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We introduce a general response model that allows for several simple restrictions,

resulting in other models such as the extended Rasch model. For the extended Rasch

model, a dynamic Bayesian estimation procedure is provided, which is able to deal with

data sets that change over time, and possibly include many missing values. To ensure

comparability over time, a data augmentation method is used, which provides an

augmented person-by-item data matrix and reproduces the sufficient statistics of the

complete data matrix. Hence, longitudinal comparisons can be easily made based on

simple summaries, such as proportion correct, sum score, etc. As an illustration of the

method, an example is provided using data from a computer-adaptive practice

mathematical environment.

1. Introduction

As Savi, van derMaas, andMaris (2015) point out (online) learning requires, first, a detailed

description of what a student can and cannot do and, second, what a student should do/

learn next. We focus on their first point, describing a system that determines a student’s

current position on an educational map, a metaphor also used by Wainer (2000, p. xi).

In educational measurement, the rise of computer-adaptive learning (CAL) or
computer-adaptive practice (CAP) applications (e.g., Brusilovsky, 2001; Eggen, 2012;

Klinkenberg, Straatemeier, & van derMaas, 2011;Wauters, Desmet, &Van denNoortgate,

2010) underlines the importance of these points. In CAL and CAP, students respond

frequently (e.g., daily) to items over an extended period of time (e.g., years) with the same

student potentially responding to the same question at different moments. The statistical

properties of both persons and items are expected to change during the course of

measurement, as learning is the actual goal of such environments. The possibility of

providing feedback directly to the learners, teachers or parents adds to the expectancy of
changing parameters in applying models on such data. Hence, such applications require

some sort of educational positioning to track developments of both items and students on

an educational map.
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An educational map can be regarded as a, possibly large, collection of items onwhich a

position has to be determined. Such a collection can be regarded as a market-basket

approach, where the set of items, the market basket, equals the subject domain (Mislevy,

1998, variation 3, p. 56).
Because students cannot respond frequently to all items in the construct, a possibly

large part of the data will be missing. Zwitser, Glaser, and Maris (2016) develop a similar

perspective for educational surveys, where development of cohorts of learners over

administrations of the survey are evaluated on the basis of how simple summary statistics

(over the market-basket) evolve over administrations of the survey.

We introduce a flexible and general response model that allows us to track (e.g.,

Brinkhuis, 2014; Brinkhuis & Maris, 2008) the summary statistics of a hypothetical

complete data set over time, from incomplete data. We consider various special cases
that smooth1 the model parameters, and demonstrate how relevant properties of the

hypothetical complete data (which correspond to the smoothed parameters) can be

tracked over time. To deal with the missing data, data augmentation (DA) is used to

complete the data matrix. Having obtained an augmented person-by-item data matrix,

we can simply look at the distribution of, for example, sum scores to track the

development of the student population, and to calculate the column means to track

item difficulties. We illustrate our approach with data from an online practice

environment.

2. Methods

Themethodology introduced in this section is structured as follows. First, we introduce a

flexible and general exponential family response model. Second, we discuss several

possible restrictions and smoothers on this general model. Third, we demonstrate how
Bayesian inference using a DA approach can be implemented for such models.

2.1. A general response model

When introducing a flexible response model, a couple of sufficient statistics are of

interest. In a regular person-by-item matrix, we are interested in the distribution of row

sums, the column totals and the item total regressions. The latter is of special interest as it

is a natural means to evaluate the performance of the model.
The exponential family model, with these as sufficient statistics, is the general

response model discussed by Andersen (1973, p. 127) in the context of goodness-of-fit

tests for the Rasch model (RM):

Pðxjb; kÞ ¼
Qm

i¼1 b
xi
ixþkxþPm

s¼0 csðbsÞks : ð1Þ

In equation (1), the probability to obtain response vector x depends on item difficulty

parameters bs, the sum score parameters k and the sum score x+. The number of items and

1 Smoothers in this context refer to restricting parameters, an approach clarified in Section 2 and applied in
Section 3.2.4; note that this is distinct from smoothing parameters over time in a time-series context.
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the maximum score are denoted by m, i is an item index and s is a score index. The

denominator2 makes the function a probability distribution, given all parameters are

non-negative.

Obviously, the model in equation (1) is very general, with ðmþ 1Þ �m parameters. It
specifically allows for item parameters bxþ to differ by an arbitrary amount between sum

scores x+. Clearly, contexts are available in which sufficient data are available to estimate

this model but, for other applications, restrictions might be useful to smooth parameters.

Such restrictions will be introduced hereafter.

2.2. Smoothing

Oneof the interesting features of equation (1) is that several restrictions, or smoothers, on
its parameters are possible, resulting in other well-known models. For example, it is

interesting to restrict the difficulty parameters. The model in equation (1) allows these to

differ in an arbitrary amount over sum scores s, although itwould be unlikely that these are

unrelated over s. A first restriction we consider is to have item difficulties independent of

the sum score,bis = bi, such that the number of correct responses to item i is the sufficient

statistic for bi. In doing so, we obtain a marginal RM. Specifically, this model can be

recognized as the extended marginal Rasch model (ERM) introduced by Tjur (1982), but

also see Cressie and Holland (1983) and Maris, Bechger, and San Mart�ın (2015):

Qm
i¼1 b

xi
i kxþPm

s¼0 csðbÞks
¼
Qm

i¼1 b
xi
i

cxþðbÞ
cxþðbÞkxþPm
s¼0 csðbÞks

¼
Qm

i¼1 b
xi
i

cxþðbÞ
pxþ :

ð2Þ

However, it is easy to be more flexible than the ERM, such as allowing for some
intercept and slope in log b over s

log bis ¼ log bi þ log cis: ð3Þ

Such a log-linear restriction restricts equation (1) to the flexible interaction model

described by Haberman (2007, equation 13.5), which has the following form in our

parametrization:

Pðxjb; kÞ ¼
Qm

i¼1 ðbicxþ�1
i ÞxikxþPm

s¼0 csðbcs�1Þks
: ð4Þ

So far, we have restricted item difficulty parameters in the general model in

equation (1) in twoways. In addition, restrictions can be applied on the score parameters

k. For example, Cressie andHolland (1983) suggest imposingmoment inequalities, which

are a necessary prerequisite for the ERM to be a marginal RM. However, if we are

2 The denominator sums over scores s and uses elementary symmetric functions csðbsÞ (Baker & Harwell, 1996;
Verhelst, Glas, & van der Sluis, 1984) of order s of the vector bs, which are defined to be zero if s < 0 or if s > m.
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interested in the mean and variance of the score distribution, by fitting the log score

parameters with a quadratic function, we obtain exactly this

log ks ¼ bo þ b1sþ b2s
2; ð5Þ

with
P

p xpþ as sufficient statistic for b1 and
P

p x
2
pþ for b2.

The model with the mean and variance of the score distribution along with item total

scores as sufficient statistics is known as the Curie–Weiss network model in the field of

statistical mechanics (e.g., Ellis & Newman, 1978). Connecting psychometric measure-
mentmodels to networkmodels from statisticalmechanics has become a very fruitful area

of active research (see, e.g., Epskamp, Maris, Waldorp, & Borsboom, 2016; Kruis &Maris,

2016; Marsman, Maris, Bechger, & Glas, 2015).3 Following this literature, the relation

between the Curie–Weiss network model and a marginal item response theory model

derives from the following well-known identity:

expðb2x2þÞ ¼
Z 1

�1

expð2 ffiffiffiffiffi
b2

p
xþh� h2Þffiffiffi
p

p dh: ð6Þ

This allows us to rewrite the Curie–Weiss model as:

Pðxjb; b0; b1; b2Þ ¼
Z 1

�1

expðPm
i¼1 log bixi þ b0 þ b1xþ þ ð2 ffiffiffiffiffi

b2
p

xþh� h2ÞÞ
Z

ffiffiffi
p

p dh

¼
Z 1

�1

Ym
i¼1

expðxiðlog bi þ b1 þ 2
ffiffiffiffiffi
b2

p
hÞÞ

1þ expðlog bi þ b1 þ 2
ffiffiffiffiffi
b2

p
hÞ

�
Ym
i¼1

ð1þ expðlog bi þ b1 þ 2
ffiffiffiffiffi
b2

p
hÞÞ expð�h2Þ

Z
ffiffiffi
p

p
expð�b0

dh;

ð7Þ

where Z is the normalization constant, b0 cancels and b1 can be absorbed in the item

parameters. We recognize a regular marginal RM with an identified ability distribution.

That is, an ERMwith themean and variance of the score distribution as sufficient statistics

is a marginal RM.

2.3. Estimation

It is not simple to perform statistical inference for models, such as those discussed above,

from data that are massively incomplete. We propose to make use of DA (e.g., Tanner &

Wong, 1987) to overcome the missing data problem in combination with a Bayesian

estimationprocedure for the complete(d) data. For a discussion on ignorability in adaptive

contexts, we refer to Mislevy (1998). To illustrate the approach, we focus on the ERM, for

which Maris et al. (2015) have already developed a Bayesian estimation procedure using

3These authors all build on work by Emch and Knops (1970) and Kac (1968) in the statistical mechanics
literature.
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the Gibbs sampler. The ERM serves not only as a proof of concept but, as wewill see later,

it is a very robust yet simple model.

In extending the ERM to support incomplete data, we adapt our notation to support

two non-overlapping sets of items, or booklets:

Pðx; yjb; c; kÞ ¼
Qm

i¼1 b
xi
i

Qn
j¼1 c

yj
j kxþþyþPmþn

u¼0 cuðb; cÞku
ð8Þ

Here, two booklets x and y are presented, with corresponding response vectors x and y
with sum scores x+ and y+, and vectors of item parameters b and c with lengthm and n.

Note that k denotes the vector of score parameters. Elementary symmetric functions of

order u of the vectors b and c are denoted by cuðb; cÞ.
In a two-booklet example, we find two equations for the probabilities of observing

responses in each of the two booklets: for booklet x,

Pðxjb; c; kÞ ¼
Qm

i¼1 b
xi
i

Pn
t¼0 ctðcÞkxþþt

� �
Pmþn

u¼0 cuðb; cÞku
; ð9Þ

and for booklet y,

Pðyjb; c;kÞ ¼
Qn

j¼1 c
yj
j

Pm
s¼0 csðbÞkyþþs

� �
Pmþn

u¼0 cuðb; cÞku
: ð10Þ

We see that, for both booklets, the implied model in equations (9) and (10) is again an

ERM, with score parameter k1 ¼ Pn
t¼0 ctðcÞkxþþt and k2 ¼ Pm

s¼0 ctðbÞkyþþs. Hence, the

ERM is closed under marginalization.
Similarly, the ERM is closed under conditioning. For the conditional distribution of x

given y, we find that

Pðxjy;b; c; kÞ ¼
Qm

i¼1 b
xi
i kxþþyþPm

s¼0 csðbÞksþyþ
: ð11Þ

This conditional distribution is what we need to augment the observed data for learners
that responded to booklet y with their missing responses on booklet x. Obviously, the

conditional distribution of booklet y given booklet x has the same form. An algorithm for

simulating from these conditional distributions is provided in the Appendix S1, wherewe

also deal with the problem of parameter identifiability.

To summarize the approach, in every iteration of our DA–Gibbs sampler, we

impute missing data according to the conditional distribution of missing responses

conditionally on observed responses derived from an ERM for complete data, and we

update the parameters of the ERM for complete data using the Gibbs sampler of Maris
et al. (2015).
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3. Results

3.1. Reconstructing sufficient statistics from incomplete data
To illustrate some of the properties of the DA procedure, we provide a simple example.

We are specifically interested in demonstrating that from a data matrix involving a lot of

missing data, we can reproduce the score distribution and the item proportions correctly,

even when the statistical model does not fit.

The data we use for this illustration originate from a 2012 Dutch national test

administration at the end of primary education, designed to advise on the suitability of

secondary education tracks. The datamatrix involves 200 items,which are constructed to

measure a number of distinct abilities including mathematics, language and general study
skills, and a total of 144,708 pupils. Because the whole data set is observed, we remove

80% of the data and compare the score distribution of the full data set with the augmented

score distribution obtained by the algorithm, and we compare the item difficulties

between the full and limited set. The algorithm was allowed to run a large amount of

iterations (i.e., 500) to ensure convergence. This took about an hour on a mainstream

laptop, using R-code (R Core Team, 2015) with some compiled functions.

As can be seen in Figures 1 and 2,with just 20% observed data, both the columnmeans

and the score distribution are conserved nearly perfectly. Correlations between
parameter estimates on the augmented data and parameter estimates on the full data

reach 1.000 for item difficulties and 0.999 for score parameters. The amount of

autocorrelation is quite low for estimation on complete data, the average lag-1

autocorrelation on the difficulty parameters is about 0.096 in this example, which is

expected from the work of Maris et al. (2015). As a result of the missing data, the average

amount of autocorrelation increases to an average of 0.818, and is related to the fraction of

missing information, a result described by Liu, Wong, and Kong (1995, lemma 3.2, p. 31).

Repeating the procedure with a mere 10% of observed data introduces additional
autocorrelation on the parameters, increasing it to 0.927. The correlation between

parameters estimated on the full and reduced data matrix remain high: 0.999 for item

difficulties and 0.998 for score parameters.

Figure 1. Scatter plot of the item difficulties based on the column sums of the complete data verses

the column sums on the augmented data based on 20% of the observed data. Item sums are

recovered very well, correlating to 0.9997. [Colour figure can be viewed at wileyonlinelibrary.com]
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Note that the high correlation between observed and augmented marginals is the case

even though a RM is not expected to fit on this data set, which involves several constructs.

TheDA approach using the ERM successfully conserves its sufficient statistics, namely the

column sums and the score distribution. Though not worked out in detail here, this

follows thework of Jaynes (1982) concerning the relation between the sufficient statistics

in exponential family distribution and Lagrange multipliers. The robustness of this

approach in recapturing column means and row sums in a situation with a small
percentage of observed data, and doubts on model fit, make this approach attractive for

the use of dynamic estimation.

3.2. Using data from an online practice environment

3.2.1. The Math Garden

To illustrate the recapturing of column means and row sums in data involving changes in

the underlying parameters, we use data from the Math Garden, an online CAP

environment for arithmetic practice (Brinkhuis et al., 2018). TheMathGarden is adaptive

in that it continually estimates item difficulties and pupil abilities, and adaptively selects

new practice items based on someone’s current ability estimate.
From the entire data set, we selected items from the tables of multiplication, a 100

items in total. Each of these were posed as open questions, for which an on-screen or real

keyboard could be used to enter the response, with a maximum response time of 20 s. A

group of 1,000 users born between September 2003 and October 2004, who frequently

use the system, was selected for this application. Together, they accounted for 552,248

responses between 3 September 2010 and 30 October 2013, a period of about 3 years.

The number of responses given by pupils is skewed, ranging between 327 and 2,227

items, with a median of 458 items and a rounded mean of 552 items. The number of
responses per item ranges from 2,065 to 8,626, with a median of 5,800 observations. The

mean percentage of correct responses over the entire data set is 70%, which is about the

same as the aim of the adaptive item selection algorithm (Jansen et al., 2013).

Figure 2. Cumulative distributions of the sum scores based on the complete data and of sum scores

based on DA using 20% observed data. Both cumulative distributions nearly coincide, indicating a

good recovery of the score distribution. [Colour figure can be viewed at wileyonlinelibrary.com]
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3.2.2. A stream of data slices

As we are interested in recapturing column means and row sums, the data are

organized into slices of so-called wide data matrices. More specifically, the long-format

data of a certain window (i.e., 50 days) are reshaped into a wide format, on which DA
can be used to obtain the item scores and the distribution of sum scores. If such data

slices are constructed daily, each on a window of the last 50 days, the development of

the marginals can be tracked, as a kind of moving average over the (incomplete)

slices.

The scheme in Table 1 illustrates this adding of new data and discarding of old data.

The result is that the observed data set in the data matrix X t is allowed to change

continually, and hence the model parameters too.

The amount of data available to the estimation procedure can grow when new
observations become available, and shrink as older data are discarded. With the

possibility to discard older data, we strike a balance in maintaining a sufficiently large

data set for estimation, while minimizing the amount of bias (e.g., as would be

introduced by ability growth, item drift, etc.). In doing so, we allow for a dynamically

changing data set, where data are added and discarded as parameters are estimated.

Because the estimates adapt to changes in the data set, one should interpret results

regarding the relevant population, as this can change over time due to effects such as

attrition, self-selection, etc. In our current implementation, sequential observations on
a single person–item combination are not taken into account; the last response simply

overwrites the previous response.

In Figure 3, the available proportion of individuals with recent responses out of the

total group of 1,000 is plotted, and is shown to be limited in 2011, to increase in 2012 and

to decrease again in 2013. Summer andwinter vacations are displayed as vertical grey bars,

where the former show a decrease in responses. The proportion of relevant responses out

of the total set of 100,000 responses from the 100 items by 1,000 persons matrix is also

plotted. The fraction of observations on the reduced set of persons is plotted as a dashed
black line, and hovers about 20–30% through time.

3.2.3. Data augmentation

With the help of DA to complete the matrix X t , we can easily obtain the distribution of

person scores and the correct proportion of items, and we can track their development

over time for each of the overlapping data slices. Questions regarding identification only

deal with the identification of the model at a single time point t, as no model parameters
are used to go from X t�1 to X t – only the marginals of the completed data matrix are of

interest. Details on model identification within a data slice are provided in the

Appendix S1.

In what follows, we consider, first, the development of the recaptured score

distribution and, second, the development of item difficulty, over time.

3.2.4. Score development

We have shown that the ERM reduces to a marginal RM with a particular distribution

for ability, if the ks parameters are a log-quadratic function of the scores. From the

Dutch identity (Hessen, 2012; Holland, 1990), and derived by Maris et al. (2015), it

follows that:
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ksþ1

ks
¼ Eðexpððsþ 1ÞhÞjx ¼ 0Þ

EðexpðshÞjx ¼ 0Þ ¼ EðexpðhÞjxþ ¼ sÞ: ð12Þ

If we rewrite the EAP estimates in equation (12) using the quadratic expression of the

ERM model in equation (5), we find the following log-linear expression for the log EAP

estimates:

EðexpðhÞjxþ ¼ sÞ ¼ exp ðb1 � b2Þ þ 2b2s½ �: ð13Þ

The interesting result is that under this specific ERM, the log EAP is nothing but a linear

transformation of the score.

Both the log k and the log EAPparameters for each sumscorex+ are plotted in Figure 4.

We can clearly observe that the log EAP estimates are generally increasing over sum

scores, yet are very noisy. The linear approximation smooths this, and provides a logical

increase of EAPs over sum scores.

In addition, an approximately quadratic relation is observed for the log k
parameters, of which a fitted quadratic curve is plotted as a dashed line. Though

this quadratic shape is only plotted for one specific time point in Figure 4, a quadratic

curve fits well on most days, as the mean R
2 = 0.996 for the quadratic approximation.

The parameters of the quadratic approximations are given in Figure 5. The parameter

b1, represented by the solid line, is increasing over time, which indicates that the

item pool is generally becoming easier. Also, we can see that there is a clear seasonal

trend in b2, increasing after the summer vacations, and slowly decreasing after the

Christmas vacations. Further research might be conducted by fitting models over time
points, or by testing the fit of the quadratic model against the unconstrained model.

We leave these options for future research.

Equation (7) shows that b2 is a general item pool discrimination parameter, where an

increase in the parameter indicates more discrimination, and therefore less noise in the

data. We estimated a general ERM with a single parameter for each sum score, and we

obtained an ERM with an identified ability distribution characterized by the item

parameters b and two additional parameters b1 and b2. See San Mart�ın and Rolin (2013)

and San Mart�ın, Rolin, and Castro (2013) for related work on the identifiability of such

Table 1. Scheme to illustrate the sequence of data matrices. In the center row, the current data

matrix Xt is filled with data from the previous data matrix Xt�1 and with new data Xnew
t .

Observations deemed irrelevant for the current estimation are discarded, and hence they are

overwritten by augmented data

Xnew
0 Xnew

1 Xnew
2 Xnew

3

↓ ↓ ↓ ↓
X0 ? X1 ? X2 ? X3 ? . . .

↓ ↓ ↓
Xdiscarded

1 Xdiscarded
2 Xdiscarded

3
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models. It is possible to actually plot the population distribution characterized in

equation (7), which is shown in Figure 6, using the last 50 days of responses.4

Clearly, the population distribution of this self-selected sample is bi-modal with two

very identifiable groups, separated by a vertical dashed line. The estimated item

Figure 4. Log EAP estimates for each sum scorewith linear approximation and log kparameters for

each sum scorewith quadratic approximation on1April 2013. The quadratic approximation is quite

close, and the linear approximation strongly smooths the log EAP estimates. [Colour figure can be

viewed at wileyonlinelibrary.com]

Figure 3. Development of the amount of available data. The development of the proportion of the

1,000 persons in the data is presented (diagonally striped area), together with the percentage of

observations in the 1,000 persons by 100 items data matrix (vertically striped area). Disregarding

persons without observations, the proportion of observations of a reduced n persons by 100 items

data matrix is also presented (dashed line). [Colour figure can be viewed at wileyonlinelibrary.com]

4 The analyses were repeated using several different values for the number of days, ranging from 25 to 100.
Results were found to be similar between these analyses.
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parameters b at the same moment in time are displayed in the same metric as the

population distribution, sowe canobserve the relative difficulty of these items for the low-
performing group and the relative easiness of these items for the high-performing group.

The set of items is split into two groups, where the ‘easy’ item group consists only of the

items involving multiplications with 1 and 10, and the ‘hard’ item group consists of the

rest of the items.

To evaluate that this bi-modal distribution is not an artefact of the dynamic Bayesian

estimation procedure, we try to identify these two groups. There are many ways to

identify the two performance groups in Figure 6; we choose not to usemodel parameters

directly, but to simply classify the persons according to two criteria, that is, having
responded to over 50% of the easy items, and having responded to over 50% of the hard

items. Following the workings of the adaptive algorithm, we can loosely expect that

persons who answer mostly easy items generally have a lower ability. The results are

shown in Table 2.

In this table, the number of persons with few responses on both easy and hard items is

large, especially for the second moment in time. Given that there are some persons

answering fewquestions on this item set in general, this is expected.However,we can see

that there are two large groups of persons at the first time point who choose either many
hard items or many easy items, a distinction that disappears at the second time point. This

is consistent with the idea that as pupils grow in ability, they are offered fewer items from

the tables of multiplication (i.e., we expect the group answering few questions in general

to increase and the more able group to disappear). The interpretation of Table 2 clearly

has to be related to Figure 3, where the amount of pupils with recent observations is

displayed, and we have to consider that the composition of the population is also subject

to change.

3.2.5. Symmetric item development

The dynamic estimation technique using marginal DA allows us to easily plot the

development of proportion correct of persons or items over time, which we otherwise

Figure 5. Development of the two quadratic approximation parameters to log k over time, with

parameters b1 at the topof the graph (solid line) andb2 at the bottom (dotted line).With the increase

of b1, the items in the item bank are generally becoming easier. [Colour figure can be viewed at

wileyonlinelibrary.com]
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cannot easily observe directly. Figure 7 plots the development of two symmetric items

4 9 9 and 9 9 4.

Clearly, we can see how the fraction of observed information in Figure 3 drives the

amount of noise in Figure 7. Though we do not attempt to discuss any theory of learning

multiplication tables, a few observations can be clearly made. First, the items become

generally easier over time. Second, we see a clear change in item difficulty after the

summer vacations. Third, the difference in difficulty between these items decreases over

time, until the items are almost parallel in 2013. Similar observations canbemade for other
symmetric items in Figures 8 and 9.

A difficulty in interpreting the development in these figures is that the percentages are

based on a changing sample of students including possible anomalies (Sosnovsky, M€uter,
Valkenier, Brinkhuis, &Hofman, 2018). The sample changes because of the item selection

algorithm, which prevents easier items being administered to the more able students,

causing items to be answered by specific subgroups of students. In addition, the sample is

self-selected in that students themselves, their teacher or parents, determine when

practice takes place. If the best-performing students practice the items in 2011, more
regular students in 2012 and relatively weak students in 2013, then substantive

differences in subpopulations might cause parameters to be incomparable over time.

Figure 6. Bi-modal population distribution at 1 April 2013, separated by a vertical line (dashed).

The 100 items are plotted at their parameter position, and are split between easy items with

multiplication involving 1 and 10, and all others items. [Colour figure can be viewed at

wileyonlinelibrary.com]

Table 2. Identifying high and low performance groups according to the amount of responses

(<50% and equal to or more than 50%) to easy and hard items at two time points

1 April 2012 1 April 2013

Few hard Many hard Few hard Many hard

Few easy 683 112 938 8

Many easy 156 49 46 8
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The samemight be happening during school vacations, where the occasional inversion in

the item difficulties of symmetric pairs might be an indication of such a phenomenon. An

alternative approach to detect differential development in symmetric item pairs can be

found in Brinkhuis, Bakker, and Maris (2015).

4. Discussion

In this paper, we have introduced a general response model, which can be restricted to

several well-known and useful models. As a proof of concept for educational positioning,

themodel is restricted to the ERM. Its use as a dynamic Bayesian estimationmethod to deal
with CAP data streams is described.

CAP data streams are challenging because they are composed of large amounts of

missing data, and because properties such as ability and item difficulty dynamically

develop over time. In addition, data come in continually. We have provided a

pragmatic solution by constructing wide data slices of observed data, to which new

data are added continually and where data deemed too old to be relevant are removed.

Discarded data are augmented based on the more recent observations. Thus, the

resulting data matrix is composed of recent item responses and augmentations based
on recent responses.

Despite dealing with data with large percentages of missing values, the proposed

model and estimation procedure are able to reconstruct sufficient statistics such as row

sums and column means, and to track their development over time. An important

advantage of this approach is that our key outcomes (sum score distribution, proportion

correct) are, at least in principle, directly observable, and hence can, at least in principle,

be validated (as illustrated by our first example). Data involving possibly continually

changing parameters, of both persons and items, such as CAL or CAP environments,
typically generate such dynamic data structures. An application using data from a large-

scale online arithmetic practice environment (Brinkhuis et al., 2018) is used to illustrate

this method.

Figure 7. Development of item difficulty of items 4 9 9 and 9 9 4 in the correct proportion, with a

positive overall trend. Note that 4 9 9 starts out more difficult and, after the summer break (grey

horizontal bar) of 2012, theybecomeparallel. [Colour figure canbeviewedatwileyonlinelibrary.com]
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There exists a mathematical relation between, a special case of, the simplest of

psychometric measurement models (RM/ERM) and the simplest network model from

statistical mechanics (the Curie–Weiss model), which extends readily to less trivial

cases (Emch & Knops, 1970; Epskamp et al., 2016; Kruis & Maris, 2016; Marsman

et al., 2015). As we have demonstrated with our second illustrative application,

exactly this special case of the ERM is consistent with real data. This particular special

case is of interest, as it allows for expressing the manifest probabilities in closed form,

whilst at the same time (in contrast to the general ERM) being a true marginal RM. As
far as we know, this is the only known instance of the marginal RM for which the

manifest probabilities have a closed form. Moreover, as one readily finds, the posterior

distribution of ability is normal, with a variance that does not depend on the items or

on the particular responses.

Figure 8. Development of item difficulty of items 5 9 7 and 7 9 5 in correct proportion. After

2012, the items are almost parallel in correct proportion, and seasonal trends are visible. [Colour

figure can be viewed at wileyonlinelibrary.com]

Figure 9. Development of item difficulty of item 3 9 6 and 6 9 3 in correct proportion. After

2012, the items are almost parallel in correct proportion, and seasonal trends are visible. [Colour

figure can be viewed at wileyonlinelibrary.com]
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