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ABSTRACT

الكشف عن الأمراض عادة ما يعتمد على طرق تقليدية ومرهقة وتحتمل أخطاء 
بشرية. مع تطور الطرق التشخيصية المعتمدة على طرق حاسوبية. كان استخدامها  
ضروري لدقتها في العديد من المختبرات التشخيصية في علم الامراض ولاكتشاف 
الميكروبات والامراض الجينية والتعامل مع نتائج تحاليل الكيمياء السريرية. علما ان 
هذه الطرق تبقى في بعض الاحيان تحتمل اعتبارات اخلاقية نتيجة لتحيز النتائج 
هذه  تطور  دراسة  يجب  لذى  المرضى.  تحاليل  ونتائج  بيانات  مع  التعامل  بسبب 
البيانات  في  التحيز  من  تقلل  طرق  باستخدام  السريري  التشخيص  في  التقنيات 

وتجويد بيانات المرضى الحقيقية.  

Diagnostic processes typically rely on traditional 
and laborious methods, that are prone to human 
error, resulting in frequent misdiagnosis of diseases. 
Computational approaches are being increasingly used 
for more precise diagnosis of the clinical pathology, 
diagnosis of genetic and microbial diseases, and 
analysis of clinical chemistry data. These approaches 
are progressively used for improving the reliability of 
testing, resulting in reduced diagnostic errors. Artificial 
intelligence (AI)-based computational approaches 
mostly rely on training sets obtained from patient data 
stored in clinical databases. However, the use of AI is 
associated with several ethical issues, including patient 
privacy and data ownership. The capacity of AI-based 
mathematical models to interpret complex clinical data 
frequently leads to data bias and reporting of erroneous 
results based on patient data. In order to improve the 
reliability of computational approaches in clinical 
diagnostics, strategies to reduce data bias and analyzing 
real-life patient data need to be further refined.
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Several diagnostic techniques rely on traditional 
processes that are often laborious and result in 

misdiagnosis of diseases due to human error. However, 
the use of computational approaches in clinical 
diagnostics has revolutionized the field of diagnostic 
pathology and opened new treatment avenues for 
patients.1,2 To reduce potential human errors, image-
processing methodologies have been developed for the 
histopathological analysis of human tissue sections; 
these methodologies have replaced the pathological 
scoring of disease phenotypes based on the trained eyes 
of pathologists and the use of a microscope.3 Moreover, 
these methodologies are continuously being updated to 
diagnose complex diseases that require a multi-modal 
approach.4 Complex computer-generated image-
processing techniques are also used for image acquisition 
and processing in molecular diagnostic techniques, 
such as computed tomography (CT), magnetic 
resonance imaging (MRI), and positron-electron 
tomography (PET).5,6 These computational approaches 
enable proper visualization of organs without the need 
for invasive surgical techniques, thereby resulting in 
rapid and reliable disease diagnosis, and consequently 
increasing patient survival rates.7 

Computational approaches for diagnosing genetic 
disorders are among the diagnostic practices that 
have undergone major innovation in the last decade. 
Artificial intelligence (AI) algorithms are being used 
to generate training sets based on input data for the 
accurate detection of possible unidentified pathogenic 
mutations.8 This has led to a faster diagnosis of 
diseases and has facilitated the study of various disease 
models for the development of novel therapeutic 
strategies. However, several ethical issues have been 
raised regarding the use of AI algorithms in the field 
of clinical diagnostics; patient privacy, data ownership, 
and transparent use of patient data are the most critical 
issues.9 Additionally, the process of widespread approvals 
from international regulatory agencies for the use of 
AI algorithms in clinical diagnostics is slow because 
of the prevalence of data bias, which may result in 
misdiagnosis. Hence, strategies are continuously being 
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developed to overcome hurdles related to the use of AI 
algorithms in computational diagnostics approaches.10 
Here we review the computational approaches used in 
clinical diagnostics, especially microbial diagnostics, 
tissue imaging and analysis, diagnosis of genetic 
disorders, and analysis of clinical chemistry data.

Computational approaches used in microbial 
diagnostics. Traditionally, microbial diagnostic 
techniques involve pathogen cultures in clinical 
laboratories and pathogen identification using serological 
tests or on the basis of phenotypic or biochemical traits.11 
Although these traditional diagnostic methods have 
been successful to some extent in providing accurate 
information on specific pathogenic strains of bacteria 
and viruses, a limitation is that they underestimate 
the vast number of pathogens,12 primarily due to the 
difficulties encountered when culturing different 
microorganisms. Microorganisms may not be properly 
identified using traditional diagnostic methods, and it 
is estimated that more than 99% of pathogens have not 
been formally identified.13,14 

With advancements in gene sequencing and genetic 
engineering techniques, several molecular biology-based 
tools have been developed to improve the ease and 
reliability of microbial identification. The sequencing 
of conserved genomic entities in the microbial genome 
has enabled thorough and efficient identification of 
pathogens. Many of these molecular identification 
techniques, such as polymerase chain reaction (PCR), 
real-time PCR, DNA microarray, metagenomics, and 
next-generation sequencing (NGS), are currently being 
used when assessing DNA or RNA for the diagnosis of 
a vast number of microorganisms.15-18

Deoxyribonucleic acid microarray technology 
is an emerging molecular diagnostic tool for the 
identification of microbial pathogens when traditional 
diagnostic methods fail to provide positive results. 
A DNA microarray chip contains pathogen-specific 
oligonucleotide sequences that are computationally 
obtained through an extensive BLAST search of the 
sequences against all non-target genomes to get sequence 
similarities. The advantage of using this technique is its 
ability to screen for all identified as well as unidentified 
pathogens, which helps prevent the occurrence of 
diseases caused by unknown pathogens as well.19,20 

Metagenomics has emerged as a relative powerhouse 
in the field of clinical diagnostics because it allows 
the identification of pathogens from a microbial 
community. In other words, it does not require the 
isolation of pure cultures for sequencing purposes. 
After the sample and metadata are collected, DNA 
extraction, library probe construction, sequencing, read 
processing, and assembly are performed. Databases 
and other computational tools are then used to analyze 
the obtained data. Computational techniques utilizing 
machine learning-based computational models have 
also been developed to predict the associations between 
microorganisms and diseases. One such example is the 
novel bidirectional label propagation human microbe-
disease association (NBLPIHMDA) database, which is 
a prediction model uses a disease similarity network and 
a microbe similarity network to perform bidirectional 
label propagation in order to establish the associations 
between microorganisms and diseases.21,22

Next-generation sequencing facilitates the proper 
identification of microbial pathogens through the 
acquisition of large amounts of sequencing data. The 
evolutionary genomic variability within the genomes 
of microorganisms is harnessed to enable a rapid and 
multimodal diagnosis of previously unknown pathogens 
in a clinical setting. This approach is currently being 
used in viral diagnostics and for the screening of antiviral 
drug resistance.23,24 

Computational approaches used in analysis of 
clinical chemistry data. The field of metabolomics 
has been generating increasing amounts of data, and 
complex computational power will be required to 
unravel the complex nature of these data. Several 
mathematical models have been developed to interpret 
complex clinical chemistry data related to diseases, 
such as diabetes, cardiovascular disease, and cancer. For 
example, in diabetes, the assessment of insulin resistance 
based on plasma glucose levels after the ingestion of 
an oral dose of glucose in time series experiments 
has been well defined using predictive mathematical 
models.25,26 Other relevant computational approaches 
have been developed in the field of oncology, namely, 
a model capable of predicting the tumor size based on 
the expression levels of circulating tumor biomarkers 
in the plasma of patients has been developed.27,28 For 
effective data analysis, it is crucial to determine the type 
of clinical chemistry data in order to select the best 
computational approach. Computational modeling and 
analysis can easily be used for publicly available data 
in a clinical setting, namely, for blood cytokines and 
liver enzymes.29 The diagnostic significance of clinical 
chemistry data must be determined using large-scale 
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experiments to validate the findings of the selected 
computational approach. The reproducibility of the 
data must be validated across other studies with a small 
margin of error between validation experiments, as large 
margins of errors will lead to modeling errors in terms of 
data fitting. Proper standardization and reproducibility 
of the data are necessary. The data must also be 
biologically validated across other measurements. The 
clinical chemistry data used for computational analysis 
should be easy to interpret and should reflect the disease 
in order to add relevance to the computational analysis. 
Finally, the results of the computational analysis 
should be indicative of the types of biological processes 
associated with the onset of the disease.30,31 

Different types of models can be used to analyze 
clinical chemistry data. Bayesian networks have 
been used for the computational analysis of clinical 
chemistry data through the identification of neural 
hubs containing essential information on the disease 
process.32 In addition, compartmental computer 
modeling has been used to analyze complex clinical 
chemistry data, namely, predicting the tumor size based 
on the analysis of circulating tumor biomarker levels in 
the plasma of cancer patients.33,34 Another example is 
the use of a computational pipeline for the diagnosis 
of common variable immunodeficiency (CVID). This 
pipeline is based on an automated machine learning 
approach for diagnosing CVID using flowcytometry 
to sort the cells. Automated quality controls, data pre-
processing, and automated population identification 
create a machine learning classifier that distinguishes 
CVID from other primary antibody deficiencies.35 

The implementation of a computational model is 
based on the modeling strategy being used. The model 
should be validated in a clinically relevant setting and 
should be able to recapitulate the results observed in a 
clinical setting based on disease progression. An example 
of the relevance of computational approaches for the 
analysis of clinical chemistry data is the computational 
modeling of lipoprotein profiles, which has been used 
for the accurate prediction of cardiovascular disease 
risk.36 In addition, multicell biomarker profiles in 
inflammation and cancer have been predicted using 
cytokine profiles based on different responses of cancer 
cells to different cytokines in laboratory experiments. 
This computational model has the potential to predict 
the response of tumor cells to anti-inflammatory 
treatment and immunotherapy based on the inhibition 
of pro-inflammatory cytokine secretions in the tumor 
microenvironment.37

Computational approaches used in the diagnosis of 
genetic disorders. Genetic disorders have been diagnosed 

using traditional methods, such as fluorescence in situ 
hybridization (FISH).38 However, advancements in 
human genome sequencing have led to the generation 
of massive amounts of complex data that can only be 
analyzed using complex computational systems. Next-
generation sequencing  may be used to sequence the 
whole genome of a patient having a disease with an 
unknown genetic cause. Typically, this generates huge 
amounts of complex data that must be analyzed using 
a computational approach to enable accurate diagnosis. 
After sequencing a patient’s genome, research databases 
are generally used to obtain information about a 
particular pathogenic genetic variant and to identify 
if other closely related variants of the gene could be 
pathogenic.39-41 Databases containing information on 
human mutations include the Human Gene Mutation 
Database (HGMD) and the NCBI single nucleotide 
polymorphism database (dbSNP).42 

Advancements in computational approaches 
for the diagnosis of genetic disorders have led to the 
identification of several pathogenic genetic mutations. 
Specifically, these genetic mutations can be directly 
linked to drastic changes in the levels of proteins, 
encoded by these genes, which are then reflected as the 
phenotype of the patient.43 Computational approaches 
are most important for identifying mutations with 
unknown pathogenicity.44 An example of this type 
of genetic variation is a missense mutation. Several 
algorithms, such as the sorting intolerant from 
tolerant (SIFT) algorithm, have been developed to 
evaluate whether a missense mutation is pathogenic.45 
The pathogenicity of synonymous mutations can be 
evaluated by computational analysis of the mRNA 
structure, as well as by predicting splice variants in the 
genome.46 Computational tools used to identify splice 
sites that might be implicated in disease pathogenesis 
include the Human Splicing Finder and GeneSplicer.46-48 

Many studies have been conducted to determine 
whether the frequency of alleles at specific sites of interest 
is responsible for several diseases. A genome-wide 
association study (GWAS) is a computational approach 
used to identify numerous pathogenic loci.49 Expression 
quantitative trait loci (eQTLs) are located within the 
DNA and are correlated with severity of the genetic 
disorder. The data used to identify an eQTL are derived 
from gene mapping, microarray data, and specific 
pathogenic genotypes. Expression quantitative trait loci 
can be used to measure gene expression levels and to 
correlate a particular genetic mutation to the phenotype 
of an individual.50 However, major drawback associated 
with the use of computational analysis for the diagnosis 
of a genetic disease is the introduction of potential bias 
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when data analysis is based on the functional expression 
of a pathogenic gene. 

 Computational approaches used in tissue imaging 
and analysis. Previous approaches for analyzing 
histopathological tissue sections frequently involved 
the use of high-powered microscopes and skilled 
pathologists to diagnose known diseases based on tissue 
abnormalities through physical observation (namely, 
visually). However, inaccurate physical assessment of 
stained tissue sections might result in misdiagnoses. In 
order to overcome these issues, several image-processing 
technologies have been developed to predict the survival 
rates of cancer patients. For example, image features 
generated through computer-aided pathological analysis 
have been used to accurately diagnose breast cancer 
patients and predict their likelihood of survival.51-53 

The use of AI and other computational methods for 
digital pathological analysis has highlighted their efficacy 
in revealing unbiased clinical outcomes of patients. For 
example, an image analysis system called MAGIC has 
been used to predict prostate cancer recurrence. In 
this system, tissue images are divided into segments 
and classified under various histological patterns based 
on epithelial and nuclear morphology, color, texture, 
and other cellular morphological features. The generic 
system (Table 1) used to classify images obtained from 
the histological staining of tissue sections begins with 
image refinement. This step involves the removal of 
tissue background regions that are correlated with 
transparent regions in the tissue corners. The histogram 
image must be matched to a reference image. The next 
step involves analysis and classification; this includes 
descriptors, such as color and texture, followed by other 
cellular morphological characteristics to obtain a final 
diagnostic decision.54-57

If detailed anatomical analysis of a specific tissue is 
required, the computational analysis of images obtained 
from medical imaging procedures, such as CT, MRI, 
and PET, is routinely performed. A CT scan uses 
computer-processed combinations of various X-ray 
images obtained from different angles. This leads to the 
acquisition of cross-sectional images of a specific area of 
a scanned organ, which allows the internal visualization 
of an organ without performing surgery.58 Computed 
tomography has several advantages over other diagnostic 
imaging modalities. This includes its high speed, which 
in turn facilitates the rapid diagnosis of a pathological 
condition. However, as this procedure uses radiation for 
image acquisition, there might be an increased risk of 
developing cancer due to radiation exposure.58 

As a safer alternative to CT, MRI uses strong 
magnetic fields, magnetic field gradients, and radio 

waves to generate a cross-sectional image of an organ. 
The lack of radiation exposure permits image acquisition 
while decreasing the risk of exposure to unnecessary 
radiation.59 Positron-electron tomography, which is 
based on the injection of radioactive components, 
followed by the detection and reconstruction of the 
injected radiotracer, enables the acquisition of highly 
accurate cross-sectional images of organs.60

Study limitations. There are several limitations to the 
use of computational methods in clinical diagnostics. 
One of the most prominent limitations stems from 
data bias based on the type of data used to build the 
training sets. The processing of images obtained from 
diagnostic tests, such as CT and MRI, has limitations 
based on the algorithms used for input data collection, 
pre-processing, processing, and system assessment. In 
addition, most algorithms are designed to select a single 
diagnosis per patient, posing a problem for patients 
with multiple comorbidities. Furthermore, AI-based 
algorithms can successfully interpret complex clinical 
data. However, given the power and complexity of these 
algorithms, data interpretation can often generate biased 
and superfluous results, which might be unethical and 
even discriminatory.  

In conclusion, traditional clinical diagnostic 
methods have been beset with high rates of false-
negative and false-positive results. The involvement 
of many people in performing laborious diagnostic 
laboratory procedures often results in errors in disease 
diagnosis. However, recent advancements in clinical 
diagnostic methods using computational models have 
enabled the rapid identification of previously unknown 
pathogenic genetic mutations, in addition to the rapid 
and accurate stratification of patient-based, computer-
generated image-processing technologies. 

Table 1 - The generic system for the classification 
of stained tissue sections.

Steps for tissue section classifications 

Tissue imaging
Histological staining

Refinement
Reference image matching
Background removal

Analysis and classification
Color
Texture
Morphology

Diagnosis
Disease (namely, cancer)
Normal
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The use of computational analysis to generate 
training sets for disease prediction is based on inputting 
patient data from clinical databases that have been 
subjected to ethical review. This is mostly due to patient 
privacy issues, personal autonomy, public demand for 
transparency, and trust in how the data are managed and 
stored. However, ethical issues are being raised about 
how academic and commercial entities use data, who 
has ownership rights to the data, and whether patients 
can access their data. These concerns are currently 
being reviewed by several ethical review committees 
worldwide, and new laws are currently being drafted to 
address these issues.

The future use of AI-based algorithms in clinical 
diagnostics has not been adequately validated, mostly 
due to machine bias. Therefore, future studies should 
focus on reducing machine bias by monitoring the 
performance using real data, selecting the accurate 
learning model for the problem, and selecting a dataset 
that is reflective of the real disease situation.
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