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Abstract: Resistance to rose rosette disease (RRD), a fatal disease of roses (Rosa spp.), is a high priority
for rose breeding. As RRD resistance is time-consuming to phenotype, the identification of genetic
markers for resistance could expedite breeding efforts. However, little is known about the genetics
of RRD resistance. Therefore, we performed a quantitative trait locus (QTL) analysis on a set of
inter-related diploid rose populations phenotyped for RRD resistance and identified four QTLs.
Two QTLs were found in multiple years. The most consistent QTL is qRRV_TX2WSE_ch5, which
explains approximately 20% and 40% of the phenotypic variation in virus quantity and severity of
RRD symptoms, respectively. The second, a QTL on chromosome 1, qRRD_TX2WSE_ch1, accounts
for approximately 16% of the phenotypic variation for severity. Finally, a third QTL on chromosome
3 was identified only in the multiyear analysis, and a fourth on chromosome 6 was identified in data
from one year only. In addition, haplotypes associated with significant changes in virus quantity and
severity were identified for qRRV_TX2WSE_ch5 and qRRD_TX2WSE_ch1. This research represents
the first report of genetic determinants of resistance to RRD. In addition, marker trait associations
discovered here will enable better parental selection when breeding for RRD resistance and pave the
way for marker-assisted selection for RRD resistance.

Keywords: Rosa; emaravirus; QTL; virus resistance; plant breeding

1. Introduction

Rose rosette disease (RRD) of roses (Rosa spp.), is endemic to North America and,
unlike other rose diseases, is fatal for an infected plant [1]. Thus, RRD poses a major
threat to the United States garden rose industry, which was valued at USD 168 million in
2019 [2]. RRD has also been reported in India [3], and while not yet reported in Europe,
rose plants imported from North America and India are subject to regulations to prevent
the introduction of RRD to Europe [4]. The disease is spread by the eriophyid mite
Phyllocoptes fructiphilus Keifer [5,6]. The classic symptom is a witches’ broom or rosette
growth, but symptoms can vary. Plants can also be asymptomatic for multiple years while
testing positive for the presence of virus [7]. Unfortunately, no effective treatments exist,
and as the disease may take several years to kill a plant, the current control recommendation
is to remove infected plants to prevent the spread of the disease to other plants [7,8]. After
three to four years of infection, RRD is generally fatal [7].

RRD is caused by the Rose rosette emaravirus (RRV), a membrane-bound negative-sense
RNA virus in the family Fimoviridae [9–11]. While initially only four RNA segments were
identified [9], RRV is now known to have seven segments [10], similar to other emaraviruses,
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which have five to 10 genome segments [11]. In RRV, RNA 1 encodes the RNA-dependent
RNA polymerase; RNA 2, a glycoprotein; RNA 3, the nucleocapsid; RNA 4, the movement
protein; and RNAs 5–7 are of unconfirmed function. Inoculation with RNAs 1–4 has been
shown to be sufficient for systemic infection of Nicotiana benthamiana [12]. While mutations
in the viral genome have been identified, the viral population is relatively homogenous
across the United States [13]. Diseases caused by emaraviruses, including RRV, have been
known for some time, but only in the past two decades have emaraviruses begun to be
sequenced and characterized [11,14], and resistance to most emaraviruses has yet to be
well-understood.

Due to the deadly nature of the disease and the lack of adequate control methods, roses
resistant to RRD are highly desirable. Rose breeding is complicated, however, by a relatively
long generation time and by the multispecies origin of most rose cultivars [15], most of
which are diploid (2n = 2x = 14), triploid, or tetraploid [16]. Breeding for RRD resistance is
particularly challenging since it is estimated that over 90% of cultivars are susceptible. A
few rose species (among them the diploid species Rosa setigera Michaux), species hybrids,
and a few cultivars may have some degree of resistance or reduced susceptibility to
RRD [15]. Multiyear field trials are needed to accurately determine resistance levels due to
the possibility of long virus latency periods and inconsistent disease pressure producing
the appearance of resistance. Thus, RRD resistance is a good candidate for marker-assisted
selection (MAS).

The objective of this study was to identify quantitative trait loci (QTLs) for RRD
resistance in diploid roses to improve the understanding of the genetic basis of RRD
resistance and enable MAS. If the QTL analysis identifies markers that are applicable to a
broad range of germplasm, MAS could be used for parental selection, designing crosses,
tracking QTLs, and perhaps eliminating the need for field trials in screening for RRD
resistance, thereby accelerating the breeding of resistant cultivars. In this study, four QTLs
for reduced susceptibility were identified in diploid roses assessed for RRD susceptibility
over three years, the most notable of which explains approximately 40% of the phenotypic
variance for RRD severity.

2. Results
2.1. Phenotypic Data Analysis

From 2019 to 2021, inter-related diploid rose populations were assessed for RRD
resistance via qRT-PCR for virus presence and visually for the number of rosettes and
severity of symptoms. Cycle threshold (Ct) values obtained from positive virus tests were
used to approximate quantification of the virus and ranged from 21.8 to 34.4, and rosette
and severity scores both ranged from 0 to 3. In all years and overall, the data were skewed
towards high Ct values, indicating low viral presence, and low rosette and severity scores,
with a minority of genotypes having the virus detectable by qRT-PCR or visible symptoms
of RRD (Figure 1, Table S1). In 2019, 47 of 248 genotypes (19%) tested positive for RRV, and
only 39 of 248 genotypes (16%) had visible symptoms. In subsequent years, only genotypes
not positive previously were tested for virus presence, but all were assessed visually for
RRD. In 2020, 41 of the 201 genotypes that were negative in 2019 tested positive for RRV
and 19 of the total number of genotypes had visible symptoms. This decline in visible
symptoms between years may be partly due to the routine pruning of plants received in the
spring which removed rosettes. In 2021, only two additional genotypes tested positive for
RRV, and 47 genotypes had visible symptoms. At the end of three years, 90 of 248 genotypes
(36%) tested positive for RRV, and 82 of 248 (33%) had shown visible symptoms at some
point. Number of rosettes and severity were highly correlated (ρ > 0.99, p < 0.05) and had
a moderate negative correlation with Ct value over years. Both number of rosettes and
severity had moderate broad-sense heritability (H2 = 0.44 and 0.45, respectively).
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Figure 1. Distribution of rose rosette disease. (A) Ct value; (B) rosette ratings; (C) severity ratings in 
2019, 2020, and 2021 across diploid rose families grown in Crossville, Tennessee; and (D) examples 
of the RRD severity scale with symptoms indicated by black circles. In violin plots, width of each 
shaded portion reflects the proportion of samples in that area. Black triangles indicate the median. 
Within each trait for a given year, the median, first interquartile, and third interquartile were equiv-
alent; thus, only the median was plotted. Samples that were negative for RRV as determined by 
qRT-PCR were assigned a Ct value of 40. Rosettes were scored on a scale of 0–3, where 0 = no ro-
settes, 1 = one rosette, 2 = two rosettes, and 3 = three or more rosettes. Severity was rated on a scale 
of 0–3, where 0 = no symptoms, 1 = one shoot with symptoms, 2 = two shoots with symptoms, and 
3 = three or more shoots with symptoms. Photographs of infected plants courtesy of Jennifer Olson, 
Oklahoma State University. 

2.2. Linkage Map 
Linkage maps were generated for each of the three largest populations (J14-3xPH, 

T7-20xSE, and T7-30xSE), and these maps were combined to create a consensus map. The 
individual population maps contained between 5239 and 9408 markers; 1583 of these were 
common between the three populations (Table S2). The consensus map had 2677 markers 
clustered in seven linkage groups and a total length of 758.2 cM, resulting in 1.5 unique 
positions/cM. Overall, the map had good coverage of the rose genome as well as good 
alignment with the Rosa chinensis genome of Hibrand Saint-Oyant et al. [17] (Figure 2). 

Figure 1. Distribution of rose rosette disease. (A) Ct value; (B) rosette ratings; (C) severity ratings in
2019, 2020, and 2021 across diploid rose families grown in Crossville, Tennessee; and (D) examples of
the RRD severity scale with symptoms indicated by black circles. In violin plots, width of each shaded
portion reflects the proportion of samples in that area. Black triangles indicate the median. Within
each trait for a given year, the median, first interquartile, and third interquartile were equivalent;
thus, only the median was plotted. Samples that were negative for RRV as determined by qRT-PCR
were assigned a Ct value of 40. Rosettes were scored on a scale of 0–3, where 0 = no rosettes, 1 = one
rosette, 2 = two rosettes, and 3 = three or more rosettes. Severity was rated on a scale of 0–3, where
0 = no symptoms, 1 = one shoot with symptoms, 2 = two shoots with symptoms, and 3 = three or
more shoots with symptoms. Photographs of infected plants courtesy of Jennifer Olson, Oklahoma
State University.

2.2. Linkage Map

Linkage maps were generated for each of the three largest populations (J14-3xPH,
T7-20xSE, and T7-30xSE), and these maps were combined to create a consensus map. The
individual population maps contained between 5239 and 9408 markers; 1583 of these were
common between the three populations (Table S2). The consensus map had 2677 markers
clustered in seven linkage groups and a total length of 758.2 cM, resulting in 1.5 unique
positions/cM. Overall, the map had good coverage of the rose genome as well as good
alignment with the Rosa chinensis genome of Hibrand Saint-Oyant et al. [17] (Figure 2).

2.3. QTL Analysis

FlexQTL™ (Wageningen University and Research, Wageningen, The Netherlands) was
used for the QTL analysis. FlexQTL™ implements a Bayesian approach to QTL analysis
that exploits the inter-relatedness of populations to improve the power and accuracy of
QTL detection [18]. Each analysis begins with a different seed, leading to potentially
different results for a single trait; therefore, the analysis was run four times for each
trait (Ct value, 2019 severity, 2020 severity, 2021 severity, and overall severity) to ensure
QTL reproducibility. Thus, the values reported here for heritability, phenotypic variance
explained, and QTL position resulted from multiple runs for each trait. Two times the
natural log of the Bayes factor (2lnBF) was used to determine QTL significance, with
2lnBF > 2 indicating positive evidence for a QTL. An additive model was used for severity
and a mixed model for Ct value. Estimates of heritability by FlexQTL™ are restricted to the
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model used; thus, the program was used to estimate the broad-sense heritability (H2) of Ct
value and narrow-sense heritability (h2) for RRD severity overall and individual years. H2

for Ct value ranged between 0.18 and 0.27 in contrast to the REML-estimated H2 of 0.45 for
severity. H2 for severity overall, as estimated by FlexQTL™, was approximately 0.31 and
ranged between 0.1 and 0.2 in individual years.
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Figure 2. Alignment of the consensus map developed for three diploid rose populations with the
Rosa chinensis genome assembly of Hibrand Saint-Oyant et al. [17] per linkage group (LG). Centimor-
gans (cM) are plotted on the x-axis and physical position (Mbp) on the y-axis.

A strong to decisive QTL (2lnBF > 5 or 2lnBF > 10, respectively) was detected on
chromosome 5 in all runs (Figure 3A) for Ct value and severity; no QTLs with 2lnBF > 2 on
other chromosomes were consistently detected for Ct value (Table 1). The QTL peak, defined
as the mode of the QTL, was located between 46 and 51 cM and was most frequently located
at 49 cM (corresponding to a position of approximately 10 Mbp in the Rosa chinensis genome
assembly reported by Hibrand Saint-Oyant et al. [17]). An exception was the results of
2020 severity, for which the peak was at 68–72 cM and which, in two runs, the QTL interval
did not include the consensus position. Due to these inconsistencies, the single-year 2020
severity results were not pursued further though the 2020 data were still included in the
overall analysis. The 2021 severity analyses indicated the presence of a second QTL on
chromosome 5; however, the location was highly inconsistent between runs, and in some
runs, the interval could not be defined using the standards established beforehand (see
materials and methods). The QTL with a peak at 49 cM was assumed to be the same for
both Ct value and severity and will be referred to as qRRV_TX2WSE_ch5. The consensus
interval for qRRV_TX2WSE_ch5, defined as the interval common to all runs except the
single-year runs for 2020 severity, was approximately 4.3 Mbp in size (6.8–11.1 Mbp). This
interval in the R. chinensis genome assembly of Hibrand Saint-Oyant et al. [17] contains
~545 annotated genes. Of these, there were six NBS-LRR-class disease-resistance genes, two
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other genes associated with disease resistance, one gene for a eukaryotic initiation factor
(eIF), four genes for transcription factors, and eleven ribosome-associated genes.
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Figure 3. Positions and posterior intensities of identified QTL for (A) RRD Ct value and severity
on chromosome 5, (B) RRD severity on chromosome 1, (C) RRD severity on chromosome 3, and
(D) severity in 2021 on chromosome 6 in diploid rose populations. Multiple lines for the same
color reflect the results of individual runs in FlexQTL™. Figure constructed with MapChart v2.32
(Wageningen University and Research, Wageningen, The Netherlands).

Three further QTLs for severity were also identified. A positive QTL (2lnBF > 2)
for severity was detected on chromosome 1 in all runs for overall severity and two
runs for 2019 severity (Figure 3B). This QTL will be referred to as qRRD_TX2WSE_ch1.
The peak of the QTL was most often located between 8 and 16 cM (corresponding to
roughly 0.3 and 4.8 Mbp, respectively). The QTL had a consensus interval approximately
12.1 Mbp in size (0.4–12.5 Mbp) and contains ~960 genes. These genes include 29 NBS-
LRR-class disease-resistance genes, 44 disease-resistance genes of other types, 3 genes
for transcription factors, and 19 ribosome-associated genes. A positive QTL for overall
severity, qRRD_TX2WSE_ch3, was detected on chromosome 3 with a peak at 18 cM (ap-
proximately 27.8 Mbp). This QTL had a consensus interval approximately 24 Mbp in size
(9.6–33.6 Mbp) and contains approximately 1900 genes. A strong QTL for 2021 severity,
qRRD_TX2WSE_ch6, was identified on chromosome 6 with a peak at 28 cM (approximately
11 Mbp) (Figure 3D). qRRD_TX2WSE_ch6 had a consensus interval approximately 20 Mbp
in size, containing ~1700 genes.
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Table 1. Summary of FlexQTL™ runs for RRD severity and Ct value in diploid rose populations.

Chr Trait a Year Prior b Run BF(1 vs. 0)
c BF(2 vs. 1)

c Position
(cM) d

Physical
Position (Mbp) PVE (%) e

1 Severity 2019 1 1 3.1 0.2 14 (6–26) 0.4–27.2 15.7
1 Severity 2019 5 2 2.2 0.5 8 (6–28) 0.3–27.2 13.0
1 Severity Overall 1 1 4 −0.2 10 (4–24) 0.1–27.2 18.1
1 Severity Overall 1 2 4.2 0.5 8 (4–26) 0.1–27.2 17.0
1 Severity Overall 5 1 3.1 0.2 16 (4–20) 0.1–12.5 14.0
1 Severity Overall 5 2 2.9 0.5 12 (4–22) 0.1–12.5 14.2

3 Severity Overall 1 1 2.2 −0.1 18 (16–30) 9.6–34.3 9.1
3 Severity Overall 1 2 2 −0.4 18 (16–30) 9.6–34.3 9.7
3 Severity Overall 5 1 2.1 0.2 18 (16–26) 0.6–33.6 9.1

5 Ctval Overall 1 1 10.9 1.2 50 (32–60) 5.0–23.5 22.1
5 Ctval Overall 1 2 11.2 1.7 50 (34–64) 5.0–27.0 23.7
5 Ctval Overall 5 1 9.9 1.3 49 (34–54) 5.0–18.3 16.3
5 Ctval Overall 5 2 9.2 1 49 (34–52) 5.0–14.1 15.2
5 Severity Overall 1 1 31 0.6 49 (42–52) 6.8–14.1 43.2
5 Severity Overall 1 2 31 0.4 49 (36–50) 5.3–11.1 40.6
5 Severity Overall 5 1 26.8 0.7 49 (42–52) 6.8–14.1 39.1
5 Severity Overall 5 2 26.9 0.6 49 (44–52) 6.8–14.1 41.0
5 Severity 2019 1 1 31 0.2 49 (36–52) 5.3–14.1 27.2
5 Severity 2019 1 2 15.8 −0.1 49 (30–52) 3.9–14.1 27.0
5 Severity 2019 5 1 26.8 0.6 49 (36–52) 5.3–14.1 23.6
5 Severity 2019 5 2 27 0.3 50 (36–52) 5.3–14.1 24.5
5 Severity 2020 1 1 9.6 0.7 71 (30–78) 3.9–47.6 17.9
5 Severity 2020 1 2 9.6 0.9 72 (30–74) 3.9–39.5 17.9
5 Severity 2020 5 1 9.8 1.2 70 (54–74) 12.3–39.5 14.3
5 Severity 2020 5 2 9.7 1.6 68 (56–76) 16.0–47.6 13.1
5 Severity 2021 1 1 7.5 2.2 46 (34–58) 5.0–32.7 11.6
5 Severity 2021 1 2 8.9 2.3 46 (34–66) 5.0–32.7 12.2
5 Severity 2021 5 1 7.9 2.2 46 (40–58) 5.3–23.5 10.1
5 Severity 2021 5 2 7.1 2.4 51 (34–58) 5.0–23.5 10.1

6 Severity 2021 1 1 6.4 0.6 28 (4–34) 0.3–34.4 13.0
6 Severity 2021 1 2 5.9 0.2 28 (6–36) 0.3–34.4 13.1
6 Severity 2021 5 1 6.9 0.1 29 (16–32) 3.2–23.2 12.7
6 Severity 2021 5 2 6.8 0.4 28 (16–32) 3.2–23.2 12.5

a All runs for Ct value were performed with a mixed model; all runs for severity were performed with an
additive model. b Prior distribution of either 1 or 5 was used. c BF, Bayes factor (2lnBF) for a one-versus-zero and
two-versus-one QTL models, where BF > 2, 5, 10 indicates positive, strong, and decisive evidence, respectively, for
one or two QTL(s). d Peak position followed by QTL range. e PVE, phenotypic variance explained by additive or
additive + dominance effects of the QTL for additive or mixed models, respectively.

Phenotypic variance explained (PVE) by each QTL was estimated for each run.
qRRV_TX2WSE_ch5 explained 19.3% (SD ± 3.64) of the phenotypic variance for Ct value.
Using a mixed model, dominance effects of qRRV_TX2WSE_ch5 were estimated to account
for only 1.4–7.3% of the phenotypic variance. PVE was 41.0% (SD ± 1.50) for sever-
ity overall and 17.5% (SD ± 6.28) for severity in individual years. qRRD_TX2WSE_ch1,
qRRD_TX2WSE_ch3, and qRRD_TX2WSE_ch6 were of smaller effect. qRRD_TX2WSE_ch1
and qRRD_TX2WSE_ch3 explained 16% (SD ± 1.70) and 9.3% (SD ± 0.3) of the pheno-
typic variation in severity overall, respectively, and qRRD_TX2WSE_ch6 explained 12.8%
(SD ± 0.24) of the phenotypic variation for severity in 2021.

QTL genotypes for qRRV_TX2WSE_ch5 and qRRD_TX2WSE_ch1 were determined
by FlexQTL™ assuming a biallelic model in which Q is the allele with a high phenotypic
value, and q is the allele with a low phenotypic value; thus, a Q for Ct value indicates a high
Ct value (corresponding to low virus level), and a Q genotype for severity indicates high
severity. Theoretically, if only qRRV_TX2WSE_ch5 is being considered (i.e., assuming no
epistasis), an individual assigned a QQ genotype for Ct value should be qq for severity (and
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vice versa) if the biallelic assumption of the model is correct and penetrance is complete. For
some individuals, this was the case (Table S3). M4-4, the parent of TAMU7-20 and TAMU7-
30, was frequently given the QQ genotype for Ct value and the qq genotype for severity;
‘Hiawatha’ and DD were frequently assigned the QQ and qq genotypes for Ct value and
severity; and ‘MORchari’ (Sweet Chariot) was frequently assigned the qq genotype for Ct
value and QQ genotype for severity. In all runs, parents TAMU7-20 and TAMU7-30 were
assigned the Qq genotype for both traits, and parent J06-20-14-3 was often assigned the
Qq genotype. However, the genotypes for ‘Old Blush’, ‘Srdce Europy’, ‘Violette’, ‘Papa
Hemeray’, and Swamp Rose EB ARE were inconsistent between Ct value and severity, and
the genotype for WOB26 was inconsistent between severity overall and severity 2021. In
addition, more individuals had the qq genotype for severity than expected based on known
RRD susceptibility, casting doubt on the accuracy of some QTL genotype assignments
based on the assumptions outlined above.

Fewer individuals could be assigned a QTL genotype for qRRD_TX2WSE_ch1; how-
ever, DD, ‘Old Blush’, Rosa wichurana ‘Basye’s Thornless’, ‘Srdce Europy’, and WOB26 were
determined to have the QQ genotype, corresponding to higher severity (Table S4). ‘Hi-
awatha’, the unknown pollen parent of J06-20-14-3, ‘MORchari’ (Sweet Chariot), ‘Violette’,
and TAMU7-30 were determined to have the qq genotype. J06-20-14-3, ‘Papa Hemeray’,
TAMU7-20, and M4-4 were assigned the Qq genotype. The QTL genotype assignments for
TAMU7-30 and M4-4 were not consistent with the haplotyping results for this QTL. Based
on these genotype assignments, several individuals are homozygous for favorable alleles
for qRRV_TX2WSE_ch5 and homozygous for unfavorable alleles for qRRD_TX2WSE_ch1
(DD, ‘Old Blush’, Rosa wichurana ‘Basye’s Thornless’) or vice versa (PP-J14-3 and ‘MORchari’
(Sweet Chariot)). Only founders ‘Hiawatha’ and PP-M4-4 were consistently assigned a QQ
genotype for Ct value and qq for severity for both QTL.

2.4. Haplotype Analysis

Haplotyping was performed for QTLs with PVE greater than 15%. Seven markers from
the vicinity of the qRRV_TX2WSE_ch5 peak were chosen for haplotyping: chr05_10509448,
chr05_10094026, chr05_10415546, chr05_10381834, chr05_10542937, chr05_11080653, and
chr05_10130872. These markers span approximately 1 cM in the consensus map and approx-
imately 1 Mbp in genome interval. From these markers, 11 haplotypes were identified. Eight
haplotypes segregated in the progeny, though two haplotypes had only one occurrence each
(Table 2). The most common haplotypes were haplotypes 5B and 5H. Fourteen markers
spanning approximately 14 cM (approximately 12 Mbp) from the qRRD_TX2WSE_ch1 peak
were chosen for haplotyping: chr01_141729, chr01_351332, chr01_4779174, chr01_2626480,
chr01_371589, chr01_4779270, chr01_6092504, chr01_2626576, chr01_8407507, chr01_8034881,
chr01_12365441, chr01_12454481, chr01_11424367, and chr01_5360670. Twenty-one hap-
lotypes were identified, twelve of which segregated in the progeny (Table 3). The most
common haplotypes were 1G, 1K, 1F, and 1H.

Haplotype and diplotype effects on Ct value and severity overall were estimated;
however, effects could only be partially determined. Of the qRRV_TX2WSE_ch5 haplotypes,
5B, 5H, and 5J had significant effects on Ct value (p < 0.05); however, haplotype 5J only had
two occurrences, making its effect less certain. Haplotype 5B was associated with a higher
Ct value (lower relative virus quantity) and haplotype 5H with a lower Ct value (higher
relative virus quantity) (Figure 4, Table 2). Similarly, haplotypes 5B and 5H were associated
with reduced and increased severity, respectively (Figure 5, Table 2). Haplotype 5C and 5E
also had significant effects on severity, corresponding to a slight decrease and increase in
severity, respectively. Of the qRRD_TX2WSE_ch1 haplotypes, only haplotypes 1D and 1K
had significant effects on severity (Figure 6, Table 3). Haplotype 1D was associated with a
reduced severity, while 1K was associated with increased severity. A lack of homozygotes
hampered the determination of diplotype effects. The effects of compound QTL genotypes
could not be determined.
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Table 2. Haplotypes for qRRV_TX2WSE_ch5 segregating in diploid rose populations and their effects on rose rosette virus Ct values and severity BLUEs. Underscores
indicate missing data for that SNP in the haplotype sequence. p-values less than 0.05 are indicated in bold.

Ct Value Severity Overall

No. Offspring Presence Absence Presence Absence

Haplotype Sequence ID Homo a Het b Total x c SD x d SD p-Value e x c SD x d SD p-Value e

AATGCCT 5B 0 121 121 37.8 5.5 33.7 5.5 <0.0001 0.09 0.23 0.47 0.79 <0.0001
AGTGTCA 5C 27 20 47 36.1 6.3 34.5 7.4 0.12 0.25 0.74 0.39 0.71 <0.0001
_GATTAA 5E 10 26 36 33.8 7.9 34.9 7.2 0.37 0.39 0.8 0.37 0.7 0.01
AG___AA 5F 0 1 1 40.0 NA 34.8 7.3 0.47 0.00 NA 0.37 0.71 0.38
TGATTAA 5H 53 80 133 32.0 7.6 36.4 6.5 <0.0001 0.63 0.84 0.22 0.57 <0.0001
AGTGCCA 5I 0 53 53 36.1 6.4 34.6 7.3 0.18 0.31 0.60 0.38 0.72 0.78
AATGTCA 5J 0 2 2 21.3 1.2 34.8 7.2 0.01 0.59 0.14 0.37 0.71 0.15
AA___CA 5K 0 1 1 40.0 NA 34.8 7.2 0.47 0.00 NA 0.37 0.71 0.38

a Number of progeny homozygous for the haplotype. b Number of progeny heterozygous for the haplotype. c Mean phenotypic value of progeny with haplotype. d Mean phenotypic
value of progeny without haplotype. e Differences in Ct value or severity between genotypes with and without haplotype as determined by a Kruskal–Wallis test by ranks.

Table 3. Haplotypes for qRRD_TX2WSE_ch1 segregating in diploid rose populations and their effects on rose rosette severity BLUEs. Underscores indicate missing
data for that SNP in the haplotype sequence. p-values less than 0.05 are indicated in bold.

No. Offspring Presence Absence

Haplotype Sequence ID Homo a Het b Total x c SD x d SD p-Value e

CAGTA_AAG_ATGC 1A 0 1 1 0.00 NA 0.37 0.71 0.40
CAG_A_AAG_AT_C 1B 0 1 1 0.00 NA 0.37 0.71 0.40
CATTATGAG_ATGC 1C 0 7 7 0.00 0.00 0.37 0.72 0.17
GATTGTGGGCCTG_ 1D 0 22 22 0.06 0.27 0.38 0.72 <0.001
CAGTATAAG_ATGC 1E 0 20 20 0.17 0.68 0.38 0.71 0.17
C_GT_TGGGCATGT 1F 0 82 82 0.32 0.56 0.38 0.74 0.22
CAGTATGGGCATGT 1G 0 103 103 0.33 0.68 0.38 0.72 0.88
CAGAATGAGGATAC 1H 0 79 79 0.36 0.57 0.37 0.74 0.09
CAGTATAGT_ATGC 1I 0 15 15 0.39 0.97 0.37 0.70 0.68
CCGTGTAAGCATGC 1J 0 14 14 0.69 1.08 0.36 0.70 0.76
CCGAAAAATGACAC 1K 0 92 92 0.49 0.80 0.34 0.69 0.04
CAGTA_AAGCATGC 1L 0 2 2 1.22 1.73 0.37 0.71 0.60

a Number of progeny homozygous for the haplotype. b Number of progeny heterozygous for the haplotype. c Mean phenotypic value of progeny with haplotype. d Mean phenotypic
value of progeny without haplotype. e Differences in severity between genotypes with and without haplotype as determined by a Kruskal–Wallis test by ranks.
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Pedimap was used to visualize haplotype sources (Figure 7). The presumed source of
beneficial haplotype 5B is Rosa wichurana ‘Basye’s Thornless’ (genotype unavailable), which
contributed the haplotype to progenitors WOB26 and DD, the female parents of M4-4 and
J06-20-14-3, respectively. The haplotype 5B passed to TAMU7-20 and TAMU7-30 (progeny
of M4-4) may be identical by descent to the ‘Basye’s Thornless’ haplotype; the pollen
parent of M4-4 is unknown, but it is likely to be a self-progeny of WOB26. Haplotype 5H,
however, appears to come from both ‘MORchari’ (Sweet Chariot) (presumably from ‘Little
Chief’) and the pollen parent of the M4-4xSE, T7-20xSE, and T7-30xSE populations. As the
identity of this pollen parent is uncertain (see materials and methods), it is unclear if these
haplotypes are identical by state or identical by descent. Haplotype 5C, associated with
reduced severity, traces to the parental lines ‘Papa Hemeray’, ‘BAIole’ (Ole), R. setigera ARE,
and Swamp Rose EB ARE, which are unrelated based on available pedigree information.
Haplotype 5E traces to parents J06-20-14-3 and ‘Papa Hemeray’; these two copies are likely
identical by state based on available pedigree information.

Like haplotype 5B, haplotype 1K, the qRRD_TX2WSE_ch1 haplotype associated with
increased severity, was also traced to Rosa wichurana ‘Basye’s Thornless’ and from there to
parents J06-20-14-3 and M4-4 (Figure 7). As with haplotype 5B, the copy of haplotype 1K
passed to TAMU7-20 and TAMU7-30 from M4-4 may be identical by descent to the ‘Basye’s
Thornless’ haplotype. The only source of haplotype 1D, the qRRD_TX2WSE_ch1 haplotype
associated with reduced severity, was J06-20-14-3 through its unknown pollen parent.
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3. Discussion

The consensus map developed for this study represents an improvement on other
high-density linkage maps developed for diploid roses. The length of this map, 759.2 cM,
was shorter than the maps of Yan et al. [19] and Li et al. [20], which were 892.2 cM and
1027.43 cM in length, respectively. This map’s density of 1.5 unique positions/cM was
also higher than that of the previous maps (0.92 and 0.99 unique positions/cM for Yan
et al. and Li et al., respectively), and the maximum distance between markers was also
smaller than in these maps. Several recent maps also developed with polymapR, namely
Bourke et al. [21] and Zurn et al. [22,23], resulted in shorter, denser maps with smaller
maximum gaps than this study’s consensus map. These differences may be due to the use
of different germplasm, genotyping platforms, and different population structures.
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Three QTLs with a major effect (PVE > 10%) and one QTL of minor effect on RRD
Ct value and/or severity were identified in a set of inter-related diploid rose populations.
qRRV_TX2WSE_ch5 was detected in all runs for Ct value and severity in individual years
and across years. The QTL peak is located at approximately 10 Mbp on chromosome 5. The
peak of qRRD_TX2WSE_ch1, detected in 2019 severity and severity overall, was between
0.3 and 4.8 Mbp on chromosome 1. qRRD_TX2WSE_ch3, detected in severity overall, had a
peak at 27.8 Mbp on chromosome 3. The peak of qRRD_TX2WSE_ch6, which was detected
only in 2021 severity, was around 11 Mbp on chromosome 6. While identifying the genes
responsible for these QTLs was beyond the scope of this study, all QTL intervals included
potential disease-resistance candidates, such as genes coding for NBS-LRR-class disease-
resistance proteins and transcription factors (data not shown). Resistance to the mite vector
is also a possible breeding strategy, and all QTL intervals contained multiple genes coding
for receptor-like protein kinases (data not shown), which have been previously tied to pest
resistance in plants [24]. Indeed, a receptor-like protein kinase has been suggested as the
causal gene for resistance to an eriophyid mite affecting wheat [25]. Further work would
be needed to identify the gene(s) responsible for RRD resistance in these populations.

qRRV_TX2WSE_ch5 was observed to have minor dominance effects for Ct value. For
severity, only additive effects were estimated by FlexQTL™, but the heritability estimates
suggest the presence of minor non-additive effects as well. It is possible, however, that the
dominance effects of Ct value may be impacted by its logarithmic nature. A previous study
in titratable acidity in apple [26] found that an acidity gene had additive gene action, but it
was hypothesized that when acidity was measured with pH (a logarithmic scale) rather
than titratable acidity (linear), the gene would appear to have dominant gene action. If this
is the case for qRRV_TX2WSE_ch5, the use of virus titer rather than Ct value may indicate
different gene action.

A total of eleven haplotypes for the qRRV_TX2WSE_ch5 peak were identified in the
progeny, parents, and progenitors; eight of these haplotypes segregated in the progeny.
Haplotype 5B, associated with a higher Ct value (i.e., reduced RRV levels) and reduced
severity, could be distinguished from the other 10 haplotypes by marker chr05_10130872
alone; haplotype 5H, associated with lower Ct value and increased severity, could be
distinguished from the other haplotypes by marker chr05_10509448 alone. Field trial data
(not shown) suggest that parents M4-4, J06-20-14-3, TAMU7-20, and TAMU7-30 (carriers of
haplotype 5B) have some degree of RRD resistance or reduced susceptibility. It is unclear if
the three haplotypes with no effect on severity and/or Ct value are truly neutral in effect
or if the data were insufficient to determine haplotype effect. Further work is needed to
illuminate the effects of these haplotypes, especially haplotype 5C. This haplotype was
associated with reduced severity and had no effect on Ct value; however, one or more
copies of haplotype 5C are carried by individuals susceptible to RRD, such as ‘Old Blush’,
which is homozygous for haplotype 5C.

Two haplotypes from the qRRD_TX2WSE_ch1 peak were determined to have sig-
nificant effects on severity overall. Only haplotype 1D, which was distinguishable
from the other haplotypes by marker chr01_141729 alone, was associated with reduced
severity, but it only occurred in population J14-3xPH. Haplotype 1K, associated with
increased severity, appears to derive from R. wichurana ‘Basye’s Thornless’, meaning
the M4-4/WOB26/’Basye’s Thornless’ lineage carries favorable and unfavorable alleles
for RRD severity from qRRV_TX2WSE_ch5 and qRRD_TX2WSE_ch1, respectively. As
the effects of qRRD_TX2WSE_ch1 are small relative to qRRV_TX2WSE_ch5, M4-4 is still a
promising option for RRD-resistance breeding, as it is homozygous for haplotype 5B.

QTL genotypes and the effects of the other haplotypes for both qRRV_TX2WSE_ch5
and qRRD_TX2WSE_ch1 were not always clear. Most notably, ‘Old Blush’, known to be
moderately susceptible to RRD, is homozygous for haplotype 5C and was assigned a
conflicting QTL genotype between Ct value and severity. Most parents, progenitors, and
founders that could not be assigned a consistent qRRV_TX2WSE_ch5 genotype had one or
more copies of haplotype 5C. As in other studies (e.g., Kostick et al. [27], Verma et al. [26]),
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the presence of multiple Q and q alleles is likely causing difficulties in accurate assignment
of QTL genotypes. Moreover, while the presence of epistasis between severity QTLs could
not be established, epistasis could also confuse the assignment of QTL genotypes.

This study was affected by the varying family sizes that were used: family sizes
ranged from 1 to 89 progeny. Moreover, representation of parents in the progeny was
highly skewed: R. setigera ARE, Swamp Rose EB ARE, and Swamp Rose OB ARE had
relatively low representation among progeny (n = 21, 9, and 1, respectively), while ‘Srdce
Europy’ and M4-4 (through TAMU7-20 and TAMU7-30) were well-represented (n = 160
and 175, respectively). While small families can be used by FlexQTL™’s pedigree-based
analysis, a consequence of using small families was that some haplotypes had very few
occurrences and some diplotypes did not occur in the dataset, thereby hampering the
determination of some haplotype and diplotype effects.

Future work could involve validating qRRD_TX2WSE_ch6 and qRRD_TX2WSE_ch3,
detected in a limited number of runs; using a controlled method of inoculation to ensure ad-
equate disease pressure; and developing larger populations using the parents carrying rare
haplotypes or haplotypes of unknown effect to determine their impact on RRD resistance.
In particular, the effect of haplotype 5C should be confirmed, as its effects are unclear; yet,
it is fairly common in the pedigree of these populations. Further work should be performed
to determine if haplotype 5J (from parent Swamp Rose EB ARE) is indeed a source of RRD
susceptibility. Breeding efforts ought to focus on individuals known to have haplotype
5B and/or 1D. Thirty progeny from a number of families were identified that carried two
qRRV_TX2WSE_ch5-favorable haplotypes and no qRRD_TX2WSE_ch1-favorable haplo-
types. While no progeny carried four favorable haplotypes between qRRV_TX2WSE_ch5
and qRRD_TX2WSE_ch1, 4 and 24 progeny were identified that carried three and two
favorable haplotypes between the two loci, respectively. These progeny, all from family
J14-3xPH, could be of particular use in pyramiding resistance loci.

This study marks the first identification of genomic regions associated with RRD resis-
tance in diploid roses. Indeed, while a number of novel emaraviruses have been described
in recent years, little is known about genetic resistance to most of these viruses. Notable
exceptions are High Plains wheat mosaic virus (HPWMoV), which affects both wheat
and maize, and pigeonpea sterility mosaic virus (PPSMV), affecting pigeonpea and close
relatives [14]. In the case of HPWMoV, genes conferring virus resistance and resistance to
the mite vector have been mapped in maize [28] and wheat (reviewed in [29]), respectively.
Multiple QTLs conferring resistance to PPSMV have been identified in pigeonpea, but as
in this study, candidate genes have not been identified [30,31]. However, a Kompetitive
allele-specific PCR (KASP) assay has recently been designed to aid in the identification
of PPSMV-resistant pigeonpea varieties [32]. If the markers in this study that distinguish
haplotypes 5B and 1D can be validated, similar marker tests could be deployed in roses to
track and manipulate a given QTL and identify progeny likely to have reduced susceptibil-
ity to RRD. By identifying four QTLs for RRD resistance, this study lays the groundwork
for applying MAS in breeding RRD resistant roses and for a better understanding of the
genetic basis for emaravirus resistance in plants.

4. Materials and Methods
4.1. Plant Material

Diploid rose crosses were performed in 2015 and 2016 by the Texas A&M Rose Breeding
and Genetics Program (College Station, TX, USA) and Weeks Roses (Wasco, CA, USA)
to create inter-related populations called TX2WSE that segregated for RRD resistance
(Figure 8). Based on the limited resistance data available at the time, ‘Papa Hemeray’, a
China-type rose; ‘Srdce Europy’, derived from R. setigera and R. wichurana Crép.; Swamp
Rose, a found rose with an everblooming form (Swamp Rose EB ARE) and a once-blooming
form (Swamp Rose OB ARE); and R. setigera ARE were considered possible sources of
resistance. These were crossed with well-adapted genotypes ‘BAIlena’ (Lena), ‘BAIole’
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(Ole), and Texas A&M breeding lines J06-20-14-3, M4-4, TAMU7-20, and TAMU7-30. Eight
populations were developed, ranging in size from 1 to 137, for a total of 382 progeny.
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Figure 8. Pedigree of the TX2WSE diploid rose families (indicated in black) used in this study.
Progeny numbers indicate the number phenotyped in Crossville, Tennessee for RRD resistance.
Direct parents are indicated with gray, and red and blue lines indicate female and male parents,
respectively. Founders and progenitors are indicated in white. SEB-ARE and SOB-ARE indicate
Swamp Rose EB ARE and Swamp Rose OB ARE, respectively. Figure created with Pedimap v1.2
(Wageningen University and Research, Wageningen, The Netherlands) [33].

4.2. Phenotypic Data

As College Station has low RRD pressure, the populations were planted in Crossville,
TN, for phenotyping. Due to plant availability and space constraints, only 248 of the
genotypes were phenotyped for RRD (population numbers reflected in Figure 6). In 2018,
progeny were planted at the University of Tennessee AgResearch Plateau Research and
Education Center (36.013814, −85.127247) in a randomized, complete block design with
two replications, where individual plants were the experimental unit. Family J14-3xPH
was transplanted as mature plants from a nearby field in the same year. Infected cultivars
planted in the same field as well as wild Rosa multiflora Thunb. growing nearby provided
sources of RRV. To further promote disease, in 2019 and 2020, spread of the mite vector was
encouraged by attaching RRV-infected shoots to progeny; this was not done in 2018 due to
the small size of the plants nor in 2021, as the disease was considered well-established in
the field by that point.

Populations were visually assessed for RRD from 2019 through 2021. In 2019 and 2020,
each plant was rated for presence of rosettes on a scale of 0–3, where 0 = no rosettes, 1 = one
rosette, 2 = two rosettes, and 3 = three or more rosettes. Furthermore, plants with symptoms
were given a severity score on a scale of 0–3, where 0 = no symptoms, 1 = one shoot with
symptoms, 2 = two shoots with symptoms, and 3 = three or more shoots with symptoms.
In 2021, a 0–5 scale was used such that, for rosettes, 4 = four rosettes, and 5 = five or more
rosettes, and for severity, 0 = no symptoms, 1 = <10% of plant symptomatic, 2 = <25% of
plant symptomatic, 3 = <50% of plant symptomatic, 4 = <75% of plant symptomatic, and
5 = >75% of plant symptomatic. Data on a 0–5 scale were rescaled to a 0–3 scale for ease of
comparison between years. As some rosettes were likely removed by a routine pruning in
the spring of 2020 and 2021, the visible symptoms data from 2020 and 2021 were curated
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such that if a plant had a rosettes/severity score greater than zero in 2019 but a score of
zero in 2020 or 2021, we assumed the later data for that plant were questionable and treated
them as missing data.

All genotypes (replicates pooled) were tested in 2019 for virus presence using the
qRT-PCR method of Dobhal et al. [34]. Only genotypes that were RRV-negative were tested
in subsequent years. The resulting cycle threshold (Ct) values were used as a proxy for
RRV levels as other virus quantification methods were not widely available at the time.
Samples negative for RRV were assigned a Ct value of 40. To combine the three years of
RRV data, a single Ct value was generated using the lowest Ct value for a genotype from
the three years.

Data summary and necessary statistical analyses were performed in R v4.0.3 [35].
Correlations between traits were calculated with Spearman’s rank-order test in the R
package PerformanceAnalytics [36]. Best linear unbiased estimators (BLUEs) for rosette
and severity scores per year and across years were generated in ASReml® v4.1.0 [37] using
the linear mixed model

Pijklm = µ + Gi(jk) + Fj + Mk + El + FEjl + MEkl + GEi(jk)l + Bm(l) + εijklm

in which Pijklm is the phenotypic value of genotype i at environment l; µ is the overall mean;
Gi(jk) is the fixed effect of genotype i nested in female parent j and male parent k; Fj and Mk
are the fixed effects of the female parent j and male parent k, respectively; El is the random
effect of environment l (year); FEjl and MEkl are the random interactions of female parent j
and male parent k with environment l, respectively; GEi(jk)l is the random interaction of
genotype i nested in female parent j and male parent k with environment l; Bm(l) is the
random effect of block m nested in environment l; and εijklm is the random residual error.

A model with all effects random was performed in ASReml® using the restricted
maximum likelihood method to permit estimation of heritability of rosettes and severity:

Pilm = µ + Gi + El + GEil + Bm(l) + εilm

in which Pilm is the phenotypic value of genotype i at environment l; µ is the overall mean;
Gi is the random effect of genotype i; El is the random effect of environment l (year); GEil is
the random interaction of genotype i with environment l; Bm(l) is the random effect of block
m nested in environment l; and εilm is the random residual error. Broad-sense heritability
(H2) was estimated from the variance components with the formula

H2 =
σ2

G
σ2

G + σ2
GE + σ2

ε

in which σ2
G is the variance of the genotype; σ2

GE is the variance of genotype x environment;
and σ2

ε is the residual error variance. Heritability was not estimated for Ct value due to the
pooling of replicates.

4.3. DNA Extraction and SNP Genotyping

Genomic DNA extraction was performed via the CTAB method as described in
Yan et al. [19]. Genotyping by sequencing (GBS) was performed using the digital geno-
typing procedure described in Morishige et al. [38] and Yan et al. [19] with the restriction
enzyme NgoMIV. After ligation of a barcoded adapter, samples were sheared via sonication
to fragments of approximately 300 bp. A-tailed and T-tailed adapters were added, and PCR
was performed to amplify fragments with both adapters. A final PCR was performed to
incorporate Illumina bridge amplification sequences.

Single-end sequencing was performed on an Illumina HiSeq 2500 with Illumina
protocols (Illumina, San Diego, CA, USA). Only reads with a full match to the barcode
and to the partial NgoMIV restriction site were retained. Single-nucleotide polymorphisms
(SNPs) were called using the CLC Genomics Workbench v11.0.1 (QIAGEN, Valencia, CA,
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USA) using the protocol outlined in Yan et al. [19] except that instead of a Fragaria genome
as a reference the Rosa chinensis v1.0 genome [17] was used as a reference. Reads that did not
align to the reference genome or aligned at multiple locations were excluded. SNPs were
grouped into bins based on their proximity to NgoMIV cut sites in the reference genome
and named based on their physical position in the rose genome.

An examination of the parental genotypes revealed that ‘Srdce Europy’ as genotyped
did not agree with progeny genotypes well, perhaps due to plant misidentification, variety
heterogeneity, or poor genotyping. Therefore, the ‘Srdce Europy’ genotype was imputed
via custom scripts that identified loci in the ‘Srdce Europy’-derived populations where an
allele was segregating, but the maternal parent was homozygous; the paternal parent was
assumed to be heterozygous at these loci and homozygous otherwise. Since this process
results in heterozygous x heterozygous loci as well as some null allele containing crosses
misidentified as heterozygous x homozygous, loci with more than 20% homozygous minor
allele observations were removed. Ambiguous markers were removed. Progeny with an
excessively high number of double recombination events were also removed as part of
this process.

4.4. Linkage Map Development

Linkage maps were developed for populations J14-3xPH (137 genotypes), T7-20xSE
(94 genotypes), and T7-30xSE (82 genotypes). Prior to linkage mapping, SNPs were filtered
via a custom script to eliminate low-quality markers. Markers were removed if they could
not be mapped to a chromosome of the reference genome, had a high proportion of deletion
alleles, were nonbiallelic, had >10% missing data, or if parents were not genotyped for that
marker. Markers were also removed for high levels of segregation distortion (chi-square
test, p ≤ 0.0005) with the exception of some marker classes (paternal, maternal, or both)
on chromosomes 2, 3, and 6. Markers were then filtered in PLINK v1.9 [39,40] to zero
Mendelian-inconsistent errors (MIEs) per population, and markers with >5% MIEs were
removed. To reduce complexity, the data for each population were reduced to one marker of
each marker class per restriction-enzyme bin, prioritizing the retention of markers common
between populations. SNP calls were then converted to dosage via a custom script.

Population maps were developed in the R package polymapR v1.1.1 [41], which was
designed for use in polyploids but can also be used for diploids. Simplex x nulliplex
markers (equivalent to Aa x aa) in coupling phase were used to identify homologs, and
other marker types were assigned to homologs based on their linkage to these markers. Due
to a possible translocation between chromosomes 3 and 6 in J14-3xPH, these chromosomes
were mapped separately. The Haldane function in MDSMap [42] within polymapR was
used to construct maps. Markers that mapped to a different linkage group than their
physical position indicated were removed, as were markers with a high nearest-neighbor
stress and markers that mapped far from their physical position. Population maps were
compared and summarized with the R Shiny application Genetic Map Comparator [43].

The consensus map was developed with the R package LPmerge [44] as implemented
in the R package Mapfuser [45]. To reduce computation time, the population maps were
thinned to one marker every 0.5 cM before consensus map development. The best map
was chosen based on the lowest root mean square error, map length, and overall quality.
As collinearity with the rose genome was an assumption of the ‘Srdce Europy’ imputation
process, correlation of this map with the rose genome was not estimated.

4.5. QTL Analysis

Prior to the QTL analysis, further data curation was required. When the inter-related
populations were considered together, and progenitor and founder data were added, more
MIEs became apparent, and these were zeroed manually. Double recombinations, de-
fined as two recombinations within 10 cM, were identified using FlexQTL™ (Wageningen
University and Research, Wageningen, The Netherlands), Microsoft Excel® (Microsoft Cor-
poration, Redmond, WA, USA), and Pedimap v.1.2 (Wageningen University and Research,
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Wageningen, The Netherlands) [33]. Calls involved in double recombinations were zeroed
in parents/progenitors or progeny as needed. Finally, markers missing >50% of their
data or that had a >5% increase in missing data were removed entirely. After these steps,
1553 markers remained for further use.

The QTL analyses were performed in FlexQTL™. Ct value, per-year BLUEs of severity,
and across-years BLUEs of severity were used as phenotypic data; as number of rosettes
and RRD severity were highly correlated (ρ > 0.99, p < 0.05), and initial runs indicated
that rosettes did not provide additional information in the QTL analysis, the trait was not
investigated further. Initial runs performed with a mixed model (including both additive
and dominance effects) indicated the presence of small dominance effects for both Ct value
and severity; therefore, an additive model was attempted. Based on both trace sample
plots and number of cycles required to reach convergence, a mixed model was deemed
most appropriate for Ct value, and an additive model was determined to be the best fit
for severity (Table S5). The Markov chain lengths ranged from 100,000 to 187,000 to attain
convergence (effective chain size ≥ 100). Any singletons (double recombinations around a
single marker) remaining after curation were deleted by FlexQTL™ due to the likelihood of
genotyping error with GBS. Two different values for the prior distributions (1 or 5, with the
former being the minimum allowed by FlexQTL™ and the latter being a frequently used
value) were used, with two runs performed for each value to ensure robustness of results.

Two times the natural log of the Bayes factor (2lnBF) was used to determine presence
and strength of QTLs, with 2lnBF > 2 indicating positive evidence for a QTL, 2lnBF > 5
indicating strong evidence, and 2lnBF > 10 indicating decisive evidence [18,46]. The QTL
interval was defined as consecutive 2 cM bins with 2lnBF > 2, with the outermost positions
of the bins taken as the start and end of the QTL interval. The mode of the QTL was used
as the QTL peak. A QTL was considered stable if it was detected by >50% of the runs
for the trait. MapChart v2.32 (Wageningen University and Research, Wageningen, The
Netherlands) [47] was used to visualize stable QTL, and QTL were named following the
QTL naming conventions of the Genome Database for Rosaceae [48].

Following Rawandoozi et al. [49], phenotypic variance explained by additive effects
(PVEadd), phenotypic variance explained by dominance effects (PVEdom), and total pheno-
typic variance explained by a QTL (PVEtotal) were calculated as

PVEadd =
σ2

A(qtl)

σ2
P

× 100

PVEdom =
σ2

D(qtl)

σ2
P

× 100

PVEtotal =
σ2

A(qtl) + σ2
D(qtl)

σ2
P

× 100

where σ2
A(qtl) and σ2

D(qtl) are the additive and dominance effects of a QTL, and σ2
P is the

phenotypic variance of the trait, all of which are estimated by FlexQTL™. Furthermore,
heritability was calculated as

H2 =
σ2

trait
σ2

P

where σ2
trait is the phenotypic variance minus the residual variance (estimated by FlexQTL™),

giving the narrow-sense or broad-sense heritability for an additive or mixed model analy-
sis, respectively.

FlexQTL™ was also used to assign QTL genotypes to parents, progenitors, and
founders. A biallelic model was assumed in which Q and q correspond to a high and
low phenotypic value, respectively.
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4.6. Haplotype Analysis

Haplotyping was performed with FlexQTL™ and the R package PediHaplotyper [50].
The effect of presence or absence of a haplotype on phenotypes was examined with the
Kruskal–Wallis test by ranks (p < 0.05) in R, and diplotype effects were tested with the
Steel–Dwass nonparametric multiple comparisons test (p < 0.05) using the R package
PMCMRplus [51]. For testing of diplotype effects, partial diplotypes were made missing.
Similar to Kostick et al. [27], interactions between QTLs were tested by grouping progeny
based on the presence or absence of increased-severity haplotypes across QTLs, then by the
number of reduced-severity haplotypes across QTLs (0, 1, 2, or ≥3), for a theoretical total
of eight groups. Differences between these groups were tested with the Kruskal–Wallis test
by ranks and Steel–Dwass nonparametric multiple comparisons test.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11060660/s1, Table S1: Mean and standard deviation
(SD) of rose rosette disease Ct value, rosette score and severity ratings from 2019, 2020, and 2021
for each diploid rose family grown in Crossville, Tennessee; Table S2: Summary of three unthinned
diploid rose population maps and the integrated consensus map (ICM); Table S3: QTL genotypes for
qRRV_TX2WSE_ch5 for parents, progenitors, and founders estimated by FlexQTL™; Table S4: QTL
genotypes for qRRD_TX2WSE_ch1 for parents, progenitors, and founders estimated by FlexQTL™;
Table S5: Settings used in FlexQTL™ software to conduct QTL analyses and justifications for their use.

Author Contributions: All authors have contributed substantially to this work. Contributions
include: conceptualization, D.H.B.; investigation, E.L.Y., J.L., M.T.W., S.C., P.E.K., N.B.B., D.H.B. and
O.R.-L.; formal analysis, E.L.Y.; writing—original draft preparation, E.L.Y.; writing—review and
editing, E.L.Y., J.L., N.B.B., Z.R., S.C., M.T.W., P.E.K., D.H.B. and O.R.-L.; data curation, E.L.Y. and
Z.R.; supervision, D.H.B. and O.R.-L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Robert E. Basye Endowment in Rose Genetics and the
U.S. Department of Agriculture Specialty Crop Research Initiative projects “Combating rose rosette
disease: short-term and long-term approaches” (2014-51181-22644); “RosBREED: combining disease
resistance with horticultural quality in new rosaceous cultivars” (2014-51181-22378); and “Tools for
genomics-assisted breeding polyploids: development of a community resource” (2020-51181-32156).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used in this study will be available in the Genome Database
for Rosaceae (http://www.rosaceae.org accessed on 6 June 2022).

Acknowledgments: We thank Christian Bedárd (Weeks Roses) for assisting in population develop-
ment; Natalie Anderson and Pamela Hornby (Texas A&M University) for population maintenance;
Walt Hitch (University of Tennessee) for population maintenance; and Eric van de Weg (Wageningen
University) for training and advice on the use of FlexQTL™.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pemberton, H.B.; Ong, K.; Windham, M.; Olson, J.; Byrne, D.H. What is Rose Rosette Disease? J. Hortic. Sci. 2018, 53, 592–595.

[CrossRef]
2. USDA-NASS. Census of Horticultural Specialties (2019). Available online: https://www.nass.usda.gov/Publications/AgCensus/

2017/Online_Resources/Census_of_Horticulture_Specialties/index.php (accessed on 22 May 2022).
3. Chakraborty, P.; Das, S.; Saha, B.; Karmakar, A.; Saha, D.; Saha, A. Rose rosette virus: An emerging pathogen of garden roses in

India. Australas. Plant Pathol. 2017, 46, 223–226. [CrossRef]
4. Vazquez-Iglesias, I.; Ochoa-Corona, F.M.; Tang, J.; Robinson, R.; Clover, G.R.G.; Fox, A.; Boonham, N. Facing Rose rosette virus: A

risk to European rose cultivation. Plant Pathol. 2020, 69, 1603–1617. [CrossRef]
5. Amrine, J.W.; Hindal, D.F.; Stasny, T.A.; Williams, R.L.; Coffman, C.C. Transmission of the rose rosette disease agent to Rosa

multiflora by Phyllocoptes fructiphilus (Acari: Eriophyidae). Entomol. News 1988, 99, 239–252.

https://www.mdpi.com/article/10.3390/pathogens11060660/s1
https://www.mdpi.com/article/10.3390/pathogens11060660/s1
http://www.rosaceae.org
http://doi.org/10.21273/HORTSCI12550-17
https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Census_of_Horticulture_Specialties/index.php
https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Census_of_Horticulture_Specialties/index.php
http://doi.org/10.1007/s13313-017-0479-y
http://doi.org/10.1111/ppa.13255


Pathogens 2022, 11, 660 19 of 20

6. Hoy, M. Eriophyid mite vector of rose rosette disease (RRD) Phyllocoptes fructiphilus Keifer (Arachnida: Acari: Eriophyidae). EDIS
2013, 8, EENY-558. [CrossRef]

7. Windham, M.; Windham, A.; Hale, F.; Amrine Jr, J. Observations on rose rosette disease. Am. Rose 2014, 42, 56–62.
8. Olson, J.; Rebek, E.; Schnelle, M. Rose Rosette Disease. 2015, p. EPP-7329. Available online: https://extension.okstate.

edu/fact-sheets/print-publications/epp-entomology-and-plant-pathologhy/rose-rosette-disease-epp-7329.pdf (accessed on
22 May 2022).

9. Laney, A.G.; Keller, K.E.; Martin, R.R.; Tzanetakis, I.E. A discovery 70 years in the making: Characterization of the rose rosette
virus. J. Gen. Virol. 2011, 92, 1727–1732. [CrossRef]

10. Di Bello, P.L.; Ho, T.; Tzanetakis, I.E. The evolution of emaraviruses is becoming more complex: Seven segments identified in the
causal agent of rose rosette disease. Virus Res. 2015, 210, 241–244. [CrossRef]

11. Kormelink, R.; Verchot, J.; Tao, X.; Desbiez, C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021, 13, 842.
[CrossRef]

12. Verchot, J.; Herath, V.; Urrutia, C.D.; Gayral, M.; Lyle, K.; Shires, M.K.; Ong, K.; Byrne, D. Development of a Reverse Genetic
System for Studying Rose Rosette Virus in Whole Plants. Mol. Plant-Microbe Interact. 2020, 33, 1209–1221. [CrossRef]

13. Katsiani, A.; Stainton, D.; Lamour, K.; Tzanetakis, I.E. The population structure of Rose rosette virus in the USA. J. Gen. Virol.
2020, 101, 676–684. [CrossRef] [PubMed]

14. Mielke-Ehret, N.; Mühlbach, H.-P. Emaravirus: A novel genus of multipartite, negative strand RNA plant viruses. Viruses
2012, 4, 1515–1536. [CrossRef] [PubMed]

15. Byrne, D.H.; Klein, P.; Yan, M.; Young, E.; Lau, J.; Ong, K.; Shires, M.; Olson, J.; Windham, M.; Evans, T. Challenges of breeding
rose rosette–resistant roses. HortScience 2018, 53, 604–608. [CrossRef]

16. Zlesak, D.C. Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species, and breeding lines.
Floric. Ornam. Biotechnol. 2009, 3, 53–70.

17. Hibrand Saint-Oyant, L.; Ruttink, T.; Hamama, L.; Kirov, I.; Lakhwani, D.; Zhou, N.N.; Bourke, P.M.; Daccord, N.; Leus, L.; Schulz,
D.; et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 2018, 4, 473–484. [CrossRef]

18. Bink, M.C.A.M.; Jansen, J.; Madduri, M.; Voorrips, R.E.; Durel, C.E.; Kouassi, A.B.; Laurens, F.; Mathis, F.; Gessler, C.; Gobbin, D.;
et al. Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor.
Appl. Genet. 2014, 127, 1073–1090. [CrossRef]

19. Yan, M.; Byrne, D.H.; Klein, P.E.; Yang, J.; Dong, Q.; Anderson, N. Genotyping-by-sequencing application on diploid rose and a
resulting high-density SNP-based consensus map. Hortic. Res. 2018, 5, 17. [CrossRef]

20. Li, S.; Yang, G.; Yang, S.; Just, J.; Yan, H.; Zhou, N.; Jian, H.; Wang, Q.; Chen, M.; Qiu, X. The development of a high-density
genetic map significantly improves the quality of reference genome assemblies for rose. Sci. Rep. 2019, 9, 5985. [CrossRef]

21. Bourke, P.M.; Arens, P.; Voorrips, R.E.; Esselink, G.D.; Koning-Boucoiran, C.F.; van’t Westende, W.P.; Santos Leonardo, T.;
Wissink, P.; Zheng, C.; Geest, G. Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant J.
2017, 90, 330–343. [CrossRef]

22. Zurn, J.D.; Zlesak, D.C.; Holen, M.; Bradeen, J.M.; Hokanson, S.C.; Bassil, N.V. Mapping a novel black spot resistance locus in the
climbing rose Brite Eyes™(‘RADbrite’). Front. Plant Sci. 2018, 9, 1730. [CrossRef]

23. Zurn, J.D.; Zlesak, D.C.; Holen, M.; Bradeen, J.M.; Hokanson, S.C.; Bassil, N.V. Mapping the black spot resistance locus Rdr3 in
the shrub rose ‘George Vancouver’ allows for the development of improved diagnostic markers for DNA-informed breeding.
Theor. Appl. Genet. 2020, 133, 2011–2020. [CrossRef] [PubMed]

24. Goff, K.E.; Ramonell, K.M. The Role and Regulation of Receptor-Like Kinases in Plant Defense. Gene Regul. Syst. Biol.
2007, 1, 167–175. [CrossRef]

25. Zhao, L.; Liu, S.; Abdelsalam, N.R.; Carver, B.F.; Bai, G. Characterization of wheat curl mite resistance gene Cmc4 in OK05312.
Theor. Appl. Genet. 2021, 134, 993–1005. [CrossRef] [PubMed]

26. Verma, S.; Evans, K.; Guan, Y.; Luby, J.; Rosyara, U.; Howard, N.; Bassil, N.; Bink, M.; van de Weg, W.; Peace, C. Two large-effect
QTLs, Ma and Ma3, determine genetic potential for acidity in apple fruit: Breeding insights from a multi-family study. J. Tree
Genet. Genom. 2019, 15, 1–17. [CrossRef]

27. Kostick, S.A.; Teh, S.L.; Norelli, J.L.; Vanderzande, S.; Peace, C.; Evans, K.M. Fire blight QTL analysis in a multi-family apple
population identifies a reduced-susceptibility allele in ‘Honeycrisp’. Hortic. Res. 2021, 8, 28. [CrossRef]

28. Marçon, A.; Kaeppler, S.M.; Jensen, S.G. Resistance to Systemic Spread of High Plains Virus and Wheat Streak Mosaic Virus
Cosegregates in Two F2 Maize Populations Inoculated with Both Pathogens. Crop Sci. 1997, 37, 1923–1927. [CrossRef]

29. Nachappa, P.; Haley, S.; Pearce, S. Resistance to the wheat curl mite and mite-transmitted viruses: Challenges and future directions.
Curr. Opin. Insect Sci. 2021, 45, 21–27. [CrossRef]

30. Saxena, R.K.; Kale, S.M.; Kumar, V.; Parupali, S.; Joshi, S.; Singh, V.; Garg, V.; Das, R.R.; Sharma, M.; Yamini, K.N. Genotyping-by-
sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease
in pigeonpea. J. Sci. Rep. 2017, 7, 1813. [CrossRef]

31. Gnanesh, B.; Bohra, A.; Sharma, M.; Byregowda, M.; Pande, S.; Wesley, V.; Saxena, R.; Saxena, K.; Kishor, P.K.; Varshney, R.
Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.)
Millsp.]. Field Crops Res. 2011, 123, 53–61. [CrossRef]

http://doi.org/10.32473/edis-in999-2013
https://extension.okstate.edu/fact-sheets/print-publications/epp-entomology-and-plant-pathologhy/rose-rosette-disease-epp-7329.pdf
https://extension.okstate.edu/fact-sheets/print-publications/epp-entomology-and-plant-pathologhy/rose-rosette-disease-epp-7329.pdf
http://doi.org/10.1099/vir.0.031146-0
http://doi.org/10.1016/j.virusres.2015.08.009
http://doi.org/10.3390/v13050842
http://doi.org/10.1094/MPMI-04-20-0094-R
http://doi.org/10.1099/jgv.0.001418
http://www.ncbi.nlm.nih.gov/pubmed/32375952
http://doi.org/10.3390/v4091515
http://www.ncbi.nlm.nih.gov/pubmed/23170170
http://doi.org/10.21273/HORTSCI12553-17
http://doi.org/10.1038/s41477-018-0166-1
http://doi.org/10.1007/s00122-014-2281-3
http://doi.org/10.1038/s41438-018-0021-6
http://doi.org/10.1038/s41598-019-42428-y
http://doi.org/10.1111/tpj.13496
http://doi.org/10.3389/fpls.2018.01730
http://doi.org/10.1007/s00122-020-03574-4
http://www.ncbi.nlm.nih.gov/pubmed/32166372
http://doi.org/10.1177/117762500700100015
http://doi.org/10.1007/s00122-020-03737-3
http://www.ncbi.nlm.nih.gov/pubmed/33606050
http://doi.org/10.1007/s11295-019-1324-y
http://doi.org/10.1038/s41438-021-00466-6
http://doi.org/10.2135/cropsci1997.0011183X003700060042x
http://doi.org/10.1016/j.cois.2020.11.003
http://doi.org/10.1038/s41598-017-01535-4
http://doi.org/10.1016/j.fcr.2011.04.011


Pathogens 2022, 11, 660 20 of 20

32. Saxena, R.K.; Hake, A.; Bohra, A.; Khan, A.W.; Hingane, A.; Sultana, R.; Singh, I.P.; Naik, S.J.S.; Varshney, R.K. A diagnostic
marker kit for Fusarium wilt and sterility mosaic diseases resistance in pigeonpea. Theor. Appl. Genet. 2021, 134, 367–379.
[CrossRef] [PubMed]

33. Voorrips, R.E.; Bink, M.C.; van de Weg, E. Pedimap: Software for the visualization of genetic and phenotypic data in pedigrees.
J. Hered. 2012, 903–907. [CrossRef] [PubMed]

34. Dobhal, S.; Olson, J.D.; Arif, M.; Suarez, J.A.G.; Ochoa-Corona, F.M. A simplified strategy for sensitive detection of Rose rosette
virus compatible with three RT-PCR chemistries. J. Virol. Methods 2016, 232, 47–56. [CrossRef] [PubMed]

35. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2020. Available online: https://www.R-project.org/ (accessed on 22 May 2022).

36. Peterson, B.G.; Carl, P. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis, 2.0.4. 2020. Available online:
https://CRAN.R-project.org/package=PerformanceAnalytics (accessed on 22 May 2022).

37. Butler, D. asreml: Fits the Linear Mixed Model, 4.1.0.160. 2021. Available online: https://asreml.kb.vsni.co.uk/knowledge-base/
asreml/ (accessed on 22 May 2022).

38. Morishige, D.T.; Klein, P.E.; Hilley, J.L.; Sahraeian, S.M.E.; Sharma, A.; Mullet, J.E. Digital genotyping of sorghum–a diverse plant
species with a large repeat-rich genome. BMC Genom. 2013, 14, 448. [CrossRef] [PubMed]

39. Purcell, S.; Chang, C. PLINK 1.9. 2015. Available online: https://www.cog-genomics.org/plink2 (accessed on 22 May 2022).
40. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK:

A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [CrossRef]
41. Bourke, P.M.; van Geest, G.; Voorrips, R.E.; Jansen, J.; Kranenburg, T.; Shahin, A.; Visser, R.G.F.; Arens, P.; Smulders, M.J.M.;

Maliepaard, C. polymapR—linkage analysis and genetic map construction from F1 populations of outcrossing polyploids.
Bioinformatics 2018, 34, 3496–3502. [CrossRef] [PubMed]

42. Preedy, K.; Hackett, C. A rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid
populations using multidimensional scaling. Theor. Appl. Genet. 2016, 129, 2117–2132. [CrossRef]

43. Holtz, Y.; David, J.L.; Ranwez, V. The genetic map comparator: A user-friendly application to display and compare genetic maps.
Bioinformatics 2017, 33, 1387–1388. [CrossRef]

44. Endelman, J.B.; Plomion, C. LPmerge: An R package for merging genetic maps by linear programming. Bioinformatics
2014, 30, 1623–1624. [CrossRef]

45. van Muijen, D.; Basnet, R.; Dek, N.; Maliepaard, C.; Gutteling, E. Mapfuser: An integrative toolbox for consensus map construction
and Marey maps. bioRxiv 2017. [CrossRef]

46. Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assn. 1995, 90, 773–795. [CrossRef]
47. Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [CrossRef]

[PubMed]
48. Jung, S.; Lee, T.; Cheng, C.-H.; Buble, K.; Zheng, P.; Yu, J.; Humann, J.; Ficklin, S.P.; Gasic, K.; Scott, K. 15 years of GDR: New data

and functionality in the Genome Database for Rosaceae. Nucleic Acids Res. 2018, 47, D1137–D1145. [CrossRef] [PubMed]
49. Rawandoozi, Z.J.; Hartmann, T.P.; Carpenedo, S.; Gasic, K.; da Silva Linge, C.; Cai, L.; Van de Weg, E.; Byrne, D.H. Identification

and characterization of QTLs for fruit quality traits in peach through a multi-family approach. BMC Genom. 2020, 21, 1–18.
[CrossRef] [PubMed]

50. Voorrips, R.E.; Bink, M.C.A.M.; Kruisselbrink, J.W.; Koehorst-van Putten, H.J.J.; van de Weg, W.E. PediHaplotyper: Software for
consistent assignment of marker haplotypes in pedigrees. Mol. Breed. 2016, 36, 119. [CrossRef]

51. Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended, 1.9.0. 2021. Available online:
https://CRAN.R-project.org/package=PMCMRplus (accessed on 22 May 2022).

http://doi.org/10.1007/s00122-020-03702-0
http://www.ncbi.nlm.nih.gov/pubmed/33079215
http://doi.org/10.1093/jhered/ess060
http://www.ncbi.nlm.nih.gov/pubmed/23087384
http://doi.org/10.1016/j.jviromet.2016.01.013
http://www.ncbi.nlm.nih.gov/pubmed/26850142
https://www.R-project.org/
https://CRAN.R-project.org/package=PerformanceAnalytics
https://asreml.kb.vsni.co.uk/knowledge-base/asreml/
https://asreml.kb.vsni.co.uk/knowledge-base/asreml/
http://doi.org/10.1186/1471-2164-14-448
http://www.ncbi.nlm.nih.gov/pubmed/23829350
https://www.cog-genomics.org/plink2
http://doi.org/10.1086/519795
http://doi.org/10.1093/bioinformatics/bty371
http://www.ncbi.nlm.nih.gov/pubmed/29722786
http://doi.org/10.1007/s00122-016-2761-8
http://doi.org/10.1093/bioinformatics/btw816
http://doi.org/10.1093/bioinformatics/btu091
http://doi.org/10.1101/200311
http://doi.org/10.1080/01621459.1995.10476572
http://doi.org/10.1093/jhered/93.1.77
http://www.ncbi.nlm.nih.gov/pubmed/12011185
http://doi.org/10.1093/nar/gky1000
http://www.ncbi.nlm.nih.gov/pubmed/30357347
http://doi.org/10.1186/s12864-020-06927-x
http://www.ncbi.nlm.nih.gov/pubmed/32727362
http://doi.org/10.1007/s11032-016-0539-y
https://CRAN.R-project.org/package=PMCMRplus

	Introduction 
	Results 
	Phenotypic Data Analysis 
	Linkage Map 
	QTL Analysis 
	Haplotype Analysis 

	Discussion 
	Materials and Methods 
	Plant Material 
	Phenotypic Data 
	DNA Extraction and SNP Genotyping 
	Linkage Map Development 
	QTL Analysis 
	Haplotype Analysis 

	References

