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Abstract: This paper introduces a methodology applying an imaging sonar for three-dimensional
(3D) target tracking underwater. The key process in this work involves obtaining the target’s position
in space using two images of the same scene, acquired by an adaptive resolution imaging sonar
(ARIS) at different positions. A data association algorithm was designed to connect the same target
in image sequences. The goal of this work was to track multiple targets in 3D space. The ARIS
provides sequences of bi-dimensional images from the backscattered energy according to the range
and azimuth. The challenge involved determining the missing elevation information for the observed
object within the sonar detection range. By computing the geometrical transformation between the
acquisition planar images and the cubical space, using only the sonar information that included the
posture and moving speed of the ARIS, the target’s elevation information was obtained. To evaluate
the performance of the proposed method, an indoor experiment was conducted using the ARIS.
On the basis of the experimental results, we confirmed that the proposed method effectively obtained
the target’s position in 3D space. A moving target simulation was also conducted, and the results
showed that this method was effective for moving targets. Finally, a field experiment was performed
to obtain the vertical distribution and track the 3D trajectories of fish.

Keywords: underwater positioning; data association; 3D tracking; ARIS

1. Introduction

Sonar is a critical tool for underwater obstacle avoidance, bathymetry, acoustic imaging, search,
and navigation. Acoustic lens technology provides a relatively compact sensor that can transmit and
then receive multiple conical or rectangular beams without using beam-forming electronics [1]. In 2002,
a dual-frequency identification sonar (DIDSON) was introduced to the commercial market by Sound
Metrics Corp., setting a new standard for excellence in underwater vision in black and turbid waters by
obtaining near-video-quality dynamic images for the identification of underwater objects [2]. DIDSON
bridged the gap between the existing underwater observation sonars and the optical systems [3]. The
Adaptive Resolution Imaging Sonar (ARIS), the next generation of DIDSON, is a useful tool to detect
targets within its range with much higher resolution and clarity [4].

The ARIS is composed of 96 transducer elements forming a linear array. Each element both
transmits and receives acoustic beams so that the two-way pattern has a 3 dB beam width of
approximately 0.3◦ [5,6]. Figure 1 displays a sonar imaging diagram. Figure 1a shows one element and
one lens, forming together a “line-focused” beam, and Figure 1b shows one beam ensonifying a stripe
along the bottom. The element emits an acoustic pulse and receives its echo when it sweeps along the
stripe. The echo amplitude is determined by the intensity of the reflected signal. Figure 1c shows how
the echoes from all 96 beams map the reflectance of the ensonified sector-shaped area and are used to
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form an acoustic image, as shown in Figure 1d. To reduce the crosstalk effect when imaging, the 96
transducer elements do not transmit and receive signals simultaneously, but in a specific order. If all
the elements are numbered as 1, 2, . . . , 96 from left to right, they can be divided into 12 groups. The
elements in each group transmit beams one by one in a specific order. All groups work in sequence
from left to right. Each frame is a composite of an array of the elements working in succession, thereby
creating an overall ensemble of partial frames to construct the single frame. However, the difference in
time-delays among different ensembles of sound beams may have an impact on the frame construction,
especially when the sonar travels at a high speed producing saw-tooth patterns in sonar images [6].

Figure 1. Diagrams of the sonar imaging. (a) A line-focus lens system is composed of a rectangular
lens and a curved element; (b) one beam ensonifies a stripe along the bottom; (c) a total of 96 beams are
working together; (d) an acoustic image acquired from the adaptive resolution imaging sonar (ARIS).

The line-focused beams can produce real-time high-resolution underwater image sequences with
a high refresh rate. Moreover, compared with optical devices, the acoustic beams are not affected
by turbid or dark waters, ensuring that the scene details and information are properly acquired.
However, the ARIS only collects backscattered energy according to the range and azimuth to produce
bi-dimensional images. If two objects are in the same range in the same beam with different elevations,
the ARIS cannot differentiate them, which prevents obtaining the objects’ positions in 3D space.
Negahdaripour et al. proposed methods for system calibration and 3D scene reconstruction using
maximum likelihood estimation from noisy image measurements [7]. Brahim et al. used two images
of the same scene acquired by a DIDSON from different points of view to reconstruct 3D scenes
underwater via evolutionary algorithms [8,9]. Huang and Kaess presented an approach for recovering
3D scene structures from multiple 2D sonar images [10]. With the acoustic images acquired from
DIDSON, geometry transformation using different methods helps to effectively reconstruct 3D scenes
from a pairwise or multiple viewpoints. A side-scan sonar has also been used for 3D reconstruction. For
example, Saucan et al. proposed a novel model-based approach for 3D underwater scene reconstruction
using side-scan sonar arrays [11]. Wang et al. used an intensity map acquired by a side-scan sonar to
reconstruct the 3D aspects of underwater objects by merging the intensity image and depth image [12].
Most existing studies focused on 3D underwater scene reconstruction, i.e., stationary objects or scenes,
with different sonar devices, not on positioning or tracking targets. The studies focusing on tracking
underwater targets indicate that imaging sonar is an important tool [13,14]. Handegard et al. used
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high-resolution sonar (DIDSON) imaging to track the motion and interactions among predatory fish
and their schooling prey in a natural environment using 2D images [15]. In this paper, we present
a new approach to obtain the target’s 3D coordinates using pairwise images combined with a data
association algorithm and we track multiple targets in 3D space using the proposed approach.

The remainder of this paper is organized as follows. The target extraction, data association, and
calculation of 3D coordinates are described in Section 2. In Section 3, results from an indoor tank
experiment are presented. In Section 4, a simulation of the moving target is outlined. Finally, the
results from a field experiment for tracking multiple objects are presented in Section 5, followed by a
conclusion in Section 6.

2. Materials and Methods

In this section, a method to track multiple targets in 3D space is introduced. First, the signal
strength model method is proposed to extract targets from sonar images. An adaptive threshold
approach is tested for simultaneous targets detection. After extracting the targets, data association
is performed using Multiple Model Joint Probabilistic Data Association (IMMJPDA) algorithm to
track same targets in different frames. Then, the missing elevation information for the observed
objects within sonar detection range is determined through computing the geometrical transformation
between the paired planar images and the cubical space, so that the object’s 3D coordinates are obtained.
Finally, the 3D tracks of multiple targets are obtained.

2.1. Target Extraction from Sonar Images

Target extraction from a two-dimensional (2D) sonar image is a prerequisite to determine the
position of a target in the field of view of the ARIS. Some of the most widely used methods and
algorithms for object detection and recognition from images include Haar cascades [16], histograms
of oriented gradients [17], and artificial neural networks [18]. Because of low quality, incomplete
target visualization, and image distortions caused by acoustic lens imperfections, these methods
commonly used in video imagery have limited application for sonar-based target detection. In this
study, targets were detected using a newly proposed signal strength model. In the images acquired
from the ARIS, the effective target region only contributed minimally, whereas the rest regions were
treated as background [19]. First of all, the signal strength model for each pixel was set as:

I = I + σ sin(ωt) + kζ (1)

where I is the intensity value for this pixel, I is the average intensity value of this image, σ is the
intensity amplitude of the background, ζ is the noise level, k is the coefficient of noise level that usually
equals 1, and ω and t are the intensity vibrational angular frequency and time, respectively. When I is
satisfied with the formula below, it can be treated as background:

I − σ− ζ ≤ I ≤ I + σ + ζ (2)

Because the intensity of a target is larger than that of the background, the target can be selected
using the formula below:

I > I + σ + ζ (3)

I and σ were updated in every image sequence according to Equations (3) and (4).

I′ =
(n− 1)

n
I +

1
n

I (4)

σ′ =
(n− 1)

n
σ +

1
n

√
2
(

I − I
)2 (5)
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where I′ is the new intensity value, σ′ is the new intensity amplitude of the background, and n is
the iterative coefficient. Figure 2 depicts the target extraction using the proposed method, in which I
equals 15, ξ is 30, and n equals 5.

Figure 2. Target extraction with the proposed method. (a) Raw image and (b) image after background
elimination. The bright regions in (b) are the targets.

For a complex background, we tested an adaptive threshold approach for target extraction.
Because the higher pixel values in sonar image are the potential targets that need to be detected, a
threshold T was set to distinguish the targets from the background. When the pixel value v(x, y) < T,
it will be labeled as background; otherwise, the pixel is the target. We used the following method to
select the threshold T [20].

Assuming that a pixel value v(x, y) in the kth frame is subjected to Gaussian distribution with
the mean µ and the variance σ2 in continuous frames: v(x, y) ∼ N

(
µ, σ2). According to the thrice

standard error principle, the probability that v(x, y) lies outside the range of [−3σ, 3σ] is less than 0.3%;
hence, T = µ + β · 3σ, in which β is the coefficient of the threshold. Additionally, by averaging the
mean and variance of several consecutive frames as the final mean µ and variance σ2, the Gaussian
distribution function is determined, so that T is obtained.

In optical image processing, edge detection is frequently used for target extraction. However, a
sonar image is generated from a 2D array data acquired by 96 transducer elements through coordinate
transformation and data interpolation. During the frame construction, data interpolation definitely
reduces the sharpness of the image. Additionally, the boundary of the sonar image is not clear because
of speckle noise [21]. Hence, general edge detection is not suitable for target extraction during sonar
image processing, but some special or high-quality edge detection algorithms are useful for target
detection [22].

Using the target extraction algorithms proposed in this section, the bright regions are detected.
Conveniently, to track targets in 3D space, the underwater target is regarded as a point target to avoid
the influence of target size change. The equation below provides a method to label a target with the
coordinates (xt, yt):

ma,b = ∑
x

∑
y

xaybv(x, y) (6)

where a = 0 or 1, and b = 0 or 1. Hence, the target coordinates can be obtained: (m1,0/m0,0, m0,1/m0,0).
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Figure 3a shows the coordinates of the target (xH , yH) in the horizontal field of view of the sonar.
With the range r and azimuth ϕ, the coordinates can be obtained: xH = r · cos ϕ, yH = r · sin ϕ.

Figure 3. (a) Horizontal field of view of the sonar; (b) vertical field of view of the sonar. β is the angle
of the vertical field of view, which is approximately 14◦.

2.2. Data Association

Because of the randomness of underwater target movement, especially when the targets are
underwater fish, Interactive Multiple Models (IMM) combined with Joint Probabilistic Data Association
(JPDA) filtering is proposed to correlate the same target in different images [23], so that a target
appearing in different frames can be tracked, and these appearances can be connected as one target.
The data association proposed is used not only to examine the overlapping portion of two consecutive
images but also to calculate the 3D position of the targets.

First, the target motion models are established, including the Brownian motion model, constant
velocity (CV) model, and constant acceleration (CA) model. The jump rules among these three models
obey the Markov chain for which the transfer probability is known [24].

Assuming that, in the kth frame image, N targets {Ti}N
i=1 are extracted, and each target

corresponds to a motion model Mj(j = 1, · · · , n, n = 3), the motion equation and measurement
equation of the target r are described as follows:{

xk = Fj
k−1xk−1 + Gj

k−1W j
k−1

zk = H j
kxk + Gj

k−1V j
k

(7)

where xk is the state of the target r at time k, zk is the observation vector, Fj
k−1 is the state of the

transform matrix at time k− 1, H j
k is the measurement matrix, Gj

k−1 is the input matrix, and W j
k−1 and

V j
k are uncorrelated Gaussian white noises with zero mean corresponding to the covariance Qj

k−1 and

Rj
k, respectively.

The state of the target xk includes position, velocity, and acceleration in each of the two Cartesian
coordinates (x and y). The state of the transform matrix F can be defined as [25]:

F =

[
Fb 0
0 Fb

]
(8)
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Hence, the Brownian motion model is given by:

F1
b =

 1 0 0
0 0 0
0 0 0

 (9)

The CV model with zero mean perturbation in acceleration is:

F2
b =

 1 T 0
0 1 0
0 0 0

 (10)

The CA model is:

F3
b =

 1 T T2/2
0 1 T
0 0 1

 (11)

Target tracking is realized as follows:

(1) State initialization:

x̂0j
k−1|k−1 = E

{
xk−1

∣∣∣Mj
k, Yk−1

}
=

n

∑
i=1

x̂i
k−1|k−1µi|j (12)

p0j
k−1|k−1 =

n

∑
i=1

pj
k−1|k−1 +

{[
x̂j

k−1|k−1 − x̂0j
k−1|k−1

][
x̂j

k−1|k−1 − x̂0j
k−1|k−1

]′}
µi|j (13)

where E{·} is the mathematical expectation, Yk−1 is the cumulative set of measurements up to
time k− 1, µi|j is the mixing probability when the motion mode changes from Mi to Mj, x̂0j

k−1|k−1

is the mixed estimate, and p0j
k−1|k−1 is the covariance of the mixed estimate.

(2) State prediction:

x̂j
k|k−1 = Fj

k−1x0j
k−1|k−1 (14)

Pj
k|k−1 = Fj

k−1P0j
k−1|k−1

(
Fj

k−1

)T
+ Gj

k−1Qj
k−1

(
Gj

k−1

)T
(15)

where Pj
k|k−1 is the state prediction error covariance. The residual error corresponding to

measurement i is:
z̃j,(i)

k = z(i)k − H j
k x̂j

k|k−1 (16)

The covariance of the residual is given by:

Sj
k = H j

kPj
k|k−1

(
H j

k

)T
+ Rj

k (17)

(3) Association probability update:

β
r,j,J
i = ∑

θ

p{θ|Yk}ω̂ir(θ) (18)

where β
r,j,J
i represents the posterior probability, given by the measurement i connected with the

target r using the motion model set J, and θ is the joint events set. J is a set corresponding to the
targets rB(rB 6= r) motion models, except r. β

r,j
i is given by:

β
r,j
i = ∑

J
µJ

k−1β
r,j,J
i , r = 0, 1, · · · , N (19)
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µJ
k−1 =

N

∏
rB=1

µ
j
k−1(rB), rB 6= r (20)

where µ
j
k−1(rB) is the probability corresponding to the target rB with model Mj at time k− 1.

(4) State update with different models. Kalman gain is given by

W j
k = Pj

k|k−1

(
H j

k

)T(
Sj

k

)−1
(21)

The state vector x̂j
k is updated with different motion models:

x̂j
k|k = x̂j

k|k−1 + W j
k ỹr,j

k (22)

where

ỹr,j
k =

m

∑
i=1

β
r,j
i z̃j,(i)

k (23)

The state prediction error covariance is updated:

Pj
k|k = Pj

k|k−1 −
(

m

∑
i=1

β
r,j
i

)
W j

kSj
k

(
W j

k

)T
+ W j

k

[
m

∑
i=1

β
r,j
i z̃j,(i)

k

(
z̃j,(i)

k

)T
− ỹr,j

k

(
ỹr,j

k

)T
](

W j
k

)T
(24)

(5) The likelihood function is updated:

Λr,j
k = N

{
z
(

k; x̂j
k|k

)
, ẑ
(

k
∣∣∣k− 1; x̂0j

k−1|k−1

)
, S
(

k; P0j
k−1

)}
(25)

where N{·}represents the normal distribution.
(6) The model probability is updated:

µ
j
k(r) =

1
c

µ
j
k−1(rB)Λ

r,j
k (26)

where c is a normalization constant given by:

c =
r

∑
j=1

µ
j
k−1(rB)Λ

r,j
k (27)

(7) Target state update:

x̂k|k =
r

∑
j=1

x̂j
k|kµ

j
k (28)

The state prediction error covariance of x̂k|k is:

Pk|k =
r

∑
j=1

µ
j
k

[
Pj

k|k +
(

x̂j
k|k − x̂k|k

)
·
(

x̂j
k|k − x̂k|k

)T
]

(29)

The flow chart of IMM–JPDA filtering is shown in Figure 4.
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Figure 4. Flow chart of the Interactive Multiple Model–Joint Probabilistic Data Association
(IMM–JPDA).

Using the data association algorithm, the same targets from different image sequences are
connected. When the positions of the targets from different frames are preserved, different target
trajectories are identified with different colors, as shown in Figure 5. Compared to other data
association or tracking algorithms, such as the nearest neighbor (NN) algorithm or Kalman filtering
(KF), IMM–JPDA has more advantages. First, the target motion models of IMM–JPDA are more
appropriate than in KF, since uniform linear motion is set for KF. Also, the JDPA data correlation
calculation is more accurate than with the NN algorithm.

Figure 5. Diagram of tracking trajectories of multiple targets. Three different colored lines represent
three different target trajectories.

To verify the accuracy of target extraction and tracking in a complicated background, the test data
were manually determined. This test data had a total of 144 frames, from which 5971 candidate targets
were detected manually, whereas 5901 were extracted using the signal strength model method with
a 1.2% error rate, and 5882 were extracted using the adaptive threshold approach with an error rate
of 1.5%. Simultaneously, 497 fish were counted manually, and 468 were counted using the tracking
algorithm with 5.8% error. Here, a candidate target was a bright region extracted from the sonar image
(Figure 2b); hence, the statistics of candidate target numbers is an accumulation of bright regions from
all frames. However, a fish target must satisfy the conditions of live targets, including length, width,
and swimming speed. One fish represents one track trajectory from presence to absence in several
continuous frames.
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2.3. Calculation of 3D Coordinates

Assume a target P(xV , yV) appears in the vertical field of view of the sonar, as shown in Figure 3b.
Given the range r

(
x2

V + y2
V = r2) and the azimuth ϕ of this beam, the ARIS could not exactly obtain

the coordinates (xV , yV), because P may appear anywhere in the arc EF, resulting in a failure to obtain
the target’s position in 3D space.

Because of the movement of the ARIS, the two target positions extracted from sonar images
obtained at different locations are different from each other. With the computation of the geometrical
transformation between the acquisition planar images and the cubical space, the 3D coordinates of the
target can be obtained from the two different target positions. In the actual survey, the ARIS was always
mounted on a vessel with the same transmission direction as the beam direction, or perpendicular to
the beam direction. These two cases are discussed below.

2.3.1. Case 1: ARIS Moves along the Beam Transmitting Direction

Suppose that the ARIS moves along the y-axis and transmits multi-beams along the y-axis with a
certain angle below the plane XO1Y, as shown in Figure 6a. In this figure, O1 is the location where the
ARIS stays at time t1, O2 is the location where the ARIS stays at time t2, point P(x, y, z) is the object
needing to be positioned. To facilitate the understanding and calculation of the coordinates, the cuboid
APBC− A1P1B1O1 is established, in which O1P is the body diagonal, A is the projection of P on the
plane YO1Z, B is the projection of P on plane XO1Z, and P1 is the projection of P on plane XO1Y.
In this cuboid, we set |O1P| = r1, |O2P| = r2, ∠B1O1P1 = ϕ1, and ∠B2O2P1 = ϕ2, in which (r1, ϕ1)

and (r2, ϕ2) were the target coordinates extracted from site O1 and O2, respectively.
O1P1 and O2P1 are the projections of O1P and O2P on plane XO1Y, respectively. ϕ1 is the azimuth

of the target at site O1, and ϕ2 is the azimuth of the target at site O1. Hence, we can obtain the
coordinates of P1 by calculating the intersection of O1P1 and O2P1, as shown in the equations below:{

LO1P1 : y = tan ϕ1 · x
LO2P1 : y = tan ϕ2 · x + δ

(30)

where δ is the distance between O1 and O2, δ = v · ∆t, in which ∆t is the time gap, and v is the moving
speed of the ARIS. We can obtain the solution:

x = δ/(tan ϕ1 − tan ϕ2)

y = δ · tan ϕ1/(tan ϕ1 − tan ϕ2)

z = −
√

r2
1 − x2 − y2

(31)
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Figure 6. Two detection modes. (a) The Adaptive Resolution Imaging Sonar (ARIS) moves along
the beam transmitting direction; (b) the moving direction of the sonar is perpendicular to the beam
transmitting direction.

2.3.2. Case 2: ARIS Moves Perpendicular to the Beam Transmitting Direction

Suppose that the ARIS transmits multi-beams along the y-axis with a certain angle below the
plane XO1Y and moves along the x-axis at a constant speed v, as shown in Figure 6b. O1 and O2

are the locations where the ARIS stays at times t1 and t2, respectively. Point P(x, y, z) is the object
needing to be positioned. As in Figure 6a, the cuboid APBC − A1P1B1O1 is established, in which
|O1P| = r1, |O2P| = r2, ∠B1O1P1 = ϕ1, and ∠B1O2P1 = ϕ2. We can obtain the coordinates of P1 from
the equations below: {

LO1P1 : y = tan ϕ1 · x
LO2P1 : y = tan ϕ2 · (x− δ)

(32)

Thus, the coordinates of point P(x, y, z) are:
x = δ · tan ϕ2/(tan ϕ2 − tan ϕ1)

y = δ · tan ϕ1 · tan ϕ2/(tan ϕ2 − tan ϕ1)

z = −
√

r2
1 − x2 − y2

(33)
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Combining the 3D coordinate calculation with the data association algorithm, the target can
be tracked in 3D space. Firstly, the coordinates (r1, α1), (r2, α2), · · · , (rn, αn) are extracted from n
frame images. Secondly, the target coordinates (xk, yk, zz) at time k can be obtained from (rk, αk) and
(rk+1, αk+1), in which k = 1, 2, · · · , n− 1. Finally, the target trajectory can be acquired by connecting
the n− 1 points.

3. Indoor Water Tank Experiment

An experiment was performed to evaluate the accuracy of the proposed approach for obtaining
the target’s 3D position using an imaging sonar. The experiment was conducted in a pool with a length
of 50 m, width of 15 m, and depth of 10 m. The water depth in this experiment was approximately 9 m.
Two carriages were present above the pool, and each carriage had a platform with two vertical lifting
hooks. The ARIS was fixed on one of the vertical lifting hooks on carriage 1, accessed by a laptop,
and was submerged under water just until completely covered, with a pitch angle of 10◦ downward
(Figure 7). Carriage 1 moved in the same direction as the sonar beam transmitting direction, controlled
by carriage control software running in the laptop, and the state information of this carriage, including
the location and time, was also recorded by another program running in this laptop. The target was
hung under water on carriage 2. The target was a metal cylinder with a bottom diameter of 54 mm
and a height of 107 mm.

Figure 7. Photo of the indoor experiment.

In Figure 7, the displayed space coordinate system was established with the ARIS located at the
origin of the coordinates. Carriage 1 moved along the y-axis at a constant velocity of no more than
1.5 m/min, whereas the target hung on carriage 2 was static and underwater. When the test started,
sonar data and carriage information were recorded simultaneously. After data collection, the target’s
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3D coordinates and the errors compared to the measured values were calculated. Four datasets were
recorded and they are listed in Table 1. Because of the limitation of the detection range under the
high frequency working mode of the ARIS, the coordinates of the target (x, y, z) were in the range of
|x| < 3.6 m, |y| < 15 m, and |z| < 6 m. In this test, we set the target coordinates (1.30, ymeas,−3.23), in
which ymeas was determined by the location of carriage 1.

Table 1. Data acquired from this experiment. (xH1, yH1) and (xH2, yH2) are the target’s coordinates
extracted from the two sonar images acquired at different positions; d1 and d2 are the locations of
carriage 1; (x, y, z) are the 3D coordinates of the target calculated with the proposed method, and
(xerr, yerr, zerr) are the errors of (x, y, z) compared with (1.30, ymeas,−3.23).

No. xH1 (m) yH1 (m) d1 (mm) xH2 (m) yH2 (m) d2 (mm) x (m) y (m) z (m) xerr yerr zerr

1 1.40 9.19 20,049 1.41 8.67 20,600 1.33 8.71 −2.97 2.05% −5.66% −8.03%
2 1.40 9.17 20,128 1.41 8.41 20,889 1.30 8.51 −3.45 −0.01% −6.97% 6.68%
3 1.39 9.10 20,180 1.40 8.38 20,915 1.31 8.58 −3.08 −0.77% −5.75% −4.73%
4 1.40 8.88 20,390 1.41 8.43 20,863 1.30 8.24 −3.35 −0.08% −7.32% 3.81%

As shown in Table 1, strong agreement was demonstrated between the calculated and the
measured coordinates. Figure 8 shows the sonar images that correspond to the data of condition No. 2
in Table 1.

Figure 8. The sonar images corresponding to the data of condition No. 2 in Table 1. (a) Image acquired
at time 1; (b) image acquired at time 2.

Many factors can lead to errors. The carriage moving on the rail caused a small vibration, causing
the sonar fixed on the vertical lifting hook to shake as well. The length of this hook was more than
three meters; therefore, the target’s position extracted from the sonar images would be inaccurate.
Additionally, the roll angle of the sonar was not exactly equal to zero, and the yaw angle of the sonar
was not exactly toward the y-axis (Figure 7). A small deviation in the roll or yaw angle may cause a
considerable positional error, which was inevitable. In addition, the deviation between the measured
coordinates and the real target’s position was non-negligible. With the ARIS moving, cross-talk was
detrimental to target extraction, especially when the target was near to the ARIS, creating a source
of error.

4. Simulation on Moving Target

Underwater targets, like fish, are not static, even if the interval between two frames is very short,
which leads to positioning error. Hence, the analysis of the calculation error using the proposed
method is necessary when the target moves at different speeds and in different directions. Assuming
that the sonar is displayed as in case 2 (Figure 6b), the target is located at point P1(x1, y1, z1) at time t1,
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and at point P2(x2, y2, z2) at time t2. Taking the intermediate point as the real position during the time
t1 ∼ t2, we can obtain:

Preal(xreal , yreal , zreal) =

(
x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

)
(34)

Supposing that the coordinates obtained from calculation are Pcal(xcal , ycal , zcal), the positional
error is defined as below:

derr = |Pcal − Preal |/
(

r1 + r2

2

)
× 100% (35)

where |Pcal − Preal | represents the distance between the real position and the calculated position.

Given P1(x1, y1, z1) = P1(10, 2,−4), δ = 0.1, and


x2 = x1 + d · sin θ · cos α

y2 = y1 + d · sin θ · sin α

z2 = z1 + d · cos θ

, where the

spherical coordinates (d, θ, α) are used to describe the target’s movement
→

P1P2. Figure 9 shows the
influences of different factors on the positioning error. When the target moves in a certain direction
θ = 160◦ and α = 15◦, the error increases as the velocity ratio between the target and sonar increases
(Figure 9a). When the target moves with a certain velocity, d/δ = 0.01, the error is periodic, regardless
of whether the vertical direction or the horizontal direction of the target change (Figure 9b). From
Figure 9, the positional error arises as a consequence of the greater velocity ratio between the target and
the sonar. The influence of the target’s velocity and direction on the positioning error is less than 20%.

Figure 9. The influence of different factors on the positioning error: (a) Velocity ratio between the target
and the sonar; and (b) target’s moving direction, including vertical direction and horizontal direction.

In addition to the target movement, the target position corresponding to the sonar position also
impacts the positional error. To determine the relationship between the positional error and grazing
angle, a simulation was conducted.

Assuming that the sonar is displayed as in case 2 shown in Figure 10, the target moves in the
plane YOZ and is located at point P1(x1, y1, z1) at time t1, and at point P2(x2, y2, z2) at time t2. Given
the spherical coordinates (d, θ, α) between P1 and P2 as (0.01, π/2, π/2) and δ = 0.1, the measurement
error of the distance is 5%, and the positional error derr is defined by Equation (35). When the target
position corresponds to the sonar changes in the plane YOZ, the positional error is obtained as shown
in Figure 11. From this figure, the error increases with the increase in the Y value or the Z value but
stays almost the same regardless of the Z value when the Y value is less than 1. In other words, the
error decreases as the grazing angle increases.
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Figure 10. Diagram of the target and sonar in different states. (a) The target is stable while the sonar
moves; (b) the target and the sonar move simultaneously.

Figure 11. The target position corresponding to the sonar position impacts the positioning error, which
is the error distribution when the target moves at a specified speed.

5. Field Experiment

A field experiment to track fish in 3D space was performed in Dishui Lake (121◦56′ E, 30◦54′ N),
on the basis of the proposed method. Dishui Lake is the largest artificial lake in Shanghai, China.
The lake is round in shape, approximately 2.6 km in diameter, with an area of 5.56 km2. Water in
this lake comes from the Huangpu River via the Dazhi River through surrounding river networks,
accepts surface runoff, and passes through a sluice into the East China Sea. The lake is important
for flood control, drainage, and water replacement, and is critical to Shanghai's eco-city construction.
It maintains several freshwater species, including silver carp and spotted silver carp. The body lengths
of most fish are more than 20 cm, and the typical size is 40 cm.

In this experiment, the sonar was mounted 0.5 m underwater on the side of a boat, with a pitch
angle of 45◦ downward. The detection direction was along the y-axis, in the same direction as the
boat movement (Figure 12). The velocity of the boat was 2 knots. The GPS module (DGPS) and the
attitude sensor (optical fiber compass) were accessed by a laptop. The optical fiber compass included
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an attitude sensor to obtain the attitude of the sonar in real time and to improve the sonar image. If the
attitude of the sonar exceeded the reasonable scope, the sonar data were abandoned.

Figure 12. Sonar installation. (a) Measurement vessel and equipment installation in the field
experiment; (b) diagram of the sonar installation.

After data collection, the fish were mainly detected with the signal strength model method. When
the background was complex, the adaptive threshold approach was used to extract the fish targets.
To distinguish the fish target from noise, a size threshold was set according to the live fish in Dishui
Lake: if the bright region of a candidate target was no less than 20 cm in length and 4 cm in width and
no more than 80 cm in length and 20 cm in width, it was regarded as a fish target, otherwise it was
regarded as an other target.

IMM–JPDA filtering was applied to associate the fish targets extracted from consecutive frames,
once the targets represented one fish. Hence, the depth of the target was obtained using the algorithm
proposed in this paper, so that the 3D coordinates of each target were also acquired. Each target
appeared in several continuous frames, from presence to absence. The target trajectory sequentially
connects the positions of one target from different frames with line segments.

We recorded a dataset covering a period of 10 min and ran statistics on fish vertical distribution
according to depth, as shown in Figure 13. A total of 391 fish were counted in this dataset, and most of
the fish swam at depths of three to five meters.
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Figure 13. Fish distribution at different water depths.

Ten consecutive frame images were selected to calculate the targets’ 3D coordinates, as shown in
Figure 14. With the method proposed in this study, the target trajectories were obtained, as shown
in Figure 15. This figure shows three tracks in 3D space, and different types of lines represent
different tracks.

Figure 14. Charts of 10 consecutive frames. (a–j) represent these 10 consecutive frames.
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Figure 15. Target trajectories in 3D space corresponding to the 10 consecutive frames in Figure 14.

To evaluate the accuracy of the 3D tracking of live targets, the velocity and direction of the moving
targets, together with the grazing angle of the sonar, were considered. On the basis of the data in
Figure 13, the mean velocity of the targets was calculated and was approximately 0.5 m/s, and the
positional error caused by target movement was about 10% compared with the velocity of the vessel.
As for the moving direction, as shown in Figure 15, the error was less than 5%. As for the grazing angle
of the sonar, the error was approximately 10% (Figure 11). Hence, the standard deviation of all errors
was: σ =

√
(0.12 + 0.052 + 0.12)/3 ≈ 8.7%. However, the vibration of the sonar was not considered,

so the error in the field experiment was probably larger.
There are many possible causes for the error on the 3D track. (1) For target detection and tracking,

when the targets are dense or the signal-to-noise ratio (SNR) of the targets is low, multiple objects
overlap, leading to a fatal error in target detection and tracking. When the fish are milling or close
to a rugged bottom, the tracker may break up long tracks. When the fish are traveling very close
together in the form of a large group along a route, they may not be perceived as separate targets by
the tracker. The velocity of the vessel may also have been too high for some routes during the field
experiment, and the images collected from a moving sonar are commonly susceptible to smearing
because of transient effects and noise, which cause interference in the process of target identification
and tracking. Conversely, the high velocity of the fish will produce the Doppler Effect, which leads
to error in target detection and positioning; (2) For 3D coordinate calculation, the positioning error
is influenced by the velocity and direction of the moving target and the grazing angle of the sonar.
Compared with the experiment in the indoor tank, the positional error in the field experiment may
have been greater as a result of the rocking of the vessel, causing the sonar mounted on the vessel to
sway simultaneously. The sonar may also sense the vibration caused by the vessel’s engine.

To obtain better experiment results, the following operations can be conducted to reduce the error.
First, the pitch angle of the sonar should be as large as possible, the nearer is the pitch angle to 90◦,
the less error caused by the grazing angle will be produced. Second, the sonar should be installed far
away from the engine to reduce the influence of the bubbles caused by the propeller. Third, a calm
weather is preferable for a field experiment, so that the vessel can move as smoothly as possible to
reduce the fluctuation in the sonar images.
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6. Conclusions

In this study, a method to track underwater targets in 3D space using an imaging sonar was
proposed. An indoor experiment was performed to verify the feasibility and accuracy of this method.
The results showed that this method was capable of positioning a target in space. A data association
algorithm was designed to track underwater targets in planar images. Combining the positioning
method with the data association algorithm, the spatial locations of targets were obtained. Finally,
a field experiment was conducted to obtain the 3D trajectories of multiple targets. In conclusion,
the proposed approach provides a new method for underwater tracking in 3D space in turbid or dark
water, which is helpful for the evaluation of fishery resources.
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14. Mandić, F.; Rendulić, I.; Mišković, N.; Dađ, Đ. Underwater Object Tracking Using Sonar and USBL
Measurements. J. Sens. 2016, 2016, 8070286. [CrossRef]

http://dx.doi.org/10.1109/UT.2002.1002424
http://dx.doi.org/10.1016/S1054-3139(03)00036-5
http://dx.doi.org/10.1016/j.oceaneng.2016.11.072
http://www.soundmetrics.com/Products/ARIS-Sonars/
http://dx.doi.org/10.1109/OCEANS.2001.968656
http://dx.doi.org/10.1007/s00773-014-0294-x
http://dx.doi.org/10.1109/TIP.2009.2013081
http://www.ncbi.nlm.nih.gov/pubmed/19380272
http://dx.doi.org/10.1109/OCEANSSYD.2010.5603884
http://dx.doi.org/10.1109/Oceans-Spain.2011.6003666
http://dx.doi.org/10.1109/IROS.2015.7353457
http://dx.doi.org/10.1109/TIP.2015.2432676
http://www.ncbi.nlm.nih.gov/pubmed/25974936
http://dx.doi.org/10.1007/s12562-017-1111-3
http://dx.doi.org/10.1155/2016/8070286


Sensors 2018, 18, 1992 19 of 19

15. Handegard, N.; Boswell, K.; Ioannou, C.; Leblanc, S.; Tjøstheim, D.; Couzin, I. The Dynamics of Coordinated
Group Hunting and Collective Information Transfer among Schooling Prey. Curr. Biol. 2012, 22, 1213–1217.
[CrossRef] [PubMed]

16. Kasinski, A.; Schmidt, A. The architecture and performance of the face and eyes detection system based on
the Haar cascade classifiers. Pattern Anal Appl. 2010, 13, 197–211. [CrossRef]

17. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–25 June 2005; pp. 886–893. [CrossRef]

18. Hu, W.; Huang, Y.; Wei, L.; Li, H. Deep convolutional neural networks for hyperspectral image classification.
J. Sens. 2015, 2015, 258619. [CrossRef]

19. Huang, R.; Han, J.; Tong, J. Assessment of Fishery Resource of a Marine Ranching Based on a DIDSON.
In Proceedings of the IEEE Oceans, Taipei, Taiwan, 7–10 April 2014; pp. 1–5. [CrossRef]

20. Jing, D.; Han, J.; Wang, G.; Wang, X.; Wu, J.; Chen, G. Dense multiple-target tracking based on dual frequency
identification sonar (DIDSON) image. In Proceedings of the IEEE Oceans, Shanghai, China, 10–13 April
2016; pp. 1–6. [CrossRef]

21. Cho, H.; Yu, S. Real-time sonar image enhancement for AUV-based acoustic vision. Ocean Eng. 2015, 104,
568–579. [CrossRef]

22. Wang, X.; Liu, G.; Li, L.; Liu, Z. A novel quantum-inspired algorithm for edge detection of sonar image.
In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 4836–4841.
[CrossRef]

23. Rezatofighi, S.H.; Gould, S.; Hartley, R.; Mele, K.; Hughes, E.W. Application of the IMM-JPDA Filter to
Multiple Target Tracking in Total Internal Reflection Fluorescence Microscopy Images. In Proceedings of
the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI
2012), Granada, Spain, 16–20 September 2012; pp. 357–364. [CrossRef]

24. Blom, H.A.P.; Yaakov, B.S. The Interacting Multiple Model Algorithm for Systems with Markovian Switching
Coefficients. IEEE Trans. Autom. Control 1988, 33, 780–783. [CrossRef]

25. Puranik, S.; Tugnait, J.K. Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering.
IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 23–35. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cub.2012.04.050
http://www.ncbi.nlm.nih.gov/pubmed/22683262
http://dx.doi.org/10.1007/s10044-009-0150-5
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1155/2015/258619
http://dx.doi.org/10.1109/OCEANS-TAIPEI.2014.6964360
http://dx.doi.org/10.1109/OCEANSAP.2016.7485661
http://dx.doi.org/10.1016/j.oceaneng.2015.05.037
http://dx.doi.org/10.1109/ChiCC.2014.6895759
http://dx.doi.org/10.1007/978-3-642-33415-3_44
http://dx.doi.org/10.1109/9.1299
http://dx.doi.org/10.1109/TAES.2007.357152
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Target Extraction from Sonar Images 
	Data Association 
	Calculation of 3D Coordinates 
	Case 1: ARIS Moves along the Beam Transmitting Direction 
	Case 2: ARIS Moves Perpendicular to the Beam Transmitting Direction 


	Indoor Water Tank Experiment 
	Simulation on Moving Target 
	Field Experiment 
	Conclusions 
	References

