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Genes and environmental stimuli cooperate in the regulation of brain development and formation of the adult neuronal
architecture. Genetic alterations or exposure to perturbing environmental conditions, therefore, can lead to altered neural
processes associated with neurodevelopmental disorders and brain disabilities. In this context, environmental enrichment
emerged as a promising and noninvasive experimental treatment for favoring recovery of cognitive and sensory functions in
different neurodevelopmental disorders. The aim of this review is to depict, mainly through the much explicative examples of
amblyopia, Down syndrome, and Rett syndrome, the increasing interest in the potentialities and applications of enriched
environment-like protocols in the field of neurodevelopmental disorders and the understanding of the molecular mechanisms
underlying the beneficial effects of these protocols, which might lead to development of pharmacological interventions.

1. Introduction

The brain capability to adapt in response to environmental
changes is called neural plasticity, which allows cerebral cir-
cuits to modify their structure and function in response to
experience through changes occurring at the molecular, neu-
ronal, and systemic level.

In all mammal species studied so far, major plastic
changes are mostly confined to specific time windows, early
in development, known as critical periods (CPs) [1, 2]. Dur-
ing these periods, different for distinct developing functions,
the inner genetic plan and the external environmental
influences cooperate, leading to the final unfolding and
maturation of an adaptive individual body. At the end of
CPs, neural plasticity levels decay, possibly as the result
of evolutionary pressures towards a final stabilization and
maintenance of the mature structural connections and of
the ensuing sensory functions emerging from the develop-
mental events.

A key consequence of the interplay between genes and
environment underlying brain development is that genetic
alterations and/or exposure to altered environmental condi-
tions before the closure of CPs can lead to alterations of brain
development, resulting in a number of different, moderate to
severe, neurodevelopmental disorders [3, 4].

During the last decades, an increasing number of experi-
mental researches have led to the discovery of molecular
brakes that restrict neural plasticity within the temporal
limits of the CPs [5–8]. The opportunity to regulate these
molecules and to modulate the time course and closure of
CPs have opened the possibility to ameliorate brain function-
ing in neurodevelopmental disorders even past the end of the
CPs. In this context, the visual system emerges as a favorite
model to probe cortical plasticity throughout and after the
end of CPs, both in physiological and pathological conditions
[9]. Indeed, since the original discovery by the Nobel Prize
winners Wiesel and Hubel demonstrating the existence of a
CP for ocular dominance plasticity in mammals with
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binocular sight [10], the visual cortex has become the most
widely employed system to investigate the mechanisms
underlying cerebral plasticity and the possibility to restore
or enhance it in adulthood. Beyond its impact on the treat-
ment of neurodevelopmental visual disorders such as ambly-
opia [11], this seminal work has opened new perspectives in
the field of neurodevelopmental disorders which are not
considered, in their essential nature, visual ones, such as Rett
syndrome (RTT), autism spectrum disorders (ASD; in par-
ticular X-fragile syndrome (FXS)), and Down syndrome
(DS) [12–16].

In particular, the study of the mechanisms underlying
visual system plasticity in animal models and the specific
impact that EE exerts on them has provided insights for the
development of possible pharmacological and nonpharma-
cological [17–19] interventions in human subjects with
RTT, DS, and FXS. In some occasions, these applications
have already moved forward to the phase 3 of clinical exper-
imentation or randomized studies [17–19].

In this review, we shall discuss the translational route
from basic studies focused on visual system plasticity to the
application of possible EE interventions in human subjects.
Wherever possible, we shall underscore the relevance of a bet-
ter knowledge of the molecular mechanisms underlying the
EE effects in animal models for the characterization of similar
mechanisms underlying neural dysfunctions in humans and
for the development of possible successful interventions.

2. Manipulating the Environment to Enhance
Plasticity: The Environmental
Enrichment Approach

The most direct approach to manipulate the environment in
order to enhance neural plasticity is environmental enrich-
ment (EE), introduced in the early 1960s by Rosenzweig
and colleagues [20–22]. EE consists in rearing laboratory ani-
mals in cages wider and more attractive than those employed
in the so-called standard conditions (SCs), with a variety of
sensory, cognitive, motor, and social stimuli. Exposure to
EE exerts profound effects on brain morphology and physiol-
ogy, enhancing neural plasticity in different brain areas at all
ages analyzed so far (for review, see [23–25]) and exerting
beneficial effects in animal models of neurodegenerative dis-
eases and brain injury [26].

The definition of EE is based on a comparison with a ref-
erence condition that, for laboratory animal models, is gener-
ally represented by SCs, in which the animals are reared in
simple cages without any other object than litter, food, and
water, and are hosted in very small social groups. Thus, one
critical question is to what extent is the EE approach able to
provide supernormal levels of stimulation or whether it
should be better considered a way to compensate for
sensory-motor deprivation associated with SCs. According
to this criticism, the beneficial results obtained with EE in
animal models might be of reduced interest in terms of their
applicability to the clinic, as humans are generally considered
already “enriched” in their living conditions (see also [27]).
As originally stated by the first proposers of the EE approach,

it is worth considering that, after hundreds of generations in
SCs, a strong genetic drift with respect to wild natural popu-
lations may have rescaled neural development and basic
brain functions in a new physiological and well-adapted
dimension, without any pathological or aberrant side effect
for brain development. Thus, measures collected in these
simplified models may actually represent a suitable source
for normative data, to be compared with the effects deriving
from exposure to EE.

3. When Experience Affects Development: The
Case of Amblyopia

An unbalanced stimulation of the two eyes during early post-
natal development induced by variable causes such as con-
genital cataract, unequal refractive power, or strabismus can
lead to a neurodevelopmental visual deficit known as ambly-
opia (lazy eye). This disease has an incidence of 1-5% in the
worldwide population, and it is the most prevalent one-eye
visual impairment, characterized by a loss in visual acuity,
low contrast sensitivity, hampered stereopsis, and an impair-
ment of the orientation tuning of cortical neurons (binocular
matching) [28–30]. Amblyopia is considered a purely cortical
deficit with no detectable impairments in peripheral regions,
albeit the lateral geniculate nucleus may be anatomically and
functionally involved [24, 31]. A timely patching of the
spared eye performed during the CP for binocular vision
and visual acuity development (approximately until 8 years
of age in humans) is normally associated with a rescue from
amblyopia. Nevertheless, the closure of CP turns amblyopia
into an almost untreatable disease.

Amblyopia is easily modeled in animals, keeping one eye
deprived of pattern vision via prolonged eyelid suture (mon-
ocular deprivation (MD)), started during the CP and pro-
tracted until adulthood [32, 33]. The procedure causes a
marked ocular dominance shift towards the open eye in the
binocular neurons of the primary visual cortex, determined
by functional and structural empowering of the inputs
emerging from the ipsilateral/spared eye, at the expense of
those from the contralateral/deprived one [34].

In recent years, EE has proven successful in the treatment
of amblyopia in adult animals. Adult amblyopic rats that
were transferred to an EE setting for three weeks displayed
a full recovery of visual acuity, ocular dominance, and depth
perception [7, 35]. More selective EE conditions are also able
to reproduce the beneficial effects elicited by the entire com-
plex enriched experience, especially when motor or visual
stimuli are specifically enhanced [36]. In particular, three
weeks of voluntary physical exercise induced a full recovery
of visual acuity and ocular dominance in adult amblyopic
rats [36]. Also data from Stryker’s lab confirmed the potential
of motor activity as a booster of visual responsiveness and
plasticity in the visual cortex, showing that running on a
treadmill enhances visual cortical activity in mice [37] and
promotes visual function recovery following monocular dep-
rivation [38]. Another condition akin to EE, i.e., practicing in
a two-choice active visual discrimination task, also resulted
in an almost-full rescue of visual acuity and ocular domi-
nance in adult amblyopic animals [36, 39].
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Animal model data provided also information on the
mechanisms underlying EE-like effects in promoting recov-
ery from amblyopia. Data from Stryker’s lab showed that
enhancement of visual cortical activity [37] and visual
function recovery following monocular deprivation [38] in
running mice is associated with a disynaptic disinhibition
involving activation of VIP+ interneurons and inhibition of
SOM+ interneurons in the visual cortex [40]. Our work and
other labs showed that exposure to EE reduces GABAergic
inhibition in the visual cortex of enriched animals [7, 41].
Recovery of visual functions in enriched amblyopic rats was
accompanied by increased expression of BDNF, reduction
in the intracortical inhibition-excitation balance, and reduced
density of perineuronal nets made by chondroitin sulphate
proteoglycans enwrapping the terminals of GABAergic inter-
neurons [7, 15]. Moreover, exposure to EE increased levels of
serotonin in the adult visual cortex and a pharmacological
blockade of this enhancement prevented EE-dependent
restoration of visual cortex plasticity in adult animals [15].
Interestingly, both motor activity and PL also led to a
reduced synaptic release of GABA in the visual cortex of
adult amblyopic rats [36].

EE and physical exercise also contribute to increase
insulin-like growth factor-1 (IGF-1) in the brain. IGF-1 has
a crucial role in setting the pace of visual development and
seems to be a “master mediator” of EE effects, upstream of
BDNF, correcting, for instance, the mismatch between two
visual developmental processes, ocular dominance develop-
ment, and binocular matching of orientation selectivity
development, caused by genetic overexpression of BDNF
[42, 43]. This is important to underline, since the possibility
that different molecules or the same molecule but in different
neurons can differently affect developmental trajectories and
functional recovery is now suggested not only by the effects
of BDNF on binocular matching but also by Ngr1 deletion
on visual acuity and ocular dominance recovery in amblyopic
mice [31]. Confirming its nature of master experience medi-
ator, the administration of IGF-1 in the adult visual cortex
promoted recovery of visual acuity and ocular dominance
in adult amblyopic rats, an effect paralleled by the reduction
of intracortical GABA levels [44].

Given its noninvasive nature, the concept of EE appears
as a promising strategy to counteract visual impairments in
human amblyopia. The major challenge is how to transfer
EE to human life conditions, setting up the best protocols to
induce a suitable environmental stimulation for human
patients. Recent papers show very encouraging data. Active
videogames appear a clever trick to combine key EE compo-
nents such as visual attention and enhanced sensory stimula-
tion (see [45]), with promising results in adult subjects with
amblyopia [46], but with apparently limited effects in children
[47, 48]. In the same context, engagement in subtle visual dis-
crimination tasks such as those associated with visual percep-
tual learning (see [39] for a recent review) can favor recovery
of visual functions in adult amblyopia (e.g., [49–60]). Very
recently, moderate levels of voluntary physical activity com-
bined with short-term monocular deprivation have been
shown to enhance homeostatic plasticity in the visual cortex
of healthy human subjects, favoring the dominance of the

briefly deprived eye [61]. Most importantly, brief occlusion
of the amblyopic eye combined with enhanced physical activ-
ity promoted a remarkable and long-lasting recovery of visual
acuity and stereopsis in adult amblyopic individuals [62].

Thus, basic studies on the impact of EE on visual system
plasticity are currently leading to an increasing interest for
the development of promising nonpharmacological interven-
tions in amblyopic human subjects. Future research should
try to provide evidence on the effectiveness of such active
training on amblyopia recovery in different categories of
human amblyopic subjects and to ascertain whether the doc-
umented beneficial effects in humans are due to the same
mechanisms already verified in animal models.

4. When Genes Affect Development: The Case of
Down Syndrome and Rett Syndrome

Differently from amblyopia, Down syndrome (DS) and Rett
syndrome (RTT) are developmental disorders of genetic
nature. Originally described by John Langdon Down, DS is
the most widespread genetic form of intellectual disability
and it is caused by the total or partial triplication in the
genome of the chromosome 21 [63]. This has a dramatic
impact on the central nervous system, with a disruption of
the synaptic architectures leading to a failure in cognition,
learning, memory, and language [64, 65]. The genetic imbal-
ance does also result in severe consequences in extracognitive
domains, such as in the visual system, with damaged spatial
acuity and increased incidence of strabismus and cataract
[66]. Moreover, since the gene encoding the amyloid precur-
sor protein (APP) is located on the chromosome 21, trisomy
induces an increase in the concentration of brain β-amyloid,
and adult DS individuals of more than 40 years of age dis-
play early-onset Alzheimer-like neuropathology that addi-
tionally complicates their quality of life and independence
possibilities [67, 68].

The complexity of the DS made its replication in animal
models a highly demanding aim. Generated in the 1990
[69], the Ts65Dn mouse represents the most commonly used
model to study this pathology. Ts65Dn mice bear a segmen-
tal triplication of the chromosome 16 that displays high
degree of synteny with the human chromosome 21 [70].
The resulting mutation closely resembles the structural and
behavioral features of the human disorder. Ts65Dn mice dis-
play decreased long-term hippocampal potentiation, defec-
tive neurogenesis, low synaptogenesis, and a generalized
state of cerebral overactivation of GABAergic circuits [65,
71]. Remarkably, similarly to human subjects with DS, triso-
mic mice display severe visual deficits: the visual acuity is sig-
nificantly impaired, visual evoked potentials are slower than
normal, and the visual cortex responsiveness is anomalously
shifted towards the ipsilateral inputs [72, 73].

RTT is a debilitating progressive disorder first noted by
Andreas Rett in 1966 [74]. It is a rare pathology affecting
quite exclusively females, with an incidence of about 1 over
10,000 births. With very few exceptions [75], the majority
of males with RTT die soon after delivery. RTT remains
mostly asymptomatic during the first months of postnatal
growth. Thereafter, most of the skills already acquired by
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an affected subject dramatically deteriorate. As RTT lacks a
specific cortical localization, deficits involve the whole brain
functionality, with some prototypical characteristics includ-
ing severe motor deficits (stereotyped hand movements are
the principal RTT hallmark), autonomic dysfunctions, and
intellectual disability [76, 77]. Only in 1999 [78], these
deficits were first associated to loss-of-function mutations
in the gene encoding the methyl-CpG-binding protein
(MeCP2) on the X chromosome, thus clarifying discrepancy
in the incidence between females and males. The MeCP2
protein has a proven role as a master regulator of the chro-
matin state and gene expression (including the BDNF gene
[79]), being involved in the formation of a multiprotein com-
plex that binds methylated CpG regions and allows gene
silencing [80]. Recent evidence expanded this view, suggest-
ing that it could also activate the expression of several other
genes, playing as an activator or a repressor depending on
the type of proteins that join the complex [81]. The deletion
of the MeCP2 gene in mouse models leads to a phenotype
that closely recapitulates many features of the human disor-
der [82]; thus, employment of mouse models has become
essential to study the mechanisms involved in RTT and to
test the potential useful treatments. A recent paper docu-
mented, in girls with RTT, visual deficits similar to those
found in Mecp2 heterozygous female mice, and underscored
the possibility to successfully exploit visual evoked potentials
(VEPs) as an unbiased, quantitative biomarker to monitor
brain function in RTT [13].

Strikingly, the EE approach turned out to be very valuable
in the context of these genetic disorders [83–86]. Exposure of
either developing or adult Ts65Dn mice to EE induces a
marked recovery of both cognitive and visual functions [72,
87], and middle aged Ts65Dn mice chronically maintained
in EE conditions displayed a reduced amount of β-amyloid
oligomers compared to trisomic mice reared in SCs [88]. In
Mecp2mutant mice, EE ameliorated motor coordination
and motor learning and rescued memory deficits and
anxiety-related behavior, with gender differences [89].

As seen for visual disorders, physical exercise emerges
as one critical component underlying the beneficial EE
effects for DS, being specifically associated with an increased
neurogenesis and gliogenesis in the hippocampus [90, 91].
Recently, the specific effect of physical exercise was also
explored in the Mecp2(+/-) mouse model of RTT, with the
demonstration that increased voluntary physical activity nor-
malizes the physiology of the hypothalamic-pituitary-adrenal
axis, providing a significant rescue from affective behavioral
dysfunctions [92].

The positive impact of EE on both DS and RTT has
been linked, in animal models, to modulation of GABAer-
gic synaptic strength and to an increased BDNF expres-
sion [72, 87, 89, 93].

Based on the results obtained in animal models of DS and
RTT, recent studies have started to apply the EE paradigm to
infants and children with these disorders. Different kinds of
early multisensory intervention have been associated with
beneficial effects on the maturation of visual functions in
infants with DS [19] and improved gross motor skills and
increased blood BDNF levels in children with RTT [18].

Thus, as seen for amblyopia, a general picture emerges in
which results obtained in animal models might orient future
research in humans, with the aim to uncover shared molecu-
lar mechanisms that might be instrumental for the develop-
ment of suitable pharmacological approaches.

5. Towards an Environment-Based
Pharmacological Approach?

The remarkable capacity of the EE approach to trigger recov-
ery in diseases as different as amblyopia or genetic intellec-
tual disabilities could be due, at least in part, to its impact
on the GABAergic circuitry. An increased activation of the
GABAergic inhibitory system is widely considered as a
common hallmark of many brain developmental pathologies
[94, 95]. Unfortunately, availability of suitable therapeutic
compounds that may safely act in decreasing the activation
in the GABAergic system is scant, while most of the drugs
have severe proconvulsive side effects, with consequent rejec-
tion by FDA.

In this context, fluoxetine, a selective serotonin reuptake
inhibitor (SSRI) widely prescribed in the treatment of human
depression, emerges as a potentially interesting candidate for
drug repositioning, given its capability to increase levels and
availability of serotonin, one key molecular factor underlying
EE effects [15].

Adult amblyopic rats chronically treated with fluoxetine
display robust recovery of visual cortex plasticity and visual
functions, together with increased BDNF and a reduced
GABAergic tone in the primary visual cortex [96]. A very
recent study examined the effect of fluoxetine in adult ambly-
opic human subjects, without a significant improvement in
visual performance compared to that obtained in subjects
treated with placebo [97]. Since all patients did also perform,
during the 10 weeks of pharmacological treatment, an
intense perceptual training therapy, it remains unclear
whether the lack of a specific effect of fluoxetine in this study
was due to a ceiling effect of the training paradigm.

Administration of fluoxetine for eight weeks in the drink-
ing water reduced brain GABA release and rescued hippo-
campal synaptic plasticity and spatial memory in DS mice
[98]. Moreover, treating neonate Ts65Dn mice with fluoxe-
tine led to a full recovery of dentate gyrus neurogenesis and
hippocampus-dependent memory performance [99]. Based
on these results, the effectiveness of fluoxetine in human sub-
jects with DS is, at the moment, under evaluation in several
clinical trials [100, 101].

It remains unclear whether the therapeutic effects of flu-
oxetine are due to its action on the GABAergic system or are
also dependent on its recognized ability to increase BDNF
levels [102, 103]. BDNF itself, indeed, could emerge as a help-
ful compound to treat amblyopia and genetic disorders like
DS and RTT. The promising potential of BDNF, however,
is thwarted by the impossibility for this neurotrophic factor
to efficiently cross the blood-brain barrier when delivered
via peripheral administration [104]. Recently, intranasal
BDNF administration, a safe procedure considered quite
effective to target proteins to the central nervous system
[105], induced recovery of visual acuity, ocular dominance,
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and visual depth perception in adult amblyopic rats. More-
over, the administration of 7,8-dihydroxyflavone, an agonist
of the BDNF receptor TrkB, efficiently restored learning and
memory abilities in Ts65Dn mice [106]. In heterozygous
female Mecp2 mutant mice, pharmacologic activation of the
BDNF receptor TrkB ameliorated several biochemical and
functional abnormalities, highlighting TrkB as a possible
therapeutic target in this disease [107].

Several papers showed that treatment with either a frag-
ment of IGF-1 or the full-length molecule can be effective
in alleviating symptoms in RTT mouse models (reviewed in

[108]). Based on these studies, the application of IGF-1 to
RTT patients has recently started (e.g., [109, 110]).

In conclusion, combining EE with classical studies on
visual system plasticity has led to the characterization of sev-
eral potential molecular targets for successful translational
applications (Figure 1). The therapeutic value of the emerg-
ing molecular pathways overcomes the boundaries of the
visual system and opens the way for further testing in the
treatment of several neurodevelopmental disorders of dif-
ferent genetic or environmental origin [104, 111–114].
Future studies should exploit the EE approach in animal

BDNF

GABA Serotonin

Recovery
of visual acuity 

Memory
improvement 

IGF-1

Reduced
visual acuity

Memory
deficit 

Failure in binocular
matching 

Binocular
matching

Figure 1: Exposure to conditions of environmental enrichment modulates a number of key molecular factors involved in brain plasticity and
repair, favoring recovery of sensory functions (e.g., visual acuity and binocular matching) and improvement of learning/memory abilities in
neurodevelopmental disorders. The molecular factors involved in the beneficial effects elicited by enrichment-like conditions can become the
target for successful pharmacological manipulations and potential translational application to the clinic.
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models (applied either as a multicomponent or as a channel-
specific strategy) as a source for translational application to
humanpatients.Knowledge about sharedmolecular pathways
might inspire the development of new pharmacological strat-
egies for still cureless developmental disorders.
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