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Abstract: Ferroelectrics with a high dielectric constant are ideal materials for the fabrication of
miniaturized and integrated electronic devices. However, the dielectric constant of ferroelectrics
varies significantly with the change of temperature, which is detrimental to the working stability of
electronic devices. This work demonstrates a new strategy to design a ferroelectric dielectric with
a high temperature stability, that is, the design of a multilayer relaxor ferroelectric thin film with a
composition gradient. As a result, the fabricated up-graded (Pb,La)(Zr0.65,Ti0.35)O3 multilayer thin
film showed a superior temperature stability of the dielectric constant, with variation less than 7% in
the temperature range from 30 ◦C to 200 ◦C, and more importantly, the variation was less than 2.5%
in the temperature range from 75 ◦C to 200 ◦C. This work not only develops a dielectric material with
superior temperature stability, but also demonstrates a promising method to enhance the temperature
stability of ferroelectrics.

Keywords: PLZT; dielectric constant; temperature stability; ferroelectric thin film

1. Introduction

A dielectric capacitor is one of the basic units for assembling electronic devices, and
its temperature stability determines the operating temperature range of the electronic
devices [1,2]. In some cases, the upper limitation of the operating temperature is firstly
considered, such as the application in the downhole oil and gas industry, high-power
electronics and hybrid electric vehicle (HEV) [3,4]. For instance, in the power inverters of
HEV, the capacitors must work at around 140 ◦C [5]. The capacitors used in the downhole
industry are operated at temperature above 150 ◦C [6]. High-frequency SiC MOSFET
can heat up to 200 ◦C even under normal load, so nearby electronic capacitors must be
able to withstand this temperature [7]. In the EIA standard for class II dielectrics for
capacitor applications (EIA-198-1-F-2002), 200 ◦C is the high temperature limit to evaluate
the thermal stability of high-temperature dielectric materials. Therefore, it is exigent
to develop dielectric materials with good temperature stability to satisfy the increasing
demand from industry applications.

Polar materials such as ferroelectrics possess a large relative dielectric constant (εr),
which is beneficial to the miniaturization and integration of dielectric capacitors [8]. How-
ever, the dielectric constant of ferroelectrics is very sensitive to the change of temperature,
especially around the Curie temperature where the ferroelectric-to-paraelectric phase tran-
sition occurs [9]. Inducing a relaxor state by chemical doping has been proved to be an
effective method to enhance the temperature stability of the dielectric constant in ferro-
electrics [10,11]. In a relaxor ferroelectric, the long-range order of the polarization in the
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ferroelectric is disturbed by the doped elements and induces polar nanoregions, which
contribute to a diffused phase transition and therefore a flat dielectric peak over a wide
temperature range [12,13]. For instance, by using elements doping, Ren et al. introduced a
relaxor state in the (Na0.5,Bi0.5)TiO3-based ceramic. As a result, in the temperature range
from −90 to 320 ◦C, the variation of permittivity related to the permittivity at 25 ◦C was
less than ±15% [14]. Another strategy to improve the dielectric temperature stability is to
design multilayer structures by using ferroelectrics with successive Curie temperatures [15].
Recently, Gao et al. designed a laminated structure of tricritical ferroelectrics with succes-
sive Curie temperatures and achieved superior dielectric stability in the temperature range
from 30 ◦C to 85 ◦C [16].

In this work, a combined strategy is adopted to enhance the dielectric temperature
stability of ferroelectric thin film capacitors, that is, we design a multilayer ferroelectric thin
film capacitor by using a relaxor ferroelectric with different Curie temperatures. The typical
relaxor ferroelectrics (Pb1−x,Lax)(Zr0.65,Ti0.35)O3 (abbreviated as PLZT100X, X = 0.06, 0.08,
0.10 and 0.12) were selected as the starting composition. The Curie temperature of the
(Pb1−x,Lax)(Zr0.65,Ti0.35)O3 decreases almost linearly with the increase of the La doping
concentration, from about 500 K when X = 0.06 to about 300 K when X = 0.12 [17]. The
schematics of the multilayer structure are shown in Figure 1. In the case of a La concen-
tration gradually increasing along the growth direction (Figure 1a), the structure is called
up-graded. Otherwise, it is called down-graded (Figure 1b). The up-graded and down-
graded multilayer ferroelectric thin films are deposited by sol–gel method and the thermal
stability of its dielectric properties were studied in the temperature range from 30 to 200 ◦C.
The results show that the up-graded structure has superior thermal stability compared with
that of the down-graded structure and other thin films without a composition gradient,
which is very suitable for its application in electronic devices with the requirement of
withstanding high operating temperature.
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2. Experimental Procedure

The ferroelectric thin films were deposited by the sol–gel method and the over-
all process is shown in Figure 1c. The precursor solutions with compositions of
(Pb1−x,Lax)(Zr0.65,Ti0.35)O3 (X = 6, 8, 10, 12) were synthesized using lead acetate trihy-
drate (Pb(CH3COO)2·3H2O), lanthanum acetate (La(CH3COO)3), zirconium-n-propoxide
(Zr(OC3H7)4) and titanium isopropylate (Ti(OCH(CH3)2)4) as the raw materials. Acetic
acid and 2-methoxyethanol were mixed with the ratio of 1:4 and stirred for 60 min as
cosolvent. A 10% excess of lead acetate trihydrate was used to compensate the lead loss
and to prevent the formation of pyrochlore phase in the films during crystallization. The
final concentration of the solution was 0.4 M. After aging for 24 h, the PLZT thin films
were deposited on the Pt/Ti/SiO2/Si substrate by a multiple-step spin-coating process.
Each film was spin coated at a speed of 3500 rpm for 30 s by using a spin coater. Then, the
wet film was baked at 350 ◦C for 2 min to remove the solvent and at 500 ◦C for 2 min to
decompose the organic matter, and subsequently annealed at 650 ◦C for the formation of the
perovskite phase. For the up-graded PLZT films, the spin coating and heat treatment were
repeated four times with the La content in the precursor solutions varying from 6 mol % at
the substrate end to 12 mol % at the top surface. Films with opposite gradients were called
down-graded films. Platinum top electrodes (90 µm × 90 µm) were sputtered through a
copper mask for electrical measurement.

The phase structure of the PLZT thin films were analyzed by an X-ray diffractometer
(XRD, D8 Advance, Bruker, MA, USA) with a step of 0.02◦ from 20◦ to 60◦. The surface
microstructure and cross section of the RFE thin films were determined by a scanning
electron microscope (SEM ZEISS GeminiSEM500, Oberkochen, Germany). The frequency
and temperature dependence of the dielectric permittivity and dielectric loss were measured
using an LCR meter (Agilent E4980A, CA, USA) associated with a temperature controller
(Linkam THMS600, Tadworth, UK).

3. Results and Discussion

The crystal structure of the multilayer PLZT thin films were studied by XRD and
the results are shown in Figure 2. It can be found that, for both up-graded and down-
graded PLZT thin films, all the diffraction peaks (except the peaks from the Pt/Ti/SiO2/Si
substrate) could be indexed within a perovskite structure, which suggested a pure phase
for both structures. The grain size of the PLZT thin films were calculated by the Scherrer
equation based on the X-ray diffraction patterns [18]. It was found that the average grain
size of the up-graded thin film was around 50.6 nm, which was smaller than that of the
down-graded thin film (which was around 65.9 nm). Both up-graded and down-graded
PLZT thin films showed several broadened diffraction peaks, which indicated a polycrystal
characteristic. In addition, the preferred crystallographic direction for both samples was
(111), as (111) was the strongest diffraction peak. In a word, the crystal properties of the
PLZT thin films were not affected directly by the composition gradient.

The surface and cross section morphologies of the PLZT thin films are shown in
Figure 3. It can be seen that both up-graded and down-graded thin films show a very
smooth and dense microstructure, without notable pores and cracks, which demonstrates a
high crystalline quality for both samples. The thickness of the up-graded and down-graded
thin films is about 390 nm and 410 nm, respectively.

The relative dielectric constant (εr) and dielectric loss (tanδ) for the up-graded and
down-graded PLZT thin films were measured at the frequencies of 500 Hz, 1 kHz, 10 kHz,
100 kHz and 1 MHz in the temperature range from 30 ◦C to 200 ◦C, and the results are
presented in Figure 4a,b. We found that the dielectric constant of the up-graded thin film
(around 700 in the measuring temperature range) was slightly smaller than that of the
down-graded thin film (around 750 in the measuring temperature range), which was due to
the relatively smaller grain size of the up-graded thin film compared with that of the down-
graded thin film, as observed in Figure 3. According to F. C. Kartawidjaja et al. [19], the
larger grain size always possesses a large dielectric constant due to the enhanced movement
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of the domain wall, which is also consistent with the observed results in the PLZT thin
film. In addition, the dielectric constant of the PLZT thin film was much smaller than that
of PLZT ceramics with a similar composition (the dielectric constant of the PLZT9/65/35
ceramic is around 3400) [20], which was due to the much smaller grain size of the PLZT
thin film and the existence of an interface stress and interface dead layer between the PLZT
thin film and the deposition substrate [21]. For the up-graded PLZT thin films, as shown
in Figure 4a, the relative dielectric constant decreased with the increase of frequency and
showed a broad peak in the measuring temperature range. In addition, the temperature
of the peak increased with the increase of the measuring frequency, which indicated the
diffuse phase transition of the typical relaxor ferroelectric. The very broad and flat dielectric
peak revealed a very good thermal stability of the up-graded PLZT thin films. The dielectric
loss kept below 0.01 at lower frequencies and in the lower temperature region. When the
frequency increased to 1 MHz, the dielectric loss significantly increased to around 0.06,
which was due to the delayed reorientation of the ferroelectric polarization at an elevated
switching frequency. For the dielectric loss measured below 1 MHz, it remarkably increased
when the temperature went beyond 150 ◦C, and the lower the measuring frequency, the
faster the dielectric loss increased. This feature arises from the increased carrier’s mobility
with the increased temperature, which leads to larger conductance losses. The down-
graded PLZT thin film showed a similar tendency as the up-graded one but possessed
a slightly increased relative dielectric constant with the sacrifice of thermal stability to
some degree.
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To further quantitatively evaluate the temperature stability of the dielectric constant
of the up-graded and down-graded PLZT thin films, the variation of the dielectric constant
at different temperatures related to the dielectric constant at 30 ◦C was calculated as
follow [22]:

∆εr
ε30 ◦C

= εr−ε30 ◦C
ε30 ◦C

× 100% (1)

where ε30 ◦C is the dielectric constant at 30 ◦C, εr is the dielectric constant at different
temperatures and ∆εr is the variation of the dielectric constant related to 30 ◦C. The results
are shown in Figure 4c,d. In order to better illustrate the effect of the composition gradient
design on the up-graded and down-graded PLZT thin films, the temperature stability of
the dielectric constant of the PLZT6, PLZT8, PLZT10 and PLZT12 thin films were also
calculated and compared together in Figure 4c,d. The dielectric constant of PLZT6, PLZT8,
PLZT10 and PLZT12 are copied from previously published data [23].

Figure 4c shows the temperature stability of the PLZT thin films at 1 kHz. It can be
seen that the variation of the dielectric constant for all the PLZT thin films are less than
20% in the measuring temperature range from 30 ◦C to 200 ◦C, which is due to the relaxor
characteristic. Notably, the up-graded PLZT thin film has the best temperature stability,
with a variation of less than 7% in the measuring temperature range. More importantly,
the up-graded PLZT thin film shows superior temperature stability in the temperature
range from 75 to 200 ◦C, with a variation of the dielectric constant of less than 2.5%. The
temperature stability of the dielectric constant of the PLZT thin films were also compared at
10 kHz (Figure 4d), which gave a very similar result to that at 1 kHz. These results suggest
that, by using a composition gradient design to construct the relaxor ferroelectric multilayer
thin film, we can further improve the temperature stability of the relaxor ferroelectric
materials, which is very beneficial for its application in high-temperature electronic devices.

The temperature stability of the dielectric constant of the proposed up-graded PLZT
thin film was also compared with other reported materials, as shown in Figure 5. The
materials are roughly divided into three classes. The first class consists of lead zirconate ti-
tanate (PZT)-based materials, including typical relaxor ferroelectrics (Pb0.92La0.08)(Zr0.65Ti0.35)O3
(PLZT8/65/35) [24], (Pb0.89La0.11)(Zr0.70 Ti0.30)O3 (PLZT11/70/30) [25] and a ferroelectric
thin film with a Pb(Zr0.4Ti0.6)O3/BaZr0.2Ti0.8O3/Pb(Zr0.4Ti0.6)O3 (PZT/BT/PZT) [26] multi-
layer structure. The second class consists of barium titanate (BT)-based materials, including
three compounds, that is, 0.7BaTiO3-0.3Bi(Mg0.5Zr0.5)O3 (70BT-30BMZ) [27], (1−x)BaTiO3-
xBi(Zn0.5Y0.5)O2.75 (BT-BZY) [28] and BaTiO3-(Bi0.5Na0.5)TiO3-Bi(Mg0.5Zr0.5)O3-Ba(Fe0.5Nb0.5)O3
(BT-BNT-BMZ-BFN) [29]. The third class consists of sodium bismuth titanate (BNT)-based
materials, including (1−x) [0.94(0.75Bi0.5Na0.5TiO3-0.25NaNbO3)-0.06BaTiO3]-xCaZrO3
(BNT-NN-BT-CZ) [30], (1−x)[0.90Na0.5Bi0.5TiO3-0.10BiAlO3]-xNaNbO3 (BNT-BA-NN) [14]
and (1−x)(0.94Bi0.5Na0.5 TiO3-0.06BaTiO3)-xK0.5Na0.5NbO3 (BNT-BT-KNN) [31]. The tem-
perature stability of the dielectric constant of the above materials are revealed by the
change of color in Figure 5, with green representing a very good temperature stability
while pale yellow and dark blue representing positive and negative variations of the di-
electric constant related to that measured at 30 ◦C. It is seen that compared with other
materials, the up-graded PLZT thin films show an almost unchanged green color in the
temperature range from 30 to 200 ◦C, which indicates a superior temperature stability in
this temperature range.
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4. Conclusions

In this work, relaxor ferroelectric PLZT thin films with a composition gradient were
deposited by the sol-gel method and the temperature stability of the dielectric properties
were studied. It was found that the up-graded PLZT had a superior temperature stability of
the dielectric constant compared with a pure PLZT composition, as well as other reported
dielectric materials. The variation of the dielectric constant of the up-graded PLZT thin
film was less than 7% in the temperature range from 30 ◦C to 200 ◦C, and less than
2.5% in the temperature range from 75 ◦C to 200 ◦C. This superior performance was
attributed to the composition gradient in the up-graded multilayer PLZT thin film. This
work not only developed a dielectric material with superior temperature stability, but more
importantly, demonstrated the feasibility to develop thermal stable dielectric materials
using compositional gradient in relaxor ferroelectrics.
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