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Background: Chest computed tomography (CT) has been found to have high sensitivity in diagnosing 
novel coronavirus pneumonia (NCP) at the early stage, giving it an advantage over nucleic acid detection 
during the current pandemic. In this study, we aimed to develop and validate an integrated deep learning 
framework on chest CT images for the automatic detection of NCP, focusing particularly on differentiating 
NCP from influenza pneumonia (IP). 
Methods: A total of 148 confirmed NCP patients [80 male; median age, 51.5 years; interquartile range 
(IQR), 42.5–63.0 years] treated in 4 NCP designated hospitals between January 11, 2020 and February 23, 
2020 were retrospectively enrolled as a training cohort, along with 194 confirmed IP patients (112 males; 
median age, 65.0 years; IQR, 55.0–78.0 years) treated in 5 hospitals from May 2015 to February 2020. An 
external validation set comprising 57 NCP patients and 50 IP patients from 8 hospitals was also enrolled. 
Two deep learning schemes (the Trinary scheme and the Plain scheme) were developed and compared using 
receiver operating characteristic (ROC) curves. 
Results: Of the NCP lesions, 96.6% were >1 cm and 76.8% were of a density <−500 Hu, indicating them 
to have less consolidation than IP lesions, which had nodules ranging from 5–10 mm. The Trinary scheme 
accurately distinguished NCP from IP lesions, with an area under the curve (AUC) of 0.93. For patient-level 
classification in the external validation set, the Trinary scheme outperformed the Plain scheme (AUC: 0.87 
vs. 0.71) and achieved human specialist-level performance. 
Conclusions: Our study has potentially provided an accurate tool on chest CT for early diagnosis of NCP 
with high transferability and showed high efficiency in differentiating between NCP and IP; these findings 
could help to reduce misdiagnosis and contain the pandemic transmission.
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Introduction

In December 2019, a cluster of idiopathic pneumonia cases 
emerged in Wuhan, China. These cases were eventually 
identified as novel coronavirus pneumonia (NCP), namely 
coronavirus disease 2019 (COVID-19). In late January 
2020, the outbreak was declared a global health emergency 
by the World Health Organization. The virus responsible 
for NCP, severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) (1), can be transmitted from person to 
person, and in severe cases, can progress rapidly, leading 
to sepsis or multiple organ failure (2). The human health 
crisis that has resulted from the spread of SARS-CoV-2 is 
unprecedented.

Emerging seasonal influenza viruses are also a critical 
cause of contagious respiratory disease across the globe 
that could potentially lead to hospitalization and mortality 
(3,4). As well as sharing non-specific onset symptoms, 
such as sudden fever, cough, sore throat, and headache, 
patients with viral pneumonia (VP) caused by SARS-CoV-2 
and influenza infection have similar laboratory findings; 
consequently, the viruses have been widely considered to be 
clinically indistinguishable (5,6). Therefore, early diagnosis 
and differentiation between NCP and influenza pneumonia 
(IP) are of the utmost importance.

Real-time reverse transcriptase-polymerase chain 
reaction (RT-PCR) was initially used to confirm the clinical 
diagnosis of NCP; however, it was reported to have a high 
false negative rate, owing to a low viral load at the early 
stage of infection or possibly genetic mutations, and further 
testing using specimens from multiple sites was usually 
required for confirmation (7-9). Meanwhile, some early-
onset NCP patients who had presented with abnormal 
findings on chest computed tomography (CT) were 
found to return negative results on the initial nucleic acid 
test. Therefore, early differentiation of IP patients from 
NCP patients based on chest CT would provide another 
diagnostic approach that could potentially reduce mortality 
rates and the risk of cross infection while patients await 
laboratory confirmation.

Imaging is routinely performed to help detect and 

differentiate disease in patients suspected of having VP, with 
common radiological features being unilateral or patchy 
bilateral areas of consolidation, nodular opacities, bronchial 
wall thickening, and lobar consolidation (10). However, 
the radiologic manifestations of VP are nonspecific, and 
it is challenging for clinicians to differentiate NCP from 
IP due to their similar imaging features. Despite its high 
sensitivity (97%) in screening for NCP, chest CT has a poor 
performance in differential diagnosis, with a specificity of 
25% (7).

The problem of differentiating between NCP and 
IP could potentially be alleviated by deep learning, 
a technique that was formerly used to automatically 
detect pneumonia based on chest X-ray images and to 
discriminate usual interstitial pneumonia from nonspecific 
interstitial pneumonia based on chest CT images (11-13). 
Deep learning is considered to be worthwhile in terms of 
differentiation, as it can achieve expert-level performance in 
medical image analysis with minimal demands on time and 
labor, thus optimizing the allocation of medical resources.

In this study, we developed and validated an integrated 
deep learning framework on chest CT images for the 
automatic detection of NCP, particularly focusing on 
differentiating NCP from IP at the early stage to ensure 
prompt implementation of isolation. An intrinsic difference 
was found in deep learning classification models trained by 
different devices from multiple centers (13,14). To solve the 
problem, we proposed a deep learning model (the Trinary 
scheme) to discriminate IP lesions from NCP lesions by 
learning image features that reflect differences among 
devices or hospitals. We present the following article in 
accordance with the STARD reporting checklist (available 
at http://dx.doi.org/10.21037/atm-20-5328).

Methods

Patients

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This study was reviewed and 
approved by the Ruijin Hospital Ethics Committee (2017-
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NCP patients with confirmed positive 
result of SARS-CoV-2 by RT-PCR 

and underwent CT scans within four  
days from nine hospitals from January 

23, 2020 to February 23, 2020 
(n=235)

IP patients confirmed by RT-PCR and 
underwent CT scans within four days 
from four centers from May 2015 to 

February 2020 
(n=416)

Excluded patients:
•	Negative pneumonia findings on CT 

(n=87)
•	Co-infection with other virus or 

bacteria (n=85)

Excluded patients:
•	Negative pneumonia findings on CT 

(n=30)

The training set 
(NCP =118, IP =157)

The validation set 
(NCP =14, IP =19)

The test set 
(NCP =16, IP =18)

The external validation set
(NCP =57, IP =50)

NCP (n=205)
•	Hospital 1 (n=8)
•	Hospital 2 (n=18)
•	Hospital 3 (n=114)
•	Hospital 4 (n=28)
•	Hospital 5 (n =11)
•	Hospital 6 (n=14)
•	Hospital 7 (n=5)
•	Hospital 8 (n=2)
•	Hospital 9 (n=5)

IP (n=244)
•	Hospital 1 (n=206)
•	Hospital 2 (n=3)
•	Hospital 10 (n=30)
•	Hospital 11 (n=5)

Figure 1 Illustration of the patient recruitment process. CT, computed tomography; IP, influenza pneumonia; NCP, novel coronavirus 
pneumonia; RT-PCT, real-time reverse transcriptase-polymerase chain reaction.

186). The requirement for written informed consent was 
waived due to the retrospective nature of this study.

From January 11, 2020 to February 23, 2020, NCP 
patients with a confirmed positive result of SARS-CoV-2 
via laboratory testing of respiratory secretions by nucleic 
acid in double swab tests through RT-PCR from 4 hospitals 
were consecutively enrolled in this study. All included 
participants had undergone CT scans within 4 days of 
admission to hospital. Patients with negative CT findings 
for pneumonia were excluded. Finally, 148 NCP patients 
were recruited. Among them, 15 patients from one hospital 
underwent 2 CT scans within 4 days due to rapid disease 
progression, while the rest of the patients underwent CT 
scans only once. Chest abnormalities for NCP patients 
included bilateral pulmonary parenchymal ground-glass 
opacity and consolidation, sometimes presenting as rounded 
morphology and peripheral lung distribution (15). Each CT 
scan was considered as a case. Therefore, there were 163 
cases (148 patients) analyzed. 

From May 2015 to February 2020, patients confirmed 
with influenza infection by RT-PCR from 4 hospitals were 
enrolled as the IP group. Patients who presented negative 

pneumonia findings on CT and/or co-infection with other 
virus or bacteria were excluded. Finally, 194 IP patients 
were included in this study. All IP patients underwent CT 
scanning once. 

The clinical indices collected for all participants included 
sex, age, and symptoms (including cough and fever). All the 
patients who participated in the training and tuning of the 
deep learning algorithms for classification were randomly 
divided into a training set, a validation set, and a testing set. 

To further validate the generalization of the deep 
learning framework, 57 NCP patients from 8 hospitals and 
50 IP patients from 1 hospital were enrolled as an external 
validation set. 

The patient recruitment process is shown in Figure 1. 
The average time intervals between CT scans and positive 
RT-PCR test results for all NCP patients and IP patients 
were 10.8±3.2 and 3.3±0.8 days, respectively. Figure 2 shows 
a flowchart of this study.

Computation process overview

First, lesion level computation was performed, followed 
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Figure 2 Flowchart illustrating the deep learning process for the differential diagnosis of NCP and IP from multiple centers. IP, influenza 
pneumonia; NCP, novel coronavirus pneumonia.

by patient-level computation based on the lesion level 
results. The lesion level computation comprised 4 parts: (I) 
lesion detection using YOLOv3; (II) lesion classification 
using a modified VGGNet model; (III) a Trinary training 
scheme was introduced, which had the aim of lessening the 
influence of CT machines on the model and improving 
lesion classification; (IV) a widely used transfer learning 
method that was adopted to achieve better model 
performance by fine-tuning a pre-trained classification 
model on public non-medical images. Each part is described 
in detail in the following sections.

Lesion detection

For lesion detection, 35 NCP patients (50 cases) randomly 
selected from 3 hospitals and 361 patients (361 cases) with 
VP were enrolled. The 361 VP patients were diagnosed 
according to the 2016 Clinical Practice guidelines by the 
Chinese Thoracic Society (16) and the 2007 Infectious 
Diseases Society of America (IDSA)/American Thoracic 
Society (ATS) guidelines (17). The CT parameters are 
presented in Table 1.

Annotation

In our study, the lesion regions of each CT image were 
independently annotated by 2 radiologists individually 
with more than 10 years of experience in pulmonary-
thoracic disease. Both radiologists were aware of the 
clinical history of infection. All lesion annotations by the 
2 radiologists were collected. If a lesion was annotated 
by only 1 of the radiologists, a consensus was reached 
between the pair.

Preprocessing

Before the lesions were detected, the CT images were 
preprocessed through the following steps to remove 
irrelevant parts. First, an in-house tool was used to segment 
the lung region. Second, the convex hull of the lung region 
was calculated independently for each slice of the CT 
image. Then, the smallest bounding box that could cover 
all the convex hulls was calculated. Next, the CT image was 
cropped using the calculated bounding box. Finally, only 
the slices that contained ≥1 lesions were preserved to train 
the lesion detection model.

To reduce the influence of CT image spacing, all CT 
images with a spacing of <5 mm were transformed into 5 mm  
by taking the average of continuous slices. Specifically, 
to transform CT images with a spacing of 1.25 mm, the 
mean of every 4 continuous slices was taken as 1 slice. The 
spacing distribution was as follows. First, all preprocessed 
images were resized to 256×256 to fit the data into the 
YOLOv3 model, and then further randomly placed on a 
416×416 template. During training, all the input images 
were randomly flipped.

Dataset partition

Ten patients with NCP (15 CT series) and 40 patients (40 
CT series) with VP were randomly selected as the test 
set. The remaining patients (24 patients with NCP and  
321 patients with VP) were used for training and validation. 
After the removal of image slices without lesions, there 
were a total of 8,040 image slices in the training and 
validation sets, and 10% of them were randomly selected 
as the validation set. Due to randomness, only 1 NCP 
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Table 1 Detailed information of CT imaging protocol

Hospital Manufacturers model name Tube current (mAs) Tube volume (kVp) Pitch (mm) Matrix Slice thickness (mm)

Hospital 1 Aquilion ONE 100 100 0.828 512×512 5

Discovery CT750 HD 300 120 0.984 512×512 5

iCT 256 103 120 0.758 512×512 5

IQon-Spectral CT 108 120 0.765 512×512 5

LightSpeed16 280 120 1.375 512×512 5

LightSpeed VCT 145 120 1.375 512×512 5

SOMATOM Definition Flash 360 120 1.2 512×512 5

uCT 528 106 120 1.325 512×512 1.5

uCT 760 194 120 1.0875 512×512 5

uCT S-160 100 120 1.1 512×512 5

Hospital 2 Perspective 150 110 0.6 512×512 1

uCT 760 158 120 1.0875 512×512 1.25

Hospital 3 Discovery CT 185 120 1.375 512×512 0.625

SOMATOM Definition AS+ 138 120 1.2 512×512 1

uCT 760 185 120 1.0875 512×512 0.625

uCT 530 187 120 1.175 512×512 1

Hospital 4 Brilliance16 188 120 1.1 512×512 2

Brilliance 64 308 120 1.2 512×512 1

Hospital 5 SOMATOM Definition AS+ 151 120 1.2 512×512 1.5

Brilliance16 188 120 1.1 512×512 2

Hospital 6 LightSpeed VCT 150 120 1.375 512×512 5

SOMATOM Definition Flash 329 120 1.2 512×512 1

Hospital 7 LightSpeed16 250 120 1.375 512×512 1.25

LightSpeed Ultra 250 120 0.875 512×512 2.5

Revolution Frontier 219 120 0.984375 512×512 1.25

Hospital 8 Aquilion ONE 172 120 0.813 512×512 5

SOMATOM Perspective 128 120 0.95 512×512 1

Hospital 9 uCT 510 174 120 1.0625 512×512 1.5

uCT 528 42 120 1.15 512×512 1.2

Hospital 10 LightSpeed16 250 120 1.375 512×512 5

LightSpeed VCT 349 120 1.375 512×512 5

uCT 510 185 120 1.1875 512×512 1.5

Hospital 11 SOMATOM Definition AS+ 279 120 1.2 512×512 0.6

A total of 33 CT scanners from 11 hospitals were used in this study. Tube current, tube volume, pitch, matrix and slice thickness were 
described. CT, computed tomography.
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patient (1 CT series) was included in the validation set. 
Therefore, there were 23 NCP patients (35 CT series) 
in the training set. For NCP and VP, there were 793 and  
2,021 images, respectively, in the test set, and 3,277 and 
2,695 images, respectively, in the external validation set 
after preprocessing.

Lesion detection model and training details

YOLOv3, a highly efficient and widely used object 
detection network in computer vision, was employed to 
perform lesion detection on the preprocessed images (18). 
In our dataset, lesions were found in only 34% and 36% 
of the slices for NCP and VP, respectively. The YOLOv3 
model can identify a limited number of candidate regions by 
ruling out most of the irrelevant healthy regions. Removing 
slices and regions without lesions can reduce the potential 
of the model to overfit, especially when the training data are 
limited, as they were in our case. The YOLOv3 architecture 
pre-trained to 33% mAP on the COCO dataset was used 
in this study, and we retrained it on our dataset. The 
parameters were fine-tuned across all layers with a learning 
rate of 0.0001, where the learning rate was adjusted by step 
policy. A decay factor of 0.0005 and a momentum factor 
of 0.9 were used in our model. Due to the multiple-scale 
method of feature pyramid networks (FPN), YOLOv3 
output feature maps are of 3 different scales. The output of 
YOLOv3 may contain multiple bounding boxes, which may 
be false positive results or overlapping results. Therefore, 
the score threshold was set at 0.2 to reduce the number of 
bounding boxes of the output.

Lesion level classification

Preprocessing
In our work, a classification model for classifying NCP and 
IP was built. We randomly selected 80% of patients as the 
training set, 10% as the validation set, and 10% as the test 
set. Specifically, 118 patients with NCP (132 CT series) 
and 157 patients with IP (157 CT series) for training,  
14 patients with NCP (15 CT series) and 19 patients with 
IP (19 CT series) for validation, and 16 patients with NCP 
(18 CT series) and 18 patients with IP (18 CT series) were 
incorporated for testing. After preprocessing, there were 
27,605 and 3,154 images in the training and validation sets, 
respectively. There were 2,962 images (4,683 annotated 
lesions) containing ≥1 lesions in the test set. All lesions in 
an NCP patient were considered as NCP lesions, and all 

lesions in an IP patient were considered to be IP lesions. 
For an annotated lesion, a random 128×128 patch was 
cropped from the CT image around the lesion so that the 
lesion was always in the cropped patch. If the lesion was 
larger than 128×128, the CT image was magnified before 
cropping. 

Classification model
Due to the limited number of training samples, VGGNet 
was chosen as the classification model (19). The neural 
network structure VGGNet is relatively old and simple, 
and can be improved using AlexNet. The network consisted 
of 5 convolution groups and 1 max pooling layer, followed 
by 3 fully connected layers and 1 softmax layer. The entire 
network used the same convolution kernel size (3×3) and 
maximum pooling size (2×2).

To better address our problem, some modifications were 
made to the original VGGNet. Specifically, first, the 3 fully 
connected layers and one softmax layer were removed, 
followed by the max pooling layer. Then, 1 convolution 
layer with rectified linear unit (ReLU), 1 fully connected 
layer with ReLU, and 1 softmax layer were added. ReLU 
is the most commonly used activation function in deep 
learning methods and can be written as:

( ) ( )max 0,f x x= 	 [1]

where x is the input to a neuron.
These added modules are denoted as “head” (Figure 3). 

Trinary classification scheme
To distinguish NCP and IP, the classification model was 
trained using NCP and IP image patches. This training 
process is referred to as the Plain scheme herein. We found 
that the Plain scheme may have been influenced by device-
specific features and did not generalize well. Therefore, a 
novel training scheme, referred to as the Trinary scheme, 
was introduced as follows.

In the Trinary scheme, we started by collecting random 
regions from the CT images and then generated random 
bounding boxes. These random regions were assumed 
to share the same device-specific features with lesions 
from the same device, and the randomly generated 
bounding box regions were not overlapping with lesions 
with a high probability. The only difference between 
the random regions and the lesions was whether a lesion 
was present. Then, the binary classification problem was 
revised to a trinary classification problem, and the 3 classes 
corresponded to NCP lesions, IP, lesions, and random 



Annals of Translational Medicine, Vol 9, No 2 January 2021 Page 7 of 20

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(2):111 | http://dx.doi.org/10.21037/atm-20-5328

regions.
Cross-entropy, which characterizes the distance between 

2 probability distributions and is commonly used in multi-
classification problems, was used as the classification loss 
function (20):

( ) ( )
2

0

, log * ( )
i

CE p y pi y iδ
=

= − −∑ 	
[2]

Where pi is the output probability for class i, y is the 
benchmark label from {0, 1, 2}, and δ(·) is the Dirac’s delta 
function. For hard instance mining, we used focal loss (21):

( ) ( ) ( )2. 1 logi iFL p y p p= − − 	 [3]

Where (1−pi)
y is a modulating factor, y is a focusing 

parameter, and we set y to 2. Focal loss suppressed the 
weight of samples that are easy to classify during training 
calculation loss, so that the model could focus on learning 
to distinguish those samples that could not be distinguished 
easily. The final loss function is:

( ) ( ) ( )
2

0
, (1 ) *i i

i
CE p y p log p y iγ δ

=
= ∑− − − 	  [4]

Transfer learning
Transfer learning was used based on previous reports. The 
training of the modified VGGNet model was divided into 
two steps (22,23). Firstly, the preserved original VGGNet 
(5 convolution groups and 1 max pooling layer) was frozen 
(without back propagation or updated parameters), and 
only the “head” module was trained. An Adam optimizer 
with a learning rate of 0.0001 was used. Secondly, after 70 
iterations, the entire network was fine-tuned. Because the 
training sets for NCP or IP were imbalanced, the NCP 
lesion images were up-sampled to balance the training data. 

For the Trinary scheme, 1 random region was inserted for 
every 3 NCP or IP lesions.

Patient-level classification

Taking the Plain model as an example, the classification 
model outputs two probabilities corresponding to NCP and 
IP for each lesion. To obtain patient-level prediction from 
lesion level predictions, the lesion level probabilities of a 
patient were averaged. For Trinary scheme, the probabilities 
for NCP and IP were further normalized such that they 
were summed to be one.

The rationale behind taking the average was as follows. 
If each lesion classification was considered to be the result 
of a weak classifier for the patient (24), taking the average 
provides an efficient ensemble method of obtaining a strong 
classifier. Many popular machine learning methods have 
utilized such an ensemble method. For instance, the well-
known random forest classification model would take the 
average of the probabilities of multiple decision trees to 
achieve a better performance than a single decision tree (25).  
In our experiments, the patient-level classification was 
also observed to have higher accuracy than the lesion-level 
classification.

Comparison with experts on the external validation set

To compare the performances of the deep learning 
framework and radiologists in the external validation 
set, a panel of 10 radiologists from two groups (group 
1, 5 specialist-level radiologists with more than 15 years 
of experience; group 2, 5 resident radiologists with  
3–5 years of experience) in thoracic imaging were recruited. 

Figure 3 Network structure of the modified VGGNet.



Zhou et al. deep learning and NCP

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(2):111 | http://dx.doi.org/10.21037/atm-20-5328

Page 8 of 20

The radiologists were completely blinded to the clinical 
information and histological findings of the participants 
(they were aware that the patients had either NCP or 
IP but were completely blinded to the location and 
distribution). Each radiologist had access to digital imaging 
and communications in medicine (DICOM) series. All 
cases were anonymized, randomly assigned case numbers 
from 1 to 107, and randomly divided into two groups with 
54 cases and 53 cases respectively. The 10 radiologists 
interpreted 1 group of images each time. Each reading 
session was separated by 1 day. To mimic the routine 
diagnostic process, each session was required to be finished 
within 1 day. The evaluation was repeated after 1 week with 
disorganized groups different from the first time to avoid 
possible interobserver variation. The radiologists were 
instructed to independently provide a classification decision 
of NCP or IP each time. The final decision was not made 
until a consensus was reached between the two assessments. 
The performance of both individual radiologists and the 
radiologists as a group were compared with that of the Plain 
scheme and Trinary scheme. The consistency between the 
radiologist group and the schemes was also recorded.

To determine which scheme was more akin to the 
judgement of human experts, we also performed the lesion 
re-classification process by radiologists, for there was no 
standard for reference. First, any lesion with inconsistent 
classification between the two schemes was selected for 
further evaluation. To eliminate potential interference 
factors (e.g., other lesions), only an individual lesion, instead 
of the whole image, was selected. Second, the lesions were 
re-assessed by two senior specialists, who had the highest 
area under the curves (AUCs) and were blinded to the 
results of the algorithms. The classification of NCP or IP 
was recorded for all selected lesions, and the final decision 
for lesion triage was made by consensus of the specialists. 
Lastly, the consistency was calculated between human 
experts and the algorithms.

Statistical analysis

Clinical indices were analyzed based on the variable type. 
Continuous variables were measured by means or medians 
and were compared using two-sided independent t tests 
or Wilcoxon rank-sum tests. Categorical variables were 
measured as proportions and were compared using chi-
square tests or Fisher’s exact tests. The classification 
metrics used included AUC, sensitivity, specificity, accuracy, 
precision, and F1 score. 95% confidence interval (CI) was 

used to handle indeterminacy. The intraclass correlation 
coefficient (ICC) was used to evaluate interobserver 
agreement among radiologists. The mean values of the 
classification metrics were computed across the specialist 
group as well as the resident group. A statistically 
significant difference was indicated when results with two-
sided P<0.05. Data analysis was performed using Python 
(version 3.7.4, http://www.r-project.org) and MedCalc 
(version 1.13.1, MedCalc Software Ltd., Ostend, Belgium). 
The deep learning models were implemented based on 
Tensorflow (version 1.13.1, https://www.tensorflow.org) 
framework.

Results

Patient information

Among the 148 patients with NCP, 53.7% were men, 
which showed no significant difference with the IP patients 
(57.7%, P=0.43). With a median age of 51.5 years (IQR, 
42.5–63.0), the NCP patients were significantly younger 
than the IP patients, (P<0.01). Fewer NCP patients than IP 
patients exhibited coughing (50% vs. 73.2%, P<0.01). The 
information for the external validation set is presented in 
Table 2. 

Comparison of imaging features between IP and NCP

A joint analysis was further performed of the imaging 
features of annotated lesions from 148 NCP patients and 
194 IP patients. Because a three-dimensional lesion may 
appear in multiple layers of the CT images, to perform 
comparison, the annotated lesions that had overlapped 
bounding boxes were merged. There were 1,669 and 1,568 
NCP and IP merged lesions, respectively. To simplify the 
description, ‘merged lesion’ is simplified as ’lesion’ in this 
section. 

Of the NCP lesions, 96.3% were >1 cm, were significantly 
more NCP lesions than IP lesions >1 cm (P<0.01). However, 
NCP was more likely to form moderate-sized lesions, and 
only 28.8% of these lesions were >3 cm. There was a similar 
distribution of abnormal features in the lower lobes between 
NCP (42%) and IP (42.8%). Lesions with an intensity  
<–500 Hu accounted for 80.4% of NCP lesions. In 
comparison, 40.1% of IP patients had a focus density  
>–500 Hu, indicating that NCP had less consolidation 
than IP. Significantly more extensive distribution was 
demonstrated by NCP than IP, with 86.5% of patients 

https://www.tensorflow.org
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presenting bilateral pulmonary invasion and 35.0% showing 
involvement of 5 lobes. Of 1568 IP lesions, 4.4% were 
nodules (Hu >0), of which 60.9% had CT values >40 Hu, 
and 10 (0.6%) IP nodules were >5 mm. In contrast, only 
0.4% (6/1,669) of NCP lesions presented as nodules (Table 3). 
Examples of differences in CT imaging features between an 
NCP patient and an IP patient are shown in Figures 4 and 5.

Lesions could be effectively detected by YOLOv3

To evaluate the YOLOv3 model, intersection over union 
(IOU) was used as the match measure for measuring the 
detection accuracy. IOU is an evaluation metric which 
computes the intersection over the union of two bounding 
boxes. For a lesion annotated by specialists, if its bounding 
box was overlapped with a predicted bounding box with 
an IOU ≥0.2, this lesion was considered as having been 
detected. Examples of detected lesions are presented in 
Figure 6. For each predicted candidate lesion, the model 
gave a confidence score. Generally, a high confidence 
score led to a low false positive rate as well as a low recall 
rate. However, when the confidence score was extremely 
low, the recall rate also dropped due to highly overlapping 
predictions (Table 4). The results showed that the detection 
performance was not sensitive to the confidence score as 
long as the cutoff for confidence score was in a reasonable 
range. For example, if the confidence score cutoff was set 
to 0.1, the false positive rate was 0.216, the recall rate was 
0.704, and the F1 was 0.742. If the confidence score was in 
the range of (0.03–0.25), the F1 score was always >0.7. In 
the external validation set, the model detected 2,984 and 

3,811 NCP and IP lesions, respectively. These detected 
lesions were used in the following analysis.

Lesions could be accurately classified by the modified 
VGGNet model

The annotated lesions were used to train and evaluate the 
modified VGGNet classification model. Both Plain and 
Trinary training schemes were applied. The Trinary scheme 
(AUC: 0.93) performed better than the Plain scheme (AUC: 
0.85) (Figure 7). The F1 scores for the Plain and Trinary 
schemes were 0.65 and 0.79, respectively (Table 5).

Trinary scheme was more consistent with specialists on 
lesion classification

To better understand the difference between the Plain 
and Trinary schemes, the predicted NCP probability from 
both schemes was compared using lesions identified in the 
external validation set. Generally, we found that the Trinary 
scheme is less influenced by the source of the data. More 
specifically, for lesions from hospitals in the training set, 
we found that the Plain scheme may give a very high NCP 
probability, even if for lesions were not very typical of NCP 
(Figure 8A). On the contrary, for lesions from hospitals 
not in the training set, the Plain scheme may give a very 
low NCP probability, even if the lesions were extremely 
typical of NCP (Figure 8B). In contrast, the Trinary scheme 
seemed to give more intuitively reasonable predictions. 
To quantify the difference, detected lesions on which the 
absolute difference of predicted NCP probability between 

Table 2 Clinical information for patients in the training, validation, test, and external validation sets

The training, validation and test set The external validation set

NCP (n=148) IP (n=194) P value NCP (n=57) IP (n=50) P value

Gender 0.43 0.22

Male 80 (53.7%) 112 (57.7%) 31 (54.4%) 33 (66%)

Female 68 (46.3%) 82 (42.3%) 26 (45.6%) 17 (34%)

Age (y) 51.5 (42.5, 63.0) 65.0 (55.0, 78.0) <0.01 49.0 (35.0, 63.3) 66.5 (60.0, 79.0) <0.01

Cough 74 (50%) 142 (73.2%) <0.01 28 (49.1%) 31 (62%) 0.18

Fever 108 (73.0%) 143 (73.7%) 0.88 41 (71.9%) 37 (74%) 0.81

Data are n (%) or median (IQR). The P values indicate differences between NCP and IP patients, with P<0.05 considered statistically 
significant. Categorical variables including sex, cough, and fever were compared using chi-square tests. Age differences between the 
NCP and IP patients were measured using Wilcoxon rank-sum tests. NCP, novel coronavirus pneumonia; IP, influenza pneumonia; IQR, 
interquartile range.
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Table 3 Comparison of NCP and IP in radiological manifestations

NCP IP P value

Lesions 1,669 1,568

Diameter (cm)

>1 1,608 (96.3%) 1,382 (88.1%) <0.01

>2 868 (53.1%) 1,011 (64.5%) <0.01

>3 481 (28.8%) 775 (49.4%) <0.01

Involved lobe

Right upper lobe 462 (27.7%) 469 (29.9%) 0.17

Right middle lobe 225 (13.5%) 178 (11.4%) 0.07

Right lower lobe 409 (24.5%) 359 (22.9%) 0.28

Left upper lobe 281 (16.8%) 354 (22.6%) <0.01

Left lower lobe 292 (17.5%) 312 (19.9%) 0.08

Intensity (HU)

<‒500 1342 (80.4%) 940 (59.9%) <0.01

‒500–0 321 (19.2%) 559 (35.7%) <0.01

>0 6 (0.4%) 69(4.4%) <0.01

>20 6 (0.4%) 54(3.4%) <0.01

>40 6 (0.4%) 39 (2.5%) <0.01

>0, D <3a 3 (0.2%) 57 (3.6%) <0.01

>0, 3≤ D <5a 1 (0.1%) 2 (0.1%) 0.61

>0, 5≤D <10a 2 (0.1%) 6 (0.4%) 0.17

>0, D ≥10a 0 (0.0%) 4 (0.3%) 0.06

Cases 163 194

Distribution 1 <0.01

Unilateral 22 (13.5%) 41 (21.1%)

Bilateral 141(86.5%) 153 (78.9%)

Distribution 2 0.03

Single 4 (2.5%) 15 (7.7%)

Multiple 159 (97.5%) 179 (92.3%)

No. of involved lobe

1 5 (3.1%) 27 (8.2%) 0.04

2 22 (13.5%) 38 (19.6%) 0.13

3 32 (19.6%) 47 (24.2%) 0.30

4 47 (28.8%) 42 (21.6%) 0.12

5 57 (35.0%) 40 (20.6%) <0.01

The P values indicate differences between NCP and IP patients; P<0.05 was considered statistically significant. Variables including the 
diameter, involved lobes, intensity, intensity (HU) (<–500), intensity (HU) (–500–0), and number of involved lobes [3,4,5] were measured 
using chi-square tests. The remaining variables in this table were measured using Fisher’s exact test. a, D in the Intensity (HU) presents 
diameter of lesions (mm). IP, influenza pneumonia; NCP, novel coronavirus pneumonia.
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Figure 4 CT image features of an NCP patient and an IP patient. (A,B) Chest CT of an NCP patient: a 45-year-old female with history of 
visiting Wuhan for 2 days. Presenting with fever and cough for 4 days, she was confirmed as having NCP. The CT scan (A) shows bilateral 
GGO scatted in 4 lobes, with an obvious peripheral distribution and bilateral lobular or subsegmental GGO involving mainly the subpleural 
lung regions. Vascular dilation with GGO surrounding was more evident, and a pulmonary venous branch passed through the lesion with 
luminal dilation (white arrow). The features are more obvious in maximum-intensity projection imaging (B). (C,D) The CT images of an IP 
patient: CT scan shows multiple, bilateral, and randomly distributed small ill-defined nodules (white arrow head) with small branch opacities 
indicating the bronchiolitis. Peripheral subpleural consolidation (white arrow) in the left lower lobe with the interlobular septum and pleura 
thickening (black head). CT, computed tomography; GGO, ground-glass opacity; IP, influenza pneumonia; NCP, novel coronavirus pneumonia. 

Figure 5 CT images of an NCP patient. A 37-year-old male with NCP of unknown exposure history, presenting with fever and cough. 
WBC 6.96×109/L, N 82.70%, L 13.10%, C-reactive-protein 13.9 mg/dL. Axial non-contrast CT scan shows multiple (5 lobes involved), 
bilateral, and randomly distributed pulmonary nodules (arrow) surrounded by a halo of GGO (arrow head). CT, computed tomography; 
GGO, ground-glass opacity; IP, influenza pneumonia; NCP, novel coronavirus pneumonia.
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Figure 6 Examples of detected lesions performed by YOLOv3 model for IP and NCP patients. The green boxes represent the lesions 
predicted by the detection model. The red boxes represent the ground truth of lesions. While the blue boxes represent the lesions that the 
model failed to detect. IP, influenza pneumonia; NCP, novel coronavirus pneumonia.
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Table 4 Performance of the YOLOv3 model for lesion detection in the test set under different confidence scores

Confidence Predict Benchmark FPR Recall rate F1

0.01 3,033 1,337 0.44 0.72 0.63

0.02 2,267 1,337 0.36 0.73 0.68

0.03 1,931 1,337 0.32 0.74 0.71

0.04 1,749 1,337 0.29 0.75 0.73

0.05 1,617 1,337 0.27 0.74 0.74

0.1 1,301 1,337 0.22 0.70 0.74

0.15 1,135 1,337 0.17 0.67 0.74

0.2 1,038 1,337 0.15 0.64 0.73

0.25 946 1,337 0.13 0.61 0.72

The Confidence indicates the confidence score of each predicted candidate lesion. The Predict indicates the predicted number of lesions. 
The Benchmark indicates the annotated number of true positive lesions. FPR, false positive rate.
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Figure 7 ROC curve of the Plain and Trinary schemes of lesion-
level classification on the test set. AUC, area under the curve; 
ROC, receiver operating characteristic.

Figure 8 Graphical examples for lesion classification on NCP patients from the external validation set. The numbers above each CT image 
patch represent the predicted probabilities of being NCP by the Plain scheme (orange) and the Trinary scheme (purple), respectively. (A) 
presents 4 detected lesions in the first category (20 NCP patients from hospital 1–3). On the 4 non-typical NCP lesions, the Plain scheme 
gave much higher probability than the Trinary scheme did. (B) presents 4 detected lesions on the second category (37 NCP patients from 
hospital 4–8). The top left lesion is a false positive. CT, computed tomography; NCP, novel coronavirus pneumonia.
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Table 5 Performance of the Plain and Trinary schemes for lesion-
level classification in the test set

Accuracy Precision Sensitivity Specificity F1 score

Plain 
scheme

79.9% 68.0% 62.2% 87.5% 0.65

Trinary 
scheme

86.8% 76.6% 80.6% 89.5% 0.79

the Trinary and Plain schemes was >0.5 were filtered out. 
These lesions were subsequently annotated by 2 specialists. 
A lesion was considered as NCP or IP only when it was 
annotated as such by both specialists. Of 812 filtered 
lesions, 540 and 102 of them were annotated as NCP and 
IP, respectively. Out of 540 NCP lesions, the Trinary and 
Plain schemes correctly identified 366 and 174, respectively. 
Out of 102 IP lesions, 61 and 41 lesions were correctly 
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Table 6 Performance of both deep learning schemes and human experts for patient-level classification in the external validation set

S1 S2 S3 S4 S5 R1 R2 R3 R4 R5 Plain Trinary

IP recall 45 45 42 41 50 34 38 43 38 39 39 43

NCP recall 43 48 41 40 31 31 33 37 32 30 33 44

Precision (%) 89.6 90.6 83.7 81.6 100.0 66.0 73.3 84.1 72.7 73.2 61.9 76.7

Sensitivity (%) 75.4 84.2 71.9 70.2 54.4 54.4 57.9 64.9 56.1 52.6 78 86

Specificity (%) 90 90 84 82 100 68 76 86 76 78 57.9 77.2

F1 score 0.819 0.873 0.774 0.755 0.705 0.596 0.647 0.733 0.634 0.612 0.690 0.811

Average  
F1 score 

0.790 (specialists) 0.640 (residents) – –

Generally, the specialist group (S1–S5) outperformed the resident group (R1–R5) while the Trinary scheme outperformed the Plain scheme 
for patient-level classification in the external validation set. The performance of the Trinary scheme was close to the specialist group. 

Table 7 Correlation of radiologists in the specialist group (S1–S5) and the resident group (R1–R5) for patient-level classification in the external 
validation set

S2 S3 S4 S5 R1 R2 R3 R4 R5

S1 0.76 0.76 0.64 0.62 0.41 0.56 0.66 0.47 0.29

S2 0.67 0.55 0.65 0.33 0.48 0.58 0.35 0.33

S3 0.70 0.65 0.51 0.59 0.68 0.41 0.32

S4 0.53 0.43 0.43 0.49 0.53 0.28

R1 0.31 0.37 0.51 0.35 0.22

R2 0.58 0.56 0.45 0.35

R3 0.71 0.52 0.22

R4 0.58 0.20

R5 0.24

The highest correlation between radiologists appeared in the comparison of specialist 1 and 2 (0.759). Generally, members in the specialist 
group presented a higher correlation with each other than members in the specialist group or inter-group members.

identified by the Trinary and Plain schemes, respectively. 
The differences between the two schemes were statistically 
significant with P=0.0076 and P<2.2e-16 for IP and NCP 
lesions, respectively. Therefore, the Trinary scheme was 
more consistent with specialists than the Plain scheme on 
lesion-level classification.

Performance of patient-level classification by human 
experts

For the external validation set, an average of 8.1 h was 
required for 10 radiologists to differentiate NCP and IP in 
all 107 patients. For the specialist group, the average time 
was 6.8 h (5.3–7.4 h). For the resident group, the average 

time was 8.9 h (7.5–10.2 h). For the specialist group, micro-
average sensitivity and specificity of 71.2% (95% CI, 57.8–
84.7%) and 89.2% (95% CI, 80.5–97.9%) were reached, 
respectively. For the resident group, the mean sensitivity 
and specificity were 57.2% (95% CI, 51.3–63.1%) and 
76.8% (95% CI, 68.8–84.8%), respectively. The mean AUC 
of the specialist group was 0.802, which was significantly 
better than that of the resident group (AUC 0.67, 
P<0.0001). The mean F1 scores for the specialist group and 
the resident group were 0.79 and 0.64, respectively (Table 6). 
Both the specialist group and the resident group were found 
to have good consistency, with ICCs of 0.899 and 0.798, 
respectively. The correlation for 10 radiologists is presented 
in Table 7.
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Trinary scheme outperformed the specialist group on 
patient-level classification

For the Plain and Trinary schemes, it took an average of 
10 seconds to detect and classify all detected lesions for a 
single patient. The receiver operating characteristic (ROC) 
curves for the test set and the external validation set of both 
training schemes are shown in Figure 9. For the test set, 
the Plain and Trinary schemes achieved AUCs of 0.86 and 
0.95, respectively (Figure 9A). The AUCs were similar those 
for the lesion level. For the Plain and Trinary schemes, the 
sensitivities were 72.2% and 88.9%, respectively, and the 
specificities were 72.2% and 94.4%, respectively (Table 8).

For the external validation set, the sensitivity and 
specificity of the Plain scheme were 78% and 57.9%, 
respectively, compared with 86% and 77.2%, respectively, 
for the Trinary scheme. Compared with the mean 
sensitivity (71.2%) and specificity (89.2%) of 5 specialists, 
the deep learning model achieved higher sensitivity but 

lower specificity. The F1 scores for the Trinary scheme and 
Plain scheme reached 0.690 and 0.811, respectively, and 
the Trinary outperformed 9 human radiologists. Generally, 
the Trinary scheme achieved specialist-level performance 
while the Plain scheme achieved resident-level performance 
(Figure 9B). Our Trinary scheme correctly classified 13 
(22.8%) participants with NCP that were misdiagnosed 
by at least 3 specialists. Among them, 2 patients displayed 
CT findings less frequently reported in other NCP cases, 
such as a small mixed ground-glass opacity in the center, or 
solitary consolidation. These patients were misdiagnosed 
by 5 specialists (Figure 10). The results indicated that both 
of the schemes achieved human expert level (Table 6). The 
Trinary scheme achieved an F1 score of 0.811, which was 
higher than that of the Plain scheme (0.690), and also 
achieved a similar level of performance to the human 
experts (specialist group, average 0.790; resident group, 
average 0.640) (Table 6).

The correlations between the predictions of the two 

Figure 9 ROCs of patient level classification. (A) The performance of the Trinary and Plain scheme for differential diagnosis of NCP and 
IP patients in the test set. (B) AUCs of deep learning schemes and human experts for differential diagnosis of the external validation set. 
The Trinary scheme (AUC 0.87) performed better than the Plain scheme (AUC 0.71) and achieved a specialist-level (S1–S5) performance, 
while the Plain scheme provided similar capability to the resident group (R1–R5). AUC, area under the curve; ROC, receiver operating 
characteristic; IP, influenza pneumonia; NCP, novel coronavirus pneumonia.

A B

Table 8 Performance of the Plain and Trinary schemes for patient-level classification in the test set

Accuracy Precision Sensitivity Specificity F1 score

Plain scheme 72.2% 72.2% 72.2% 72.2% 0.72

Trinary scheme 91.7% 94.1% 88.9% 94.4% 0.91
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schemes and radiologists were further examined in the 
external validation set (Table 9). The Trinary scheme 
outperformed the Plain scheme, as higher correlations 
were observed in all radiologists. Generally, both the 
Plain and the Trinary scheme were better correlated with 
5 experienced specialists, especially with specialist 1 and 

specialist 2 in both categories. Specialists 1 and 2 performed 
best in differential diagnosis for the external validation set; 
therefore, the Trinary scheme was better correlated with 
specialists in the external validation set.

Discussion

In this study, we established an integrated artificial 
intelligence (AI) framework for differential diagnosis 
between NCP and IP, which showed a good performance 
in the automatic detection of disease lesions, classification 
of lesions, and differential diagnosis of patients even at the 
early stage. This AI effort was driven by the phenomenon of 
misdiagnosis of influenza in COVID-19 deaths in multiple 
countries during the escalating pandemic. The similarities 
in clinical symptoms between these two types of VP, along 
with the shortage and high false negative rate of nucleic 
acid detection kits, make the differential diagnosis difficult 
(26-28) and has prompted the search for new diagnostic 
methods. Meanwhile, the high sensitivity of chest CT gives 
it an advantage in diagnosing NCP at an early stage, which 
encouraged the Hubei Provincial Government to adopt 
characteristic chest CT findings as an important criterion 
for diagnosis of NCP at the peak of outbreak. In the 
present climate, our AI framework indicated improvements 
in accuracy and speed in identifying specific lesions on 
chest CT images, and thus provides another predominant 

Figure 10 CT images of two NCP patients misdiagnosed by specialists but correctly classified by the Trinary scheme. Axial CT plain scan in 
patients suffering from NCP who were misdiagnosed as IP by the specialist panel. (A) A 50-year-old female with a small piece of pure GGO 
in left upper lobe (arrow); she was twice found negative by nucleic acid tests but tested positive the third time (predicted probability: 0.573); (B) 
A 49-year-old female also with a small GGO (arrow) in right middle lobe (predicted probability 0.56). Their common characteristics were 
either small lesions located in one segment or a lack of specificity of typical findings in NCP. The patients above were correctly classified 
as NCP by the Trinary scheme (predicted probability represented the probabilities of being NCP by the Trinary scheme). CT, computed 
tomography; GGO, ground-glass opacity; NCP, novel coronavirus pneumonia.

BA

Table 9 Correlation between the two schemes and the specialist 
group (S1–S5) and the resident group (R1–R5) in the external 
validation set for patient-level classification

Plain scheme Trinary scheme

S1 0.39 0.61

S2 0.35 0.63

S3 0.26 0.48

S4 0.11 0.33

S5 0.09 0.42

R1 0.10 0.21

R2 0.33 0.44

R3 0.03 0.50

R4 0.19 0.31

R5 0.12 0.33

The Trinary scheme showed stronger correlation with both 
the human groups than the Plain scheme, especially with the 
specialist group.
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diagnostic tool to assist clinicians and radiologists.
Recent studies have reported the value of deep learning in 

differentiating NCP from various other types of pneumonia 
(29-31). In this study, we focused on discriminating NCP 
and pneumonia infected with influenza virus, which 
present extremely similar symptoms and demonstrations. 
Both viruses can be quickly transmitted through person-
to-person contact, droplets, and fomites. The serial 
interval for SARS-CoV-2 is estimated to be 6–9 days,  
compared with 3 days for influenza (32,33). Further, pre-
symptomatic viral transmission is possible in both types 
of viruses, which increases the difficulty of precautionary 
measures. While there are several clinical trials and more 
than 20 vaccines in development for SARS-CoV-2, there 
is currently no licensed vaccine or antiviral medication 
for NCP. On the contrary, medicaments and vaccines are 
available for influenza, but some patients who have been 
vaccinated can still be infected by influenza, and early use 
of antivirals is essential (34). The high transmissibility, 
lethality, and difficulty in treating both viruses make the 
early clinical identification particularly important.

Unfortunately, the diagnosis of VP still relies heavily 
on clinician suspicion, which is based on host risk factors, 
presentation, and exposure, and thus makes different 
subtypes of viruses rather indistinguishable. Patients who are 
infected with influenza or SARS-CoV-2 could show a similar 
range of symptoms, such as sudden onset fever, cough, sore 
throat, fatigue, and myalgia (1,35). Laboratory findings also 
show similar results, including normal or lower levels of 
leucocytes, decreased lymphocyte count, increased C-reactive 
protein, lower albumin, and higher D-dimer and urea 
levels (36). Despite some efforts to compare hematological 
indices between patients with NCP and IP, it is not possible 
to differentiate based on them due to individual biases. 
Moreover, patients with severe pneumonia may present with 
abnormal laboratory findings of damage to multiple organs, 
including to the heart, liver, or kidney. In a prospective 
study, clinicians failed to clinically diagnose influenza in 
approximately 2/3 of influenza-confirmed patients (37), not 
to mention the difficulty in differentiating it from other types 
of respiratory viruses on clinical grounds.

Meanwhile, despite the fact that the advent of PCR 
testing has enormously facilitated the identification of 
respiratory viruses, the test results usually take days to 
return, and involve an unavoidable false negative rate (10). 
In view of that, closer attention to patients’ radiological 
features is needed from clinicians and radiologists in the 
search for evidence of influenza or SARS-CoV-2 infection.

Our integrated AI framework provides the possibility for 
early and differential diagnosis of NCP. Previous research 
has shown that at the early stage, NCP is difficult to 
distinguish from IP. Our integrated framework performed 
well in the automatic detection of disease lesions, the 
classification of lesions, and patient differential diagnosis, 
even at the early stage.

Deep learning also suffers from the “black box” problem, 
which essentially means the results are difficult to explain 
(38-40). One option is to explain black boxes using various 
techniques (41), and another is to develop explainable 
models (42). Although the deep learning pipelines proposed 
in this work are based on black box models, taking the 
average of individual lesions to get patient-level prediction 
obtained some extent of interpretability. The proposed 
Trinary scheme behaved more similarly to specialists 
than the Plain deep learning classification model did, 
providing extra interpretability to the pipeline. The Trinary 
classification scheme is designed to improve the network 
from extracting device-specific features during learning. 
The idea behind the scheme is that if the network only 
extracted device-specific features, it would lead to a high 
cost on the random region inputs. Therefore, the scheme 
forced the trained model to instead extract lesion-specific 
features. Although it is possible that device-specific features 
could also be extracted, we demonstrated that such a 
scheme could clearly improve the classification results and 
make prediction by the model more consistent with the 
judgement of experienced specialists. Because the proposed 
Trinary scheme is task independent, we believe that it can 
be widely applied to many other medical image classification 
problems and accelerate the application of deep learning 
systems to wider clinical usage.

In our study, we found that chest CT images of early-
stage NCP manifest a more obvious distribution of ground-
glass opacity (GGO) in the lungs, with fewer nodules and 
consolidation than IP. This result was also confirmed by a 
recent study comparing CT characteristics between IP and 
NCP, with NCP showing patchy areas or GGO combined 
consolidation opacities, with peripheral distribution and 
balanced lobe predomination, while in IP the lesions were 
predominantly located in the inferior lobe (7). These 
findings support the point that chest CT could play an early 
warning role in the diagnosis and differentiation of NCP, 
and also provide a basis for further research. At the same 
time, these subtle differences are quite difficult to uncover 
through artificial reading and can be easily missed, which 
makes it necessary to establish an AI model to assist clinical 
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work based on machine learning. We are obliged to admit 
the fact that the exposure to ionizing radiation is an intrinsic 
defect of CT. However, compared with other radiological 
modalities, the role of CT in the detection of NCP is 
irreplaceable, not only in diagnosis but also in assessing the 
disease severity, as it provides critical guidance for patients’ 
treatment. In fact, accumulated evidence has demonstrated 
the risk related to routine usage of CT in medical care to 
be low (43,44). Besides, the carcinogenic risk from CT 
screening for lung cancer, even if non-negligible, should be 
considered acceptable in light of the substantial reduction 
in screening-associated mortality (45).

Further analysis of our model results can help us to 
obtain a better understanding of the pathophysiological 
origin of NCP. It is presumed that SARS-CoV-2 is able to 
bind to the ACE-2 receptor in humans, a key component 
of the renin-angiotensin system (46,47). The ACE-2 
receptor is mainly expressed on the surface of alveolar type-
2 epithelial cells which, when infected, undergo apoptosis, 
leading to diffuse alveolar damage and interstitial fluid 
absorption disorder. This may explain why we found that 
80.4% of lesions in NCP were <–500 Hu, 86.5% of patients 
had bilateral lung damage, and 35.0% of patients had all 5 
lung lobes affected. Unlike SARS-CoV-2, influenza viruses 
primarily damage the tracheal epithelial cells, leading to 
necrotizing bronchitis and diffuse alveolar damage of the 
upper respiratory tract (10). This suggests that the trachea 
and main bronchus should be affected first, resulting in 
bronchitis and neutrophilic bronchopneumonia at the early 
stage of infection.

The clinical applicability of our developed AI model was 
improved by the inclusion of data from multiple centers and 
machines. In the current study, the training and test data of 
NCP were from 4 machines in 3 hospitals, and the AI model 
performed well. The data of our independent verification 
group were from different machines in 8 hospitals, and both 
schemes performed well, which suggests that our model has 
good clinical applicability.

Most of the existing deep learning studies on pneumonia 
were performed using chest X-ray due to its easy 
accessibility (11,14,48). However, CT is the major clinical 
diagnostic method for NCP. A natural concern for the 
current study was therefore the potentially scarce sample 
size from CT, which would have supplied insufficient 
training data for the deep learning models. However, each 
CT scan can generate multiple images for analysis, and the 
amount of data can be further increased by manipulations 
such as image rotations to avoid overfitting. Overall, the 

performance of our AI system in a multi-center on the 
independent validation group from multiple centers and 
machines demonstrates the reliability of our deep learning 
results.

Conclusions

Currently, SARS-CoV-2 is rampantly spreading around 
the world, and efficient and accurate diagnosis of NCP 
is crucial for prevention and control. Our deep learning 
model potentially supplies an accurate early diagnostic 
tool for NCP, especially when nucleic acid test kits are in 
short supply, which commonly happens during outbreaks. 
This tool could help to reduce the rate of misdiagnosis 
and diagnosis time, ensure prompt patient isolation and 
early treatment, improve prognosis, and considerably 
reduce transmission. The high efficiency of our model 
in differentiating NCP from IP could be very beneficial 
to reducing the rate of misdiagnosis and optimizing the 
allocation of medical resources, particularly in areas with 
a high prevalence of both NCP and IP. The Trinary 
scheme not only improved the performance of the model 
in discriminating NCP from IP, but it also behaved more 
similarly to specialists than the Plain scheme. Because the 
proposed Trinary scheme is designed for general use, it 
could potentially be applied for classifying a wide range of 
medical images. 
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