
however, has been associated with several adverse metabolic
side effects, including hyperglycemia and increased risk for
new-onset diabetes mellitus.4–9 Findings from the ALLHAT
(antihypertensive and lipid lowering treatment to prevent
heart attack trial) report that among chlorthalidone-treated
patients, the 4-year incidence of new-onset diabetes mellitus
was significantly higher (11.6%) compared with the other
treatment groups (9.8% for amlodipine and 8.1% for lisino-
pril).10 Similar results, with a higher incidence of new-onset
diabetes mellitus in patients treated with a beta-blocker and/
or thiazide diuretic, have also been observed in other large
hypertension outcomes clinical trials.11,12 Mechanistically,
some studies attribute the observed rise in glucose following
thiazide diuretics to the associated hypokalemia, which, in
turn, affects potassium-dependent insulin secretion and/or

increased insulin resistance.13–18 However, the exact mech-
anism is unknown, and considering the cross-talk between the
pathways related to hypertension and glucose homeostasis, it
is highly unlikely that hypokalemia is the only mechanism
involved in thiazide-induced glucose dysregulation.

Studies support that chlorthalidone is a more-potent
diuretic compared with hydrochlorothiazide in treating hyper-
tension.19 Like other thiazides, chlorthalidone impairs glucose
tolerance, leading to hyperglycemia in many patients. There
is, however, a void in the literature regarding the understand-
ing of the genetic basis of chlorthalidone-induced glucose
change. Furthermore, the benefits of reduction in blood
pressure (BP) with antihypertensive medications could possi-
bly be offset by the risk for hyperglycemia and new-onset
diabetes mellitus. Identifying and understanding genetic
variation that may predispose treated individuals to this
adverse metabolic effect could ultimately optimize selection
of antihypertensive agents. Therefore, we conducted a
genome-wide association study (GWAS) of change in glucose
following treatment of chlorthalidone among a population of
essential hypertensive patients to identify genomic variants
underlying the variability observed in the blood glucose
change post chlorthalidone treatment.

Methods
All the genotype and phenotype data for the PEAR (Pharma-
cogenomic Evaluation of Antihypertensive Responses) study
have been made publically available at the dbGaP database
under dbGaP Accession: phs000649.v1.p1 and can be
accessed at (https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000649.v1.p1).20 The PEAR-2
genotype and phenotype data are currently in the process of
being uploaded to dbGaP and will soon be available to other
researchers under dbGaP Accession: phs000649.v2.p1.

PEAR-2 and PEAR Study Design
The PEAR studies were prospective, multicenter, clinical trials
conducted to assess the genomic variability attributed to BP
and adverse metabolic effects following sequential monother-
apy treatment with metoprolol and chlorthalidone in PEAR-2
(clinicaltrials.gov identifier: NCT01203852) and randomized
monotherapy treatment with hydrochlorothiazide and atenolol
in PEAR (clinicaltrials.gov identifier NCT00246519). Details
of both of these clinical trials have been described
previously.21,22 Briefly, in both studies, males and females
of any race and ethnicity with mild-to-moderate uncompli-
cated hypertension were recruited, and participants with
secondary hypertension and a known history of cardiovascu-
lar disease or diabetes mellitus were excluded. Eligible
participants with uncomplicated hypertension underwent an

Clinical Perspective

What Is New?

• In spite of studies showing that chlorthalidone is a superior
diuretic compared with hydrochlorothiazide in terms of
potency and decreasing cardiovascular events, development
of hyperglycemia, and new-onset diabetes mellitus post
chlorthalidone treatment plagues the utility of this drug.

• Using genome-wide association study, we discovered a
novel signal rs9943291 in the HMGCS2 gene associated
with increased chlorthalidone-induced glucose change and
successfully replicated this signal in the independent
hydrochlorothiazide treated cohort.

• Variants carriers of rs9943291 (G allele) had significantly
higher glucose increase post chlorthalidone treatment
compared with noncarriers.

What Are the Clinical Implications?

• These findings suggest that HMGCS2 is involved in
chlorthalidone-induced glucose change, and further under-
standing of this signal can provide insights into the
mechanisms involved in thiazide-induced increased glucose.

• Replication of these signals in other larger, independent
studies may aid clinicians to use this information for a priori
identification of patients at increased risk for thiazide-
induced hyperglycemia and can prescribe alternate antihy-
pertensive medications.
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antihypertensive medication washout period of 3 to 4 weeks.
Following confirmation of BP eligibility based on both home
and office BP measurements, participants were treated with
protocol-specified antihypertensive drugs and doses.

Both PEAR-2 and PEAR included beta-blocker monotherapy
treatment, but, for brevity, details are not provided here and
we focus on the thiazide diuretic components of the trials,
because these are the data included in this report. In PEAR-2,
participants were treated with chlorthalidone 15 mg daily for
2 weeks (and later in the study, when sale of the 15-mg tablet
was discontinued, 25 mg daily 4 times per week), followed by
uptitration to 25 mg daily for 6 weeks. In PEAR, participants
randomized to hydrochlorothiazide received 12.5 mg once-
daily followed by uptitration to 25 mg once-daily for a total
9 weeks’ treatment. In both the PEAR-2 and PEAR studies, all
patients with a BP of >120/70 mm Hg had their dose
titrated.

At the end of washout (baseline) and following the 8- to 9-
week treatment period in both studies, blood samples were
collected for DNA, RNA, plasma, and serum, along with
measurement of BP.

Both PEAR studies were reviewed and approved by the
institutional review boards at the participating sites (Univer-
sity of Florida in Gainesville, FL; Mayo Clinic in Rochester, MN;
and Emory University in Atlanta, GA). All participants provided
voluntary, written informed consent, and the studies were
conducted in accord with the principles outlined in the
Declaration of Helsinki.

Phenotype
Fasting plasma glucose measurements were made at Mayo
Clinic using a Hitachi 911 Chemistry Analyzer (Roche
Diagnostic, Indianapolis, IN). For both PEAR-2 and PEAR,
change in glucose was defined as the difference in glucose
measurement from baseline to the end of the drug treatment.

Genotyping and Imputation
DNA samples from PEAR-2 participants were genotyped for
�2.5 million single-nucleotide polymorphism (SNPs) using
the Illumina Human Omni2.5S Beadchip (Illumina, San Diego,
CA), whereas DNA samples from PEAR participants were
genotyped for �1 million SNPs using the Illumina Human
Omni1MQuad BeadChip (Illumina). Quality-control procedures
applied to the genetic data for both studies have been
previously published.23 A principal component analysis was
used to determine PEAR-2 and PEAR participants’ genetic
ancestry and confirm self-identified race/ethnicity using the
EIGENSTRAT method,24 and genetic data from both studies
were imputed to the 1000 genomes phase I reference panel
using high-quality SNPs that passed quality control, using

MaCH (version 1.0.16)25 for prephasing followed by imputa-
tion by Minimac.26 Post imputation quality control involved
filtering and excluding SNPs with imputation quality <0.3 and
minor allele frequency <5%.

Statistical Analysis
For the purpose of this article, our analyses were focused on
identifying the genetic predictors of chlorthalidone-induced
glucose change in black and white hypertensive participants.
Chlorthalidone-treated hypertensive participants from PEAR-2
served as the discovery cohort. Because there was no
available replication cohort for chlorthalidone effects,
hydrochlorothiazide-treated participants from PEAR com-
prised the replication cohort, under the assumption that the
mechanisms of the adverse effect on glucose are similar or
the same for hydrochlorothiazide and chlorthalidone. For both
studies, the primary outcome variable was defined as change
in glucose from baseline to the end of the drug treatment.
Participants with a standardized residual greater than 3 SDs
were excluded from the analysis for both discovery and
replication cohorts (PEAR-2 blacks [n=3], PEAR-2 whites
[n=4], PEAR blacks [n=0], PEAR whites [n=4]; Figure S1). We
exclude these because the most likely explanation for the
extreme response is that the study participants were not
fasting at the time of sample collection. For both the studies,
the final participant’s clinical characteristics of the partici-
pants are presented as mean�SD for continuous variables
and numbers and percentages for categorical variables.

GWAS Analysis
The genome-wide association analysis was conducted sepa-
rately by race using a staged approach with PEAR-2 serving as
the discovery cohort and PEAR as the replication cohort.
Multiple linear regression analysis was conducted using
ProbABEL,27 assuming an additive mode of inheritance. The
analysis was adjusted for age, sex, and baselines glucose
because these were associated with the change in glucose
post chlorthalidone treatment in our study. Also, studies have
shown baselines glucose to be a significant predictor of
thiazide-associated glucose change.7,28 Furthermore, even
though we did not find any population substructure in our
cohort, principal components 1 and 2 were included in the
model to account for ancestry. SNPs with a P<5910�8 were
considered to have met genome-wide significance. To focus
on the regulatory and functional variants that affect the
change in expression, an SNP prioritization approach was
undertaken to filter the genome-wide significant SNPs to be
tested for replication. Studies have shown the utility of
expression quantitative trait loci (eQTL) signal in elucidating
true associations and understanding the mechanistic
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underpinnings of these associations in GWAS.29,30 The
genome-wide significant SNPs were hence prioritized based
on their eQTL annotation as listed in the Haploreg Database.31

After prioritizing SNPs based on their eQTL annotation,
linkage disequilibrium (LD) pruning was performed to prune
multiple SNPs in LD (r2>0.08) that were present in the same
gene locus, using LDlink3.0.32 Thus, a single SNP with an
eQTL annotation representing an independent signal in that
locus was selected and moved forward for replication. SNPs
that passed the prioritization filter were further validated, by
testing for replication in an independent cohort of
hydrochlorothiazide-treated participants from PEAR. Because
our hypothesis for replication was 1-sided, SNPs with a 1-
sided P≤0.05 with association in the same direction were
considered replicated. Bonferroni correction was used to
adjust for multiple testing during replication (0.05/number of
association tested). To reduce the risk for bias, we had
multiple steps built into our analysis plan. These consisted of
(1) eQTL prioritization for the significant SNPs identified in the
discovery analysis, (2) use of Bonferroni correction for
multiple testing during replication, and (3) use of a cohort
with the same ancestry for replication as the discovery
cohort.

The results of PEAR and PEAR-2 were further combined by
doing a meta-analysis within each race for blacks and whites
using Meta-Analysis Helper using a fixed-effect model and

inverse variance weighing33 Locus Zoom was used to display
the association results using AFR population for blacks and
CEU population for whites.34

Results
Demographics and baseline characteristics of the black and
white study participants treated with chlorthalidone in PEAR-2
and HCTZ in PEAR are represented in Table 1. Black and white
cohorts in both PEAR and PEAR-2 study had a similar mean
age of �50 years. The other clinical characteristics were
similar between the 2 studies.

Glucose response to chlorthalidone in PEAR-2 and
hydrochlorothiazide for PEAR are listed in Table 2. Following
8 weeks of treatment with chlorthalidone, mean glucose
change was a 4.30�9.83 mg/dL increase for blacks and
4.39�7.51 mg/dL increase in whites for the PEAR-2 partic-
ipants. Among the PEAR participants, mean glucose change
post-treatment with hydrochlorothiazide was 2.38�10.
82 mg/dL for blacks and 0.97�10.13 mg/dL for whites,
suggesting that, similarly to the BP effect, chlorthalidone also
has a more-potent effect than hydrochlorothiazide on adverse
glucose response. The change in glucose from baseline to
post-treatment was greater for chlorthalidone compared with
hydrochlorothiazide in both races. This change in glu-
cose post-treatment between chlorthalidone and

Table 1. Baseline Characteristics of PEAR-2 and PEAR Participants

Baseline Characteristics

PEAR-2 (Chlorthalidone) PEAR (Hydrochlorothiazide)

Blacks (n=135) Whites (n=175) Blacks (n=140) Whites (n=222)

Age, y 50.30�8.75 51.22�8.82 48.91�9.38 50.16�9.46

Female, N (%) 65 (48.14) 75 (42.85) 86 (61.26) 89 (40.09)

Body mass index, kg/m2 31.25�5.4 30.76�5.02 31.8�6.2 30.31�5.20

Waist circumference, cm 97.51�11.6 100.46�13.24 94.72�9.2 98.21�13.15

Systolic blood pressure 146.49�11.06 147.48�10.34 150.16�12.96 151.06�13.41

Diastolic blood pressure 94.88�5.99 94.31�5.04 97.34�5.68 97.05�5.24

Values are presented as mean�SD unless otherwise noted. PEAR indicates Pharmacogenomic Evaluation of Antihypertensive Response.

Table 2. Glucose Characteristics of PEAR-2 and PEAR Participants

Glucose Characteristics

PEAR-2 (Chlorthalidone) PEAR (Hydrochlorothiazide)

Blacks (n=135) Whites (n=175) Blacks (n=139) Whites (n=222)

Baseline glucose, mg/dL 94.46�11.37 94.18�9.39 90.65�12.78 92.85�12.28

Glucose post-treatment, mg/dL 99.77�6.23 99.10�16.23 93.1�14.84 93.82�11.93

Glucose change, mg/dL 4.30�9.83 4.39�7.51 2.38�10.82 0.97�10.13*

Values are presented as mean�SD unless otherwise noted. PEAR indicates Pharmacogenomic Evaluation of Antihypertensive Response.
*Indicates P≤0.05 for chlorthalidone (PEAR-2) vs Hydrochlorothiazide (PEAR) within race.

DOI: 10.1161/JAHA.117.007339 Journal of the American Heart Association 4

GWAS of Chlorthalidone Induced Glucose Change Singh et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



hydrochlorothiazide was statistically significant only in whites
(P=0.0002) and not in blacks. However, there was substantial
interindividual variability in the blood glucose change post
chlorthalidone treatment in PEAR-2 and post hydrochlorothia-
zide treatment in PEAR, as shown in Figure 1.

Genome-Wide Analysis of Chlorthalidone-Induced
Glucose Change in PEAR-2
Among blacks, genome-wide association analyses of glucose
change revealed 10 SNPs representing 4 independent signals
that reached genome-wide significance (Table 3). All the
variants in high LD (r2>0.8) with one another were considered
as representing a single independent signal. The Manhattan
plot corresponding to the association of chlorthalidone-

induced glucose change in blacks is shown in Figure 2. The
red line is the strict genome-wide significance level with
P=5910�8. The 4 independent genome-wide significant
signals represented 4 loci: SLC4A2 (1 SNP); intergenic region
of C1orf98 (4 SNPs); HMGCS2 (4 SNPs); and SNX29 (1 SNP).

Of these, an intronic SNP rs201505549 in SLC24A2,
present on chromosome 9q21.13, had the strongest associ-
ation for glucose change in blacks with the lowest P value of
2.11910�09 and was associated with increased glucose
(b=15.41) post chlorthalidone treatment (Table 3). Another
independent signal rs61827877 was present in chromosome
1q12 in the intergenic region near C1orf98 and also achieved
genome-wide significance for association with increased
blood glucose post chlorthalidone treatment (Table 3).
Rs61824877 is also a cis-eQTL signal for ZNF218 in whole

Figure 1. Distribution of glucose change post-treatment showing the interindividual variability of the response among PEAR-2 and PEAR
participants. PEAR indicates Pharmacogenomic Evaluation of Antihypertensive Response.
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blood.35 Another strong association was present in the locus
of HMGCS2 that reached genome-wide significance (Table 3).
SNP rs9943291 in this gene was associated with a significant
increase in blood glucose levels at the end of the chlorthali-
done treatment. This SNP is also a cis-eQTL for another gene,
PHGDH, in whole blood.35 PHGDH is present very close to the
HMGCS2 (Figure S2). Last, one other SNP rs9927344 in
SNX29 was also genome-wide significant (Table 3) and was
associated with an increase in blood glucose levels post
chlorthalidone treatment. All the genome-wide significant
SNPs before LD pruning are reported in Table S1.

Among whites, no SNPs reached genome-wide signifi-
cance. The Manhattan plot corresponding to the association
of chlorthalidone-induced glucose change in whites is pre-
sented in Figure S3. Four SNPs that met the suggestive level
of significance (P<1910�6) are listed in Table S2. Further-
more, none of the genome-wide significant SNPs of the black

ancestry group were associated with glucose response in the
white cohort (Table S3), and none of the SNPs that met the
suggestive level of significance in the white cohort were
associated with glucose response in the black cohort
(Table S4).

Replication in Hydrochlorothiazide-Induced
Glucose Change in PEAR
Genome-wide significant SNPs from the PEAR-2 discovery
cohort were further prioritized based on their eQTL annotation
to screen for functional and regulatory SNPs to be tested for
replication. Among the blacks, 2 of the 4 genome-wide
significant loci had eQTL annotations. The SNP in the
intergenic region of C1orf98 is an eQTL for ZNF281, and
the SNP in the HMGCS2 region is an eQTL for PHGDH. Based
on this, these 2 independent signals (loci) were taken forward
for replication. Replication for association of change in blood
glucose levels post chlorthalidone treatment was tested in an
independent cohort of 140 hydrochlorothiazide-treated hyper-
tensive blacks from PEAR. SNP rs9943291 from the HMGCS2
signal met the Bonferroni significance (0.05/2=0.025) of
replication (1-sided P=0.023) in the same direction (b=5.54)
and was associated with increased blood glucose post
hydrochlorothiazide treatment (Table 4). The signal from the
intergenic region of C1orf98 did not replicate in PEAR
(P=0.135; b=3.87).

Meta-Analysis PEAR-2 and PEAR
Association results for all the SNPs from the 2 independent
cohorts of PEAR-2 and PEAR were further combined by race to
perform the meta-analysis. Among the black cohort, 2
variants representing 2 independent signals met genome-
wide significance upon meta-analysis. Rs202033909, an
intronic SNP in the FAT3, was the top signal and was
associated with increased glucose change post chlorthalidone
treatment (meta-analysis, P=1.87910�8; Table S5). Also,
rs9943291, in the HMGCS2, which was genome-wide

Figure 2. Manhattan plots of glucose change post chlorthali-
done treatment among PEAR-2 black participants. Genome-wide
significance threshold (red line): P<5910�8. PEAR-2 indicates
Pharmacogenomic Evaluation of Antihypertensive Response-2.

Table 3. Genome-wide Significant SNPs From Genome-wide Association Results for Glucose Change Among PEAR-2 Blacks

SNP CHR BP Nearest Gene Minor Allele MAF Imputation Quality (Rsq)

PEAR-2
Chlorthalidone Response

b P Value

rs201505549 9 19 743 120 SLC24A2 D 0.0556 0.94 15.41 2.11910�09

rs61824877 1 200 242 632 69 kb 30 of C1orf98 A 0.0606 0.98 12.74 4.82910�09

rs9927344 16 12 388 109 SNX29 T 0.11819 0.99 9.61 3.86910�08

rs9943291 1 120 292 290 HMGCS2 G 0.0637 0.97 12.51 4.17910�08

BP indicates base-pair position: hg19 position; CHR, chromosome; D, deletion; MAF, minor allele frequency; PEAR-2, Pharmacogenomic Evaluation of Antihypertensive Response-2; SE,
standard error of the beta coefficient; SNP, single-nucleotide polymorphism; b, regression coefficient for minor allele.
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significant in PEAR-2 and successfully replicated in PEAR,
reached genome-wide significance with meta-analysis as
expected (meta-analysis P=3.71910�8; Table 4). rs9943291
was associated with higher glucose levels at the end of the
thiazide treatment in both PEAR-2 as well as PEAR, as was
assessed using additive model in GWAS. However, because
we had only 1 homozygote for the minor allele (GG genotype)
in PEAR-2 and no homozygotes for the minor allele in PEAR for
rs9943291, we also performed the association analysis using
a dominant model by grouping the carriers of the minor allele
(GG+GT) versus noncarriers (TT) and tested whether the
variant would be significantly associated with glucose change
under a dominant model as well. rs9943291 was significantly
associated with higher glucose change in PEAR-2 with least
squares adjusted mean change of 16.29�2.4 mg/dL and
2.80�0.81 mg/dL for the G-allele carriers and T/T genotype
carriers, respectively. Similarly in PEAR, carriers of the G allele
of this variant had a least squares adjusted mean glucose
change of 7.31�2.61 mg/dL and participants with the T/T

genotype had a mean glucose change of 1.79�0.88 mg/dL
(Figure 3).

Among the whites, none of the SNPs met genome-wide
significance in the meta-analysis. However, 4 SNPs that met
the suggestive level of significance and are listed in
Table S6.

Discussion
Hyperglycemia or increased risk of new-onset diabetes
mellitus is one of the most common adverse metabolic side
effects of thiazide therapy. A previous PEAR study has shown
that thiazide diuretic and beta-blocker treatment causes the
advent of adverse metabolic events, including glucose
impairment and new-onset diabetes mellitus, as early as
within 9 weeks of starting treatment.36 This increases the risk
of developing diabetes mellitus long term given that thiazides
are usually lifelong therapeutics for hypertensives. In this
study, we performed a GWAS and identified SNPs associated

Table 4. PEAR-2 Association Tested for Replication in PEAR for Blacks

SNP CHR BP Nearest Gene
Minor
Allele MAF

PEAR-2 Chlorthalidone
Response

PEAR
Hydrochlorothiazide
Response Meta-Analysis

b P Value b
One-Sided
P Value b P Value

rs9943291 1 120 292 290 HMGCS2 G 0.0637 12.51 4.17910�08 5.54 0.023 10.01 3.71910�08

rs61824877 1 200 242 632 69 kb 30

of C1orf98
A 0.0606 12.74 4.82910�09 3.87 0.135 9.08 5.20910�08

BP indicates base-pair position: hg19 position; CHR, chromosome; D, deletion; MAF, minor allele frequency; PEAR, Pharmacogenomic Evaluation of Antihypertensive Response; SE,
standard error of the beta coefficient; SNP, single-nucleotide polymorphism; b, regression coefficient for minor allele.

Figure 3. Glucose change post chlorthalidone treatment among PEAR-2 blacks (N=135) and PEAR blacks (N=140) post hydrochlorothiazide
by HMGCS2 rs9943291 genotype. Glucose change for both studies is adjusted for pretreatment glucose levels, age, sex, and principal
components 1 and 2. P values are for contrast of least square adjusted means between genotype groups. PEAR indicates Pharmacogenomic
Evaluation of Antihypertensive Response.
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with change in blood glucose levels after treatment with
chlorthalidone. Among blacks, our strongest association was
found in HMGCS2. An intronic SNP in this gene was
associated at the genome-wide significant level with change
in blood glucose levels following chlorthalidone treatment in
blacks in PEAR-2 and successfully replicated in the indepen-
dent cohort of hydrochlorothiazide-treated blacks in the
PEAR study. This variant also achieved genome-wide signif-
icance in the PEAR-2/PEAR meta-analysis (P=3.17910�8).
Individuals who carried the variant allele at this SNP had
greater chlorthalidone-induced glucose increase. The strin-
gent checks utilized during the analysis to reduce bias,
including eQTL prioritization, Bonferroni correction for mul-
tiple testing, as well as using the same ancestry for
replication, provide confidence in the association and its
successful replication. Also, additional evidence from power
analyses indicate that our study was powered to successfully
detect an association of this effect size in both our discovery
and replication cohorts, further strengthening the confidence
that this is not a spurious or false-positive association, but a
true signal.

HMGCS2 encodes the mitochondrial enzyme, 3-hydroxy-3-
methylglutaryl-CoA synthase 2, that is part of the HMG-CoA
family. The HMGCS2 enzyme is an integral part of hepatic
metabolism and is important for ketogenesis by multifaceted
regulation. Hepatic metabolism and ketogenesis is an impor-
tant regulator of glucose and lipid metabolism and has an
important implication on the pathogenesis of obesity,
metabolic syndrome, and also increased risk for type 2
diabetes mellitus (reviewed in an earlier work37). Studies have
shown increased expression of lipid-metabolism–related
genes, including HMGSC2, in individuals with nonalcoholic
fatty liver disease.38,39 HMCSC2 is transcriptionally coregu-
lated by insulin, which can suppress its transcription and
glucagon, which induces its transcription.40–43 HMGCS2 also
indirectly interacts with PPAR-alpha, wherein fatty acids can
induce expression of HMGCS2 in a PPAR-alpha dependent
manner, and, moreover, HMGCS2 can self-regulate its own
transcription by directly interacting with PPAR-alpha upon
translocation to the nucleus.44 This is an important interaction
given that studies have shown that PPAR-alpha activation
improves insulin resistance and prevents the development of
diabetes mellitus.45 Studies in mice have shown that absence
of HMGCS2 impairs the process of ketogenesis because of
insufficient derivation of ketone bodies from fatty acids. Mice
lacking HMGCS2 exhibited a mild increase in blood glucose
levels with no change in insulin concentrations.46 This further
strengthens the evidence for involvement of HMGCS2 in
metabolism and glucose and insulin homeostasis. Further-
more, rs9943291 in HMGCS2, the genome-wide significant
SNP, is also an eQTL for PHGDH according to the
Haploregv4.1 database and is also present in high LD with

some other variants of the PHGDH. PHGDH is adjacent to
HMGCS2 on chromosome 1 and encodes for the enzyme,
phosphoglycerate dehydrogenase, that is important for L-
serine synthesis, which is essential for amino acid
synthesis.47 It is possible that chlorthalidone treatment
affects one of these interactions related to HMGCS2, causing
chlorthalidone-induced glucose increase. Further studies are
needed to elucidate the exact mechanism of this gene and its
cross-talk with chlorthalidone-induced effects that will further
provide insights into the underlying mechanism driving this
association.

Some of our other top signals in the GWAS of chlorthali-
done-induced glucose change in PEAR-2 blacks also had
literature support for involvement with mechanisms related
to our phenotype of interest. Variants in SLC24A2 were
genome-wide significant for their association with chlorthali-
done-induced glucose change. SLC24A2 encodes for solute
carrier family 24 member 2 also known as sodium-calcium-
potassium exchanger.48 It is involved in exchanging four Na+

ions for one Ca+ and one K+ ion and decreases Ca+

concentration in response to light in the retinal rod for light
adaptation.49 Its role, if any, in potassium-dependent glucose
regulation in response to thiazide treatment needs to be
explored further. Another interesting region was C1orf98
intergenic region. rs61824877 was genome-wide significant
as well as an eQTL signal for ZNF281 according to
Haploregv4.1, which encodes for zinc finger protein 281.
ZNF281 is a potential target for microRNA-33 that has been
shown to be involved in cholesterol regulation and glucose
metabolism.

We acknowledge that our study had limitations, the biggest
being that we did not have a distinct chlorthalidone replication
cohort. Even though chlorthalidone belongs to the thiazide-
like diuretics class and hydrochlorothiazide belongs to the
thiazide diuretics class, which are often considered to be alike
and similar classes of diuretics,3 there are distinct differences
in their potency, chemical structure, and effectiveness.50

Chlorthalidone is a much more-potent diuretic compared with
hydrochlorothiazide. Moreover, the mean glucose change
induced by chlorthalidone in PEAR-2 was higher compared
with that induced by hydrochlorothiazide in PEAR. This
difference in effect sizes might be one of the underlying
reasons for the failure to replicate certain signals from the
chlorthalidone-treated cohorts in PEAR-2 to the
hydrochlorothiazide-treated cohort in PEAR. We performed a
power analysis using the effect size f2 of 0.14 that was
observed with a change in glucose response in our discovery
cohort, using linear multiple regression (a=0.05, 2-sided
hypothesis). Based on these inputs, we had 98% power to
detect an effect size of 0.14 in 135 chlorthalidone-treated
participants. However, to acknowledge the winners curse
phenomenon, when the power analysis was performed using
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the effect size f2=0.034 observed in the replication cohort, we
only had 58% power to identify the association between
rs9943291 and the hydrochlorothiazide glucose response
under the same assumptions (a=0.05, 2-sided hypothesis).
Considering this, even though we were underpowered to
detect small effect sizes, we had sufficient power for
moderate-to-high effect sizes, which are common in pharma-
cogenomic studies.51 Moreover, the successful replication of
this variant in an independent cohort reduces the likelihood of
the discovered association being spurious. Last, the same
data sets—PEAR-2 and PEAR—that were used to find the
associations were also used to assess the extent of the effect
sizes based on genotype. Further replication of these
associations in an independent chlorthalidone-treated cohort
will aid in not only testing the association, but also assessing
the magnitude of the effect sizes.

In conclusion, by using the chlorthalidone and
hydrochlorothiazide-treated cohorts and conducting a GWAS
analysis, we were able to identify several key signals and
genes, which may further our understanding of the mecha-
nisms of thiazide-induced hyperglycemia. A SNP, s9943291,
in HMGCS2 met the genome-wide significance level in the
chlorthalidone-treated discovery cohort, cleared the prioriti-
zation filter, and was successfully replicated in the
hydrochlorothiazide-treated replication cohort. Furthermore,
it was also genome-wide significant in the meta-analysis
between the 2 cohorts. This SNP was also an eQTL for the
PHGDH gene, which makes both of these genes promising
candidates for further studies. Further elucidation and func-
tional validation of these loci is required to completely
understand the underlying mechanisms and the role of
genetic variation in thiazide-induced glucose impairment. This
can further help improve individualized approaches for
effective management of hypertension by identifying individ-
uals at higher risk of glucose impairment attributed to
thiazides, thus reducing the incidences of adverse events that
are associated with thiazide diuretics.
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Supplementary Figures: 

Table S1. Genome wide significant SNPs from Genome-wide association results for 

Glucose change among PEAR-2 Blacks.  

SNP CHR BP 
Nearest 

Gene 

Minor 

Allele 
MAF 

PEAR-2 

Chlorthalidone 

Response 

β  P-value 

rs201505549 9 19,743,120 SLC24A2 D 0.0556 15.41 2.11x10-09 

rs61824877 1 200,242,632 
69kb 3’ of 

C1orf98 
A 0.0606 12.74 4.82x10-09 

rs10919872 1 200,239,052 
73kb 3’ of 

C1orf98 
A 0.06002 12.50 1.13Ex10-08 

rs2241868 1 120,293,169 HMGCS2 C 0.06579 12.87 1.37x10-08 

rs10923897 1 120,297,295 HMGCS2 G 0.06579 12.87 1.37x10-08 

rs12406668 1 120,303,055 HMGCS2 T 0.06579 12.87 1.37x10-08 

rs61824876 1 200,238,124 
74kb 3’ of 

C1orf98 
T 0.05978 12.39 1.63x10-08 

rs10919866 1 200,230,636 
81kb 3’ of 

C1orf98 
A 0.05922 12.12 3.84x10-08 

rs9927344 16 12,388,109 SNX29 T 0.11819 9.61 3.86x10-08 

rs9943291 1 120,292,290 HMGCS2 G 0.0637 12.51 4.17x10-08 

CHR: chromosome; BP: Base-Pair Position: hg19 position. MAF: Minor Allele 

Frequency; β: regression coefficient for allele Minor Allele; D: deletion  
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Table S2. SNPs which met suggestive significance level 1X10-6 in the genome wide association with respect to 

chlorthalidone induced glucose change in PEAR-2 Whites 

 

 

 

 

 

 

 

 

 

 

CHR: chromosome; BP: Base-Pair Position: hg19 position. MAF: Minor Allele Frequency; β: regression coefficient for 

allele Minor Allele; SE: standard error of the beta coefficient.  

SNP CHR BP 
Nearest 

Gene 
A1 MAF 

Imputation 

Quality 

(Rsq) 

Pear-2 

Chlorthalidone 

β P 

rs79405723 7 131336198 PODXL C 0.16 0.60 5.80 2.72x10-07 

rs112255998 16 88263085 BANP G 0.06 0.72 8.28 4.17 x10-07 

rs72891473 6 66586528 MCART3P T 0.05 0.89 9.80 7.67 x10-07 

rs79557329 2 167709963 XIRP2 A 0.13 0.97 5.90 8.99 x10-07 
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Table S3. Details of the top associations for Blacks in Whites 

Top Associations for Blacks 

SNP CHR BP 
Nearest 

Gene 

Minor 

Allele 

PEAR-2 

Chlorthalidone Response 

(Blacks) 

PEAR-2 

Chlorthalidone Response 

(Whites) 

MAF β P-value MAF β P-value 

rs201505549 9 19,743,120 SLC24A2 D 0.0556 15.41 2.11x10-09 SNP removed due to QC (very low MAF) 

rs61824877 1 200,242,632 
69kb 3’ 

of 
C1orf98 

A 0.0606 12.74 4.82x10-09 0.1298 -3.60 0.006 

rs9927344 16 12,388,109 SNX29 T 0.11819 9.61 3.86x10-08 SNP removed due to QC (very low MAF) 

rs9943291 1 120,292,290 HMGCS2 G 0.0637 12.51 4.17x10-08 0.0853 1.39 0.34 

CHR: chromosome; Position: hg19 position. A1: allele 1; A2: allele 2; BP: Base Pair position 

 

 

 

 

 



4 
 

Table S4. Details of the top associations for Whites in Blacks 

Top Associations for Whites 

SNP CHR BP 
Nearest 

Gene 

Minor 

Allele 

PEAR-2 

Chlorthalidone Response 

(Whites) 

PEAR-2 

Chlorthalidone Response 

(Blacks) 

MAF β P-value MAF β P-value 

rs79405723 7 131336198 PODXL C 0.1675 5.80 2.72x10-07 0.1645 0.811 0.63 

rs112255998 16 88263085 BANP G 0.0614 8.28 4.17 x10-07 SNP removed due to QC (very low MAF) 

rs72891473 6 66586528 MCART3P T 0.0519 9.80 7.67 x10-07 SNP removed due to QC (very low MAF) 

rs79557329 2 167709963 XIRP2 A 0.1308 5.90 8.99 x10-07 SNP removed due to QC (very low MAF) 

CHR: chromosome; Position: hg19 position. A1: allele 1; A2: allele 2; BP: Base Pair position 
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Table S5. Genome Wide Significant signals from the meta-analysis of Chlorthalidone induced glucose change in PEAR-2 

and Hydrochlorothiazide induced glucose change in PEAR Blacks  

       

SNP CHR BP A1 A2 
PEAR-2 

P-value 

PEAR 

P-Value 

Meta-

analysis 

P-value 

Nearest 

Gene 

11:92331394:A_AT 11 92331394 I R 2.22x10-4 1.72x10-5 1.72x10-08 FAT3 

1:120292290 1 120292290 G T 4.17x10-08 0.046194 3.71x10-08 HMGCS2 

       CHR: chromosome; Position: hg19 position. A1: allele 1; A2: allele 2; BP: Base Pair position 
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Table S6. SNPs which met suggestive significance level 1X10-6 in the meta-analysis of Chlorthalidone induced glucose 

change in PEAR-2 and Hydrochlorothiazide induced glucose change in PEAR Whites  

 

 

SNP CHR BP A1 A2 
PEAR-2 PEAR 

Meta-

analysis  Nearest Gene 

P-value  P-Value P-value 

12:52807944 12 52807944 C T 6.76E-05 0.0004 1.39E-07 7.8kb 5' of KRT82 

12:52803608 12 52803608 A G 7.27E-05 0.0004 1.48E-07 3.4kb 5' of KRT82 

6:5337596 6 5337596 C T 1.45E-06 0.0388 2.11E-07 FARS2 

6:131801262 6 131801262 A G 0.0002 0.0007 5.81E-07 93kb 5' of ARG1 

CHR: chromosome; Position: hg19 position. A1: allele 1; A2: allele 2; BP: Base Pair position 



 
 

Figure S1. The overall analyses flowchart of the study depicting the total number of 
participants that were excluded from the analysis, the final number of participants 
included in the analysis and the various steps of the analysis framework. 

 



 
 

Figure S2. Regional plot for rs9943291 (HMGCS2 gene) the GWAS of glucose change post 

chlorthalidone treatment. 



 
 

Figure S3. Manhattan plots of Glucose change post chlorthalidone treatment among 

PEAR-2 European American participants.  

 

 

Suggestive significance threshold (Blue line): p < 1 x 10-6; PEAR-2: Pharmacogenomic Evaluation 

of Antihypertensive Response-2. 

 




