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induced oxidative stress in RPE cells.

real-time polymerase chain reaction (RT-gPCR).

PGC-1a, NRF2, HO-1, and NQO-1, in RPE cells.

Background: Oxidative damage to retinal pigment epithelial (RPE) cells contributes to the development of age-
related macular degeneration, which is among the leading causes of visual loss in elderly people. In the present
study, we evaluated the protective role of triphenylphosphonium (TPP)-Niacin against hydrogen peroxide (H,0,)-

Methods: The cellular viability, lactate dehydrogenase release, reactive oxygen species (ROS) generation, and
mitochondrial function of retinal ARPE-19 cells were determined under treatment with H,O, or pre-treatment with
TPP-Niacin. The expression level of mitochondrial related genes and some transcription factors were assessed using

Results: TPP-Niacin significantly improved cell viability, reduced ROS generation, and increased the antioxidant
enzymes in H,O,-treated ARPE-19 cells. Mitochondrial dysfunction from the H,O,-induced oxidative stress was also
considerably diminished by TPP-Niacin treatment, along with reduction of the mitochondrial membrane potential
(MMP) and upregulation of the mitochondrial-associated gene. In addition, TPP-Niacin markedly enhanced the
expression of transcription factors (PGC-1a and NRF2) and antioxidant-associated genes (especially HO-1 and NQO-1).

Conclusion: We verified the protective effect of TPP-Niacin against H,O,-induced oxidative stress in RPE cells. TPP-
Niacin is believed to protect against mitochondrial dysfunction by upregulating antioxidant-related genes, such as
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Background

Age-related macular degeneration (AMD) is one of the
most common causes of irreversible blindness in the eld-
erly population in developed countries. There are two
major forms of AMD: non-neovascular dry form of
AMD affecting approximately 85-90% of patients and
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neovascular exudative wet form affecting the remaining
10-15% of patients [1, 2]. Dry AMD (atrophy AMD) is
caused by changes in the pigmentation of the retinal pig-
ment epithelial (RPE) cells and subretinal deposits owing
to lipid and protein accumulation between these cells
and Bruch’s membrane, a condition termed as drusen.
These processes finally result in RPE cell death, photo-
receptor dysfunction, and loss of vision [1-3]. At
present, anti-vascular endothelial growth factor (anti-
VEGF) therapy has enabled extraordinary improvements
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in wet AMD; however, effective treatments for dry AMD
are not yet available [4, 5].

Despite being a condition of unknown etiology, oxida-
tive stress is considered as a major influence on RPE
cells in AMD pathophysiology [5-7]. RPE cells have high
metabolic rates with enriched mitochondrial population,
and the oxidative phosphorylation process produces ad-
enosine triphosphate (ATP), indicating the generation of
high amounts of reactive oxygen species (ROS) [8].
Thus, RPE cells exist in an environment of abundant en-
dogenous ROS, and the long-term accumulation of such
oxidative damage causes dysfunctions in the RPE cells
and increases their susceptibility to oxidative stress. The
ROS predominantly target mitochondria and destroy
their membrane integrity, dissipating the mitochondrial
membrane potential (AYm, MMP), causing mitochon-
drial dysfunction, and governing cell survival. Indeed,
intramitochondrial oxidative stress is connected with
processes ruling cell survival, such as mitochondrial
flexibility, apoptosis, and autophagy, in AMD [9]. There-
fore, protecting RPE cells from oxidative damage is ne-
cessary for preventing or weakening AMD.

To improve the therapeutic effects and diminish the
side effects of chemicals, researchers have investigated
strategies for subcellular targeting, especially the mito-
chondria. The selective targeting of antioxidants toward
mitochondria by covalent conjugation with the lipophilic
triphenylphosphonium (TPP) cation is a popular method
[10-12]. TPP, which is a well-known mitochondrial tar-
geting moiety, is a membrane-permeant lipophilic cation
that is quickly accumulated several fold within the
mitochondria in vivo and is controlled by the large
MMP [13]. Since the development of mitochondrial tar-
get compounds, there have been several reported
mitochondria-targeting antioxidants, including MitoQ
[14], MitoC [15], MitoE [16], and TPP-IOA [17]. Most
of these studies employed traditional antioxidants such
as vitamin C, vitamin E, and oleic acid to obtain TPP
conjugates. Among these vitamins, B3 (niacin or nico-
tinic acid) is widely recognized as a potent antioxidant
that also exerts powerful lipid-lowering effects at high
concentrations [18—21]. However, based on a literature
search, neither the synthesis of TPP-conjugated niacin
(TPP-Niacin, Fig. 1a) for mitochondrial targeting nor its
antioxidant effects have been demonstrated. Therefore,
in this study, we synthesized TPP-conjugated niacin
(TPP-Niacin) and investigated its protective effects on
RPE cells for hydrogen peroxide (H,O,)-induced dam-
age. We also evaluated the molecular actions underlying
the effects of TPP-Niacin on H,O,-stimulated ARPE-19.
In brief, we confirmed that TPP-Niacin exerted a
protective role against H,O,-induced cytotoxicity and
mitochondrial dysfunction via upregulation of the
antioxidant-associated genes in RPE cells.
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Methods

The human ARPE-19 cell line was purchased from
American Type Culture Collection (ATCC, Manassas,
VA, USA). Dulbecco’s modified Eagle’s medium: nutri-
ent mixture F-12 media (DMEM/F12), fetal bovine
serum (FBS), penicillin/streptomycin, and 2,7-dichloro-
fluorescein diacetate (H,DCF-DA) were purchased from
Thermo Fisher Scientific (Wilmington, DE, USA).
Hydrogen peroxide, dihydroethidium (DHE), JC-10 assay
kit, N-acetyl-cysteine (NAC), and carbonyl cyanide m-
chlorophenyl hydrazone (CCCP) were purchased from
Sigma-Aldrich (St. Louis, MO, USA, owned by Merck
KGA). TPP-Niacin was chemically synthesized according
to a previous report and patent application, and niacin
was used as the reference control [12, 14, 22, 23]. The
Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase
(LDH) assays were purchased from Dojindo Molecular
Technologies (Japan). The kits used to determine the
superoxide dismutase 1 and 2 (SOD1 and SOD2), cata-
lase and glutathione peroxidase activities, and tetra-
methylrhodamine ethyl ester (TMRE) reagent were
obtained from Abcam (UK).

Cell culture

The human ARPE-19 cells were routinely maintained in
DMEM/F12 supplemented with 10% FBS and 1% peni-
cillin/streptomycin. The cells were incubated at 37 °C
under atmospheric conditions at 5% CO,,

Cell viability assay

The ARPE-19 cells were placed in 96-well plates with
5% 10° cells/well and incubated for 24 h. The next day,
the cells were exposed to different concentrations of
TPP-Niacin for 24, 48, and 72 h. The cell viabilities were
then assessed using the CCK-8 assay. In brief, 10 uL of
the CCK-8 reagent was added to each sample and incu-
bated for 1h. Then, the absorbance values were mea-
sured at 450 nm using a microplate reader (Bio-Tek,
Winooski, VT, USA). To evaluate suitable H,O, concen-
trations for oxidative damage and cytotoxic induction,
the cells were seeded in 96-well plates for 24 h and incu-
bated with various concentrations of H,O, for another
24 h. Then, the cell viabilities were evaluated by CCK-8
using the same method as before. To examine the
protective effects of TPP-Niacin against H,O,-induced
oxidative damage, the seeded cells were pretreated with
different concentrations of TPP-Niacin for 2 h, followed
by adding to 300 uM H,O, in TPP-Niacin contained
media for an additional 24 h. Then, the cell viabilities
were evaluated using CCK-8. All samples were prepared
in triplicate, and each experiment was repeated three
times.
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Fig. 1 Protective effects of TPP-Niacin against H,O,-induced cytotoxicity in ARPE-19 cells. a Chemical structure of TPP-Niacin. b RPE cells were
treated with TPP-Niacin (25-400 uM) or 0.1% DMSO (vehicle control) for 24-72 h and the cell viabilities were measured using the CCK-8 assay. ¢
Cells were treated with H,O, (0.15-2.4 mM) for 24 h and cell viabilities were measured. Cells were pretreated with TPP-Niacin at indicated
concentrations or 0.1% DMSO (vehicle control) for 2 h and then incubated with or without 300 uM H,O, for a further 24 h. Cell viabilities and LDH
release were measured by the CCK-8 assay (d) and LDH assay (e), respectively. ### P < 0.001 versus control group and **P < 0.01, ***P < 0.001
versus the H,O,-treated group were considered statistically significant differences

Lactate dehydrogenase (LDH) release assay intensities were measured using the fluorescence plate
Cell cytotoxicities were determined by the LDH released  reader (Bio-Tek) at Ex./Em. = 495/527 nm for H,DCEF-
from damaged cells using the cytotoxicity LDH assay kit. DA and Ex./Em. = 535/610nm for DHE. Then, the
In brief, ARPE-19 cells were placed in 96-well plates (5 H,DCF-DA-stained cell images were obtained with a
x 10% cells/well) and pretreated with different concentra-  fluorescent microscope IX51 with DP controller (Olym-
tions of TPP-Niacin for 2 h, followed by adding to  pus Optical, Japan). All samples were prepared in tripli-
300 uM H,O, in TPP-Niacin contained media for 24 h. cate, and each experiment was repeated three times.

The background of LDH in the growth medium was

measured and subtracted from all test samples. The Antioxidant enzyme activity

basal levels of LDH (0% cell death), as measured in the The ARPE-19 cells (5 x 10° cells/well) were plated onto
supernatants of the vehicle-treated cells, and maximal 100 mm cell culture dishes and pretreated with different
levels of LDH (100% cell death) measured by lysis buffer ~ concentrations of TPP-Niacin for 2 h, followed by add-
induction for complete cell death, were averaged and ing to 300 uM H,O, in TPP-Niacin contained media for
used to calculate the percentage of cell death as per the 24 h; then, the cells were collected in clean tubes with

manufacturer’s protocol. 100 uL Pro-Prep (Intron, Korea) lysis buffer for 20 min
on ice after washing with phosphate buffered saline
Measurement of ROS (PBS). Next, the supernatant was carefully collected after

The generation of intracellular ROS was examined using  centrifugation and protein concentration was calculated
the ROS detection reagent according to manufacturer with a bicinchoninic acid protein assay kit (Thermo
instructions. Briefly, cells were grown in a 96-well black  Fisher Scientific). The intracellular activities of SODI,
plate (Eppendorf Ltd., Germany) and subjected to differ- SOD2, CAT, and GPx were detected with commercial
ent treatments with/without TPP-Niacin and H,O,  kits (Abcam, UK) according to manufacturer directions,
Then, the cells were incubated with 5 uM H,DCF-DA or and the results were shown as percentages of the un-
10uM DHE at 37°C for 20 min. The fluorescence treated groups.
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MMP and staining

The MMP assay was conducted as per manufacturer in-
structions for the JC-10 MMP assay kit. In brief, ARPE-
19 cells (5 x 10% cells/well) seeded in the 96-well clear
bottom black plates were pretreated with different con-
centrations of TPP-Niacin for 2 h, followed by adding to
300 uM H,0, in TPP-Niacin contained media. After 24
h, the JC-10 assay solution was added to the cells, and
the plate was incubated in the dark for 30 min. Follow-
ing incubation, the assay buffer B was added, and the
fluorescent intensities were measured at 490/525 nm and
540/590 nm using a multimode plate reader (Bio-Tek).
The ratio of red/green fluorescent intensity was used to
determine the MMP. CCCP and NAC were used as the
positive and antioxidant control, respectively. All sam-
ples were examined in triplicate, and each experiment
was repeated three times. To visualize the effects of
TPP-Niacin on the MMP, cells were stained with TMRE
reagent and analyzed using an inverted fluorescence
microscope IX51 with DP controller (Olympus Corpor-
ation, Japan) at Ex./Em. = 549/575 nm.

Transmission electron microscopy

The treated ARPE-19 cells were washed three times with
0.1 M PBS and fixed overnight in 3% glutaraldehyde at
4°C and 1% osmium tetroxide solution as additional fix-
ation for 30 min. The cells were dehydrated with a
graded series of ethanols and then embedded in epoxy
resin. The embedded sample was cut into ultrathin sec-
tions around 60nm using an ultramicrotome (RMC
MT-XL; RMC Products, Tucson, AZ, USA) and ob-
served with a transmission electron microscope (Hitachi
H-7100, Japan).

RNA collection and quantitative PCR

The total RNA was collected using Trizol reagent
(Thermo Fisher Scientific) and resuspended in RNAse-
free water. The concentration of each sample was then
determined using the NanoDrop 1000 spectrophotom-
eter (Thermo Fisher Scientific). Reverse transcription
was subsequently performed with 1 pug of RNA to pro-
duce the complimentary DNA (cDNA) using the Sensi-
Fast ¢cDNA synthesis kit (Bioline, London, UK). To
measure the gene expression, a quantitative polymerase
chain reaction (qPCR) was performed using 3 uL of the
c¢DNA template and the Power SYBR Green Master Mix
(Thermo Fisher Scientific) on a StepOnePlus apparatus
(Applied Systems, USA). All samples were examined in
triplicate, and each experiment was repeated three times.
Data were normalized to the mean expression of the
housekeeping gene using GAPDH and quantified using
the 2-“*“T method. The primer sequences used are
summarized in Table 1.
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Statistics

Statistical analyses were performed using the GraphPad
Prism 5 software (GraphPad Software Inc., La Jolla, CA,
USA), and all data were presented as mean+SD. The
Student’s t-test was used to calculate statistical signifi-
cance between paired groups. In this study, the statistical
significances are denoted as follows: ns P >0.05, =P <
0.05, P < 0.01, and =P < 0.001.

Results

Cell viability and protective effect of TPP-niacin on ARPE-
19 cells

To evaluate the optimal concentration of TPP-Niacin
(Fig. 1a) that can be used without causing cytotoxicity,
the ARPE-19 cells were incubated with various concen-
trations of TPP-Niacin for 24, 48, and 72 h. As shown in
Fig. 1b, the TPP-Niacin at 25 and 50 uM concentrations
did not show any cytotoxicities in the ARPE-19 cells
compared to the control group, whereas concentrations
between 100 and 400 uM attenuated the cell viabilities at
48 and 72 h. Thus, 25 and 50 uM of TPP-Niacin were
used in the subsequent experiments. To determine a
suitable H,O, concentration for oxidative damage as-
sessment, the cells were exposed to various concentra-
tions of H,O, for 24h. The H,O, treatment (around
300 uM) significantly reduced cell viability, resulting in
46.3% cell death (Fig. 1c). Therefore, the H,O, concen-
tration of 300 pM was utilized in the subsequent experi-
ments. To test the protective effects of TPP-Niacin on
H,05-induced cell death, the cells were treated with
TPP-Niacin for 2 h before being exposed to H,O, for 24
h. As shown in Fig. 1d, the pretreatments with 25 and
50 uM of TPP-Niacin significantly improved H,O,-in-
duced reductions of ARPE-19 cells (at 25 uM: 70 + 6.1%;
at 50 uM: 72 + 7.5%). The protective effects of TPP-
Niacin were also assessed by the LDH assay. The TPP-
Niacin pre-treated cells for 2h significantly reduced
H,0,-induced LDH levels (Fig. 1e). In addition, to com-
pare the protective effects of niacin and TPP-Niacin, the
cell viability assays were performed with and without
oxidative stress. The test compounds did not show any
cytotoxicities, and the pretreatment of cells with niacin,
TPP-Niacin, and NAC for 2 h significantly protected the
cells from H,O,-induced cell death (Supplementary Fig-
ure la and 1b).

TPP-niacin suppressed H,0,-induced oxidative stress in
ARPE-19 cells

The excessive accumulation of ROS is regarded as one
of the main sources of cell damage induced by H,O,.
Intracellular ROS signals were quantified using a fluores-
cence probe, H,DCF-DA and DHE reagent, in the
ARPE-19 cells. As shown in Fig. 2, compared with the
control group, 300 uM H,O, caused a significant
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Target gene

Forward sequence (5'-3')

Reverse sequence (5-3')

ATP50 CGCTATGCCACAGCTCTTTA AAGGCAGAAACGACTCCTTG
COox4i GGCATTGAAGGAGAAGGAGA TCATGTCCAGCATCCTCTTG
COX5B GAGGTGGTGTTCCCACTGAT CAGACGACGCTGGTATTGTC
NDUFB5 CTTCCTCACTCGTGGCTTTC TCTGGGACATAGCCTTCTGG
FIST GACATCCGTAAAGGCATCGT ACAGCAAGTCCGATGAGTCC
MFN1 TGCCCTCTTGAGAGATGACC TCTTTCCATGTGCTGTCTGC
MFN2 ATGCATCCCCACTTAAGCAC GCAGAACTTTGTCCCAGAGC
TFAM TAAGACTGCAAGCAGCGAAG TTCTCAGTTTCCCAGGTGCT
POLG TGCAGTGAGGAGGAGGAGTT CCCAGGTAAGTGCCATGAGT
SOD1 GAAGGTGTGGGGAAGCATTA CTTTGCCCAAGTCATCTGCT
SOD2 AAACCTCAGCCCTAACGGTG GCCTGTTGTTCCTTGCAGTG
CAT GATAGCCTTCGACCCAAGCA AGAAGGCTGTTGTTCCGGAG
GPX1 AGTCGGTGTATGCCTTCTCG CAAACTGGTTGCACGGGAAG
TXN2 TGGTGGCCTGACTGTAACAC CACCGCTGACACCTCATACT
PRDX3 TGCATGTGGAAGAACGAGCT TCCACTGAGACTGCGACAAC
PRDX5 AGGGTGTGCTGTTTGGAGTT TCCACATTCAGGGCCTTCAC
PRDX6 CAGCTCGTGTGGTGTTTGTT AGATGGGAGCTCTTTGGTGA
HMOX1 AGTCTTCGCCCCTGTCTACT GCTTGAACTTGGTGGCACTG
NQO1 AAAGGACCCTTCCGGAGTAA CGTTTCTTCCATCCTTCCAG
PGCla CAAGCAAAGGGAGAGGCAGA ACCTGCGCAAAGTGTATCCA
PGC1b TGGGCTGAGTTCTCCATTCT TGAAGCTGCGATCCTTACCT
ESRRA TCGCTGTCTGACCAGATGTC AGGGCCAAGGCCTTTAGTAG
FOXO1 GCATCCATGGACAACAACAG AGATGGCGGGTACACCATAG
FOXO3 CATCATGGCAAGCACAGAGT GAGCGTGATGTTATCCAGCA
NRF1 CTTACAAGGTGGGGGACAGA CAATGTCACCACCTCCACAG
NRF2 GCGACGGAAAGAGTATGAGC ACGTAGCCGAAGAAACCTCA
PPARA CCCTTTTTGTGGCTGCTATC ATCCGACTCCGTCTTCTTGA
SIRT1 CCATGGCGCTGAGGTATATT TCTCCATCAGTCCCAAATCC
GAPDH ACCCAGAAGACTGTGGATGG TTCTAGACGGCAGGTCAGGT

increase in the fluorescent intensity of H,DCF-DA (a)
and DHE (b) in the ARPE-19 cells. However, pretreat-
ment with TPP-Niacin in the ARPE-19 cells markedly
decreased the ROS levels compared to H,O, treatment
alone (Fig. 2a and b). The suppressive activity of TPP-
Niacin was also observed in the fluorescence image
(H,DCE-DA), as illustrated in Fig. 2c. Meanwhile, to de-
termine the role of the antioxidant enzymes for protect-
ive effects by TPP-Niacin against oxidative damage, the
expressions of major antioxidant enzymes, including
SOD1, SOD2, catalase (CAT), and GPx were measured
by ELISA. The pretreatment with TPP-Niacin effectively
replenished the activities of SOD1 and SOD2 in the
ARPE-19 cells, which were earlier decreased by treat-
ment with 300 uM H,O, (Fig. 3a and b). Additionally,
the CAT activity was significantly improved by

pretreatment with TPP-Niacin compared to treatment
with Hy,O, alone (Fig. 3c). As shown in Fig. 3d, pretreat-
ment with TPP-Niacin markedly enhanced the GPx
level, which was almost abrogated by treatment with
H,0,. In addition, the ARPE-19 cells pretreated with
niacin and TPP-Niacin showed marked reductions in
H,0,-induced ROS production. As expected, TPP-
Niacin exerted a somewhat higher protective effect
against oxidative stress compared to niacin-treated cells
(as shown in Supplementary Figure 2A and 2B).

TPP-niacin decreased H,0,-induced change of MMP and
mitochondrial morphology

Mitochondrial dysfunction causes loss of MMP (4¥m).
To determine whether TPP-Niacin could decrease
H,05-induced 2¥m loss, the A¥m of the ARPE-19 cells
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Fig. 2 Protective effects of TPP-Niacin against H,O,-induced ROS generation in ARPE-19 cells. The cells were pretreated with TPP-Niacin at 25 and
50 uM or 0.1% DMSO (vehicle control) for 2 h and then incubated with or without 300 uM H,O, for a further 24 h, and ROS generation was
measured by the H,DCF-DA (a) and DHE (b). Representative cell images were assessed by H,DCF-DA staining (c). ### P < 0.001 versus control
group and ***P < 0.001 versus the H,O,-treated group were considered statistically significant differences. The scale bar in (c) represents 100 pm.
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was evaluated by analyzing the red/green fluorescence
intensity ratio via the JC-10 assay. As shown in Fig. 4a,
the ARPE-19 cells were exposed to 300 uM H,O, and
resulted in decrease of red/green fluorescence intensity
ratio, indicating 2¥m dissipation, similar to CCCP,
which is a mitochondrial oxidative phosphorylation un-
coupler. However, pretreatment with TPP-Niacin at 25
and 50 uM for 2h improved the H,O,-induced 2¥m
loss to the same extent as the antioxidant positive con-
trol (NAC), as shown in Fig. 4a. The same tendency was
observed in ARPE-19 cells pretreated with TPP-Niacin,
when compared with those treated with H,O, alone,
using the TMRE reagent for visual illumination of the
mitochondria (Fig. 4b). Interestingly, pretreatment with
the parent compound (niacin) for 2h did not show any
improvement in the H,O,-induced 2¥m loss (Supple-
mentary Figure 3); thus, the results reveal that TPP-
Niacin could successfully be used as a target for mito-
chondria. Additionally, the mitochondrial morphology

was characterized by electron microscopy (EM) (Fig. 4c).
The H,O,-treated cells showed less dense cytoplasms
and larger numbers of swollen mitochondria with dis-
rupted cristae, whereas these appeared rather uniform,
including intact cristae of the mitochondria morphology,
in the control group. Although some mitochondria pre-
sented a disorganized structure with disturbed cristae
and swollen appearance in the TPP-Niacin pretreated
cells, pretreatment with TPP-Niacin revealed diminished
mitochondrial damage in the ARPE-19 cells (Fig. 4c).

TPP-niacin increased expression of OXPHOS and
mitochondrial related genes

To understand the molecular mechanisms of the pro-
tective effects of TPP-Niacin on mitochondrial biogen-
esis, the expression of mitochondrial respiration and
mitochondrial dynamics genes were studied by real-time
quantitative PCR (RT-qPCR). As expected, the expres-
sions of OXPHOS component genes, ATP synthase
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assess the levels of antioxidant activities. ## P < 0.01, ### P <0.001 versus control group and **P < 0.01, ***P < 0.001 versus the H,O,-treated group
were considered statistically significant differences. SOD1 and 2: superoxide dismutase 1 and 2, and GPx: glutathione peroxidase
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subunit O (ATP50), COX4I1 (cytochrome c oxidase
subunit 4 isoform 1), cytochrome c oxidase subunit 5B
(COX5b), and NADH dehydrogenase (ubiquinone) 1
beta subcomplex, 5 (NDUFB5), were significantly in-
creased by pretreatment with TPP-Niacin in the ARPE-
19 cells, as compared to H,O, treatment alone and the
control group (Fig. 5a). As illustrated in Fig. 5b, the
mRNA expression levels of mitochondrial dynamics
genes (fission 1 (FIS1), mitofusin 1 and 2 (MFN1 and
2)), mitochondrial DNA replication (polymerase (DNA
directed) gamma (POLG)), and transcription gene (tran-
scription factor a, mitochondrial (TFAM)), were signifi-
cantly elevated by the TPP-Niacin compared to the
H,0, treated group. These results suggest that the up-
regulation of mitochondrial biogenesis genes intermedi-
ating the protective effect of TPP-Niacin on H,O,-
induced cell damage in ARPE-19 cells.

TPP-niacin increased expression of mitochondrial
biogenesis related genes via upregulated PGC-1a/NRF2
Axis

The transcriptional coactivator, peroxisome-proliferator-
activated receptor-gamma coactivator la (PGC-1a) is a
potent moderator of mitochondrial function, including
oxidative phosphorylation and mitochondrial biogenesis,

in RPE cells [24]. To further elucidate the involve-
ment of PGC-la in the protective effects of TPP-
Niacin, the expression of PGC-la related genes and
antioxidant genes were assessed by RT-qPCR. The ex-
pressions of PGC-la and PGC-1f were strongly
upregulated after treatment with TPP-Niacin. Add-
itionally, the gene expressions of estrogen-related re-
ceptor alpha (ESRRA), forkhead foxOl and 3
(FOXO1, FOX03), NRF2, PPARa, and Sirtl were sig-
nificantly increased by TPP-Niacin (Fig. 6a). Consist-
ent with the results of ELISA (as shown in Fig. 3),
the TPP-Niacin (25 and 50uM) pretreatment in-
creased the expressions of SODI1, SOD2, CAT, and
GPX in ARPE-19 cells compared to the H,O, treated
cells. In addition, the NRF2 downstream target genes,
NAD(P)H: quinone oxidoreductase 1 (NQO1), heme
oxygenase-1 (HO-1), were also measured by RT-
qPCR. As shown in Fig. 6b, the TPP-Niacin strongly
upregulated the expressions of HO-1 and NQO-1 but
not that of the NOX genes (data not shown) in the
H,O,-treated ARPE-19 cells. These results suggest
that the detoxified effects of TPP-Niacin may be at-
tributed to its action as a ROS scavenger, by which it
increases the expression level of the antioxidant en-
zyme, via reducing oxidative damage.
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Discussion

Oxidative stress in the retina plays a major role in the
pathogenesis of dry AMD. While antioxidant defense
systems in the retinal cells are appropriate under normal
states, strong oxidative stress disintegrates the normal
antioxidant systems and result in irreparable damage to
the retina. It has been reported that the use of additional
antioxidants reduces oxidative stress and preserves ret-
inal function while avoiding oxidative damage [25, 26].
In addition, experimental and clinical studies suggest
that consuming high doses of antioxidants, such as lu-
tein, P-carotene, vitamins, and zinc supplements, pos-
sibly protect against and curtail the progression of AMD
and vision loss [2]. In the present study, we

demonstrated the improved protective effects of TPP-
Niacin, a mitochondrial targeting compound, for the first
time against oxidative damage in human RPE cells. At
the mitochondrial level, the TPP-Niacin exerts improved
protective effects via mediation of the MMP and its re-
lated effector genes, including OXPHOS, mitochondrial
dynamics, and mitochondrial DNA replication and tran-
scription. Notably, TPP-Niacin is capable of prevention
against oxidative damage by incrementing the expression
levels of antioxidant enzymes, mainly HO-1 and NQO-1,
via upregulation of PGC-1a and NRF2 in the ARPE-19
cells. Furthermore, TPP-Niacin provides better protec-
tion than niacin against oxidative damage in ARPE-19
cells, therefore underscoring the potential use of TPP-
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Niacin as a possible therapeutic agent for AMD, a dis-
ease that initiated by cell death from oxidative stress and
RPE dysfunction.

RPE cells are one of the types of cells that consume
high amounts of energy, exist in the back of the photo-
receptor cells, and have the most commonplace
oxidative-damaged compositions in the retina. H,O, is a
critical factor in producing oxidative damage and cell
deaths in various cell types, including retinal cells [27].
In the present study, H,O, was used to test ARPE-19
cells to generate oxidative stress and cell cytotoxicity to
imitate the onset of dry AMD. As noted in the viabilities
and LDH assays, pretreatment with TPP-Niacin in the
ARPE-19 cells significantly increased the cell viability
against H,O,-induced cell death, whereas TPP-Niacin
reduced cell death by oxidative damage. Intriguingly,
TPP-Niacin treatment alone was able to slightly increase
the growth of the ARPE-19 cells compared to the parent
compound (Supplementary Figure 1a).

Intracellular accumulation of ROS is related with oxi-
dative stress and dysfunction of RPE cells [28]. Reduc-
tion of intracellular ROS may protect the RPE cells from
oxidative damage [5, 29]. The results of this study con-
firmed that TPP-Niacin markedly diminished H,O,-in-
duced intracellular ROS levels in RPE cells, as observed
via H,DCF-DA and DHE staining. Major antioxidant en-
zymes exist, including Cu/Zn-superoxide dismutase
(cytosolic SOD, SOD1), manganese superoxide dismut-
ase (mitochondrial SOD, SOD2), catalase, and glutathi-
one peroxidase (GPx). The SOD converts superoxide to
oxygen and hydrogen peroxide, whereas catalase and
GPx transform hydrogen peroxide into H,O and O, [28,
29]. The present study demonstrated that pre-incubation
with TPP-Niacin increased SOD1 and SOD2 compared

to the H,O, group, thus suggesting that TPP-Niacin
could combat oxidative stress. Additionally, the TPP-
Niacin significantly increased catalase and GPx activities
that were decreased by H,O, in the ARPE-19 cells.
These data indicate that TPP-Niacin may retain the abil-
ity to indirectly scavenge oxygen free radicals. Conse-
quently, TPP-Niacin may reduce H,O,-induced
oxidative stress in ARPE-19 cells by decreasing the intra-
cellular ROS status and by eliminating oxygen free radi-
cals. In addition, we observed that ARPE-19 cells
pretreated with niacin and TPP-Niacin markedly re-
duced the H,0O,-induced ROS production. As expected,
the TPP-Niacin exerted a somewhat higher preventive
effect against oxidative damage, as shown by a 10% in-
crement in cell viability and 17% decrement in ROS level
compared to niacin-treated cells, respectively. The anti-
oxidant activities of TPP-Niacin are at a slightly higher
level compared to the parent compound, suggesting that
the mitochondria-targeting TPP-Niacin is an effective
derivative of the parent compound.

The pathological changes of mitochondrial-related
dysfunctions, including accumulation of ROS and super-
oxide in the mitochondria and MMP (2¥m) reduction,
were discovered in AMD [25]. In other mitochondrial
targeting compounds [10, 14, 30], we observed that pre-
treatment with TPP-Niacin significantly enhanced the
MMP and improved the mitochondrial ultrastructure in
a phenotypic analysis by EM, compared to H,O, alone.
Based on these data, we next analyzed the expressions of
mitochondria-related genes, such as OXPHOS subunits,
mitochondrial dynamics, and mitochondrial DNA repli-
cation and transcription genes. Our results showed that
TPP-Niacin significantly upregulated COX4I1, COX5B,
NDUFB as well as MFN1, MFN2, TFAM, and POLG
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genes; thus, these mitochondrial specific effects of TPP-
Niacin could lead to improved mitochondrial function
and biogenesis against oxidative stress by H,O,.
Peroxisome proliferator-activated receptor gamma co-
activator 1-alpha (PGC-1a) and -beta (PGC-1p) are tran-
scriptional coactivators that control mitochondrial
metabolism and functions in various tissues [31], includ-
ing the retina [27, 32, 33]. To intermediate their func-
tions, the PGC-1a isoforms cooperate with transcription
factors, such as ESRRA, peroxisome proliferator-
activated receptor o, y (PPARa, y), FOXO1, FOXO3,
and nuclear respiratory factors 1 (NRF1) and Nfe212
(nuclear factor erythroid 2-related factor 2, NRF2) to
control respiration, mitochondrial biogenesis, and ex-
pression of antioxidants [27, 34]. PGC-1la is necessary
for the generation of ROS scavenging enzymes, including
SOD1, SOD2, GPx, and CAT [35, 36]. Recently, several

studies have shown that superoxide dismutase 2 (SOD?2),
an enzyme detoxifying the excessive accumulation of
mitochondrial ROS, was turned on by PGC-la in the
RPE cells [27, 37]. Therefore, to determine the possible
pathways of protective effects of the TPP-Niacin, we ex-
amined the gene expressions of PGC-la related genes
and observed that PGC-1la and PGC-1$ were robustly
upregulated by TPP-Niacin compared to the H,O,-in-
duced oxidative damage group. In addition, when exam-
ining the potential downstream transcription factors
responsible for these changes, ESRRA, FOXOI1 and 3,
and NRF1 and 2 were found to be upregulated by TPP-
Niacin treatment.

On further investigating the possible mechanisms as-
sociated with the protective ability of TPP-Niacin, it ap-
pears that HO-1 and NQO-1, which are downstream
targets of NRF2 signaling, play major roles in the
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prevention of oxidative damage in the cells [38, 39]. Re-
cently, many studies have reported that the activation of
NRF2/HO-1 signaling is required to alleviate oxidative
damages in RPE cells [40—45]. In this study, it was spec-
ulated that the antioxidative effects of TPP-Niacin could
be combined with PGC-1a and NRF2 signaling. The re-
sults of the present study show that TPP-Niacin protects
the ARPE-19 cells from H,O,-induced oxidative damage
by activating NRF2 signaling through upregulation of
the expression of NRF2, NQO-1, and HO-1.

Initially, we thought that TPP-Niacin had an effect on
the nanoconcentration state, as well as those of other
mitochondrial targeting compounds, but TPP-Niacin
showed antioxidant effects in the range of 10-200 pM.
However, as shown in the comparison data with niacin,
TPP-Niacin is more effective than its original chemical
against oxidative damage in RPE cells. These results sup-
port TPP-Niacin as a potent antioxidant against oxida-
tive stress compared to niacin and suggest that its
improved protective effects are exerted via regulation of
mitochondrial dynamics and antioxidant mechanisms.
Contrary to expectations, the increment of antioxidant
enzymes after induction of oxidative stress was in agree-
ment with the study where the expression levels of HO-
1 increased in ARPE-19 cells after H,O, treatment [43,
44, 46-48)]. However, some studies have presented that
H,O, treatment significantly reduces the expression
levels of PGC-1a, HO-1, and NQO-1 in ARPE-19 cells
[37, 40]. The variances between these studies may be
owed to the use of other concentrations of stimuli as
well as the treatment time, which can control cellular re-
sponse. As in reported research, it is well established
that niacin exerts significant antioxidant, anti-
inflammatory and anti-apoptotic activities in a variety of
cells and tissues [19, 20, 49-52]. Our study thus far has
only been applied to focus upon the improved antioxi-
dant effects of TPP-Niacin, in terms of mitochondrial
and ROS regulation. Further data collection would be
needed to determine exactly how TPP-Niacin affects
with antioxidant effect via mitochondrial biogenesis and
dynamics. Additionally, when we exam the TPP-Niacin’s
own effects on normal ARPE-19 cells, as shown in Sup-
plementary Figure 4, TPP-Niacin was not significantly
changed of ARPE-19 cells compared with the control
group in LDH, ROS, and MMP assay (Supplementary
Figure 4 a-d). However, according to gene expression re-
sults, TPP-Niacin has significantly enhanced the SOD2
expression level assessed by RT-qPCR (Supplementary
Figure 4e). These results indicated that TPP-Niacin me-
diated cytoprotective activities that could be linked to
the mitochondrial function on not only the normal state
but also the oxidative stress.

In conclusion, this study shows that TPP-Niacin is an
improved protective antioxidant than niacin against
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oxidative damage to ARPE-19, cells via the reduction of
ROS levels and protection against oxidative-stress-
induced cell death. The signal mechanisms by which
TPP-Niacin presented such effects involve regulation of
the mitochondrial quality control and transcriptional
factors such as PGC-1a and NRF2, as well as a boost in
the antioxidant molecules. These results provide the first
experimental evidence for TPP-Niacin as a possible
therapeutic agent in the prevention of AMD. Further
studies are needed to determine its physiological func-
tions and biological efficacies in both primary human
RPE cells (at least fully differentiated ARPE-19 cell
models) and in vivo models, as well as target identifica-
tion in the near future.
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Additional file 1. Comparison data between niacin and TPP-Niacin for
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