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Abstract: Donor corneas with low endothelial cell densities (ECD) are deemed unsuitable for corneal
endothelial transplantation. This study evaluated a two-step incubation and dissociation harvesting
approach to isolate single corneal endothelial cells (CECs) from donor corneas for corneal endothelial
cell-injection (CE-CI) therapy. To isolate CECs directly from donor corneas, optimization studies
were performed where donor Descemet’s membrane/corneal endothelium (DM/CE) were peeled and
incubated in either M4-F99 or M5-Endo media before enzymatic digestion. Morphometric analyses
were performed on the isolated single cells. The functional capacities of these cells, isolated using the
optimized simple non-cultured endothelial cells (SNEC) harvesting technique, for CE-CI therapy
were investigated using a rabbit bullous keratopathy model. The two control groups were the positive
controls, where rabbits received cultured CECs, and the negative controls, where rabbits received no
CECs. Whilst it took longer for CECs to dislodge as single cells following donor DM/CE incubation in
M5-Endo medium, CECs harvested were morphologically more homogenous and smaller compared
to CECs obtained from DM/CE incubated in M4-F99 medium (p < 0.05). M5-Endo medium was
hence selected as the DM/CE incubation medium prior to enzymatic digestion to harvest CECs for
the in vivo cell-injection studies. Following SNEC injection, mean central corneal thickness (CCT) of
rabbits increased to 802.9 ± 147.8 µm on day 1, gradually thinned, and remained clear with a CCT of
385.5 ± 38.6 µm at week 3. Recovery of corneas was comparable to rabbits receiving cultured CE-CI
(p = 0.40, p = 0.17, and p = 0.08 at weeks 1, 2, and 3, respectively). Corneas that did not receive any cells
remained significantly thicker compared to both SNEC injection and cultured CE-CI groups (p < 0.05).
This study concluded that direct harvesting of single CECs from donor corneas for SNEC injection
allows the utilization of donor corneas unsuitable for conventional endothelial transplantation.
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1. Introduction

Corneal diseases are a leading cause of blindness [1,2]. A significant proportion of corneal
blindness is the result of a dysfunctional corneal endothelium (CE), of which Fuchs endothelial corneal
dystrophy (FECD) and pseudophakic bullous keratopathy (BK) are the two commonest causes [2,3].
The human CE, the innermost cellular monolayer of the cornea, plays a crucial role in the dynamic
maintenance of corneal hydration, keeping the cornea transparent through a leaky barrier of tight
junctions and active ionic pumps [4–8]. As human CECs are known to have limited capacity to
regenerate in vivo [9], any significant loss of CECs due to diseases or iatrogenic damage will result in
the spreading and enlargement of the remaining CECs to maintain functional integrity of the CE [10,11].
However, when endothelial cell density (ECD) falls below a critical threshold, detrimental enough to
reduce the functional capacity of the CE, the cornea becomes edematous, affecting corneal transparency.
This eventually leads to corneal blindness [10,11].

Visual impairment from corneal endothelial dysfunction is one of the most common indications
for corneal transplantation worldwide [3,12,13]. Modern techniques of endothelial transplantation,
namely Descemet’s stripping automated endothelial keratoplasty (DSAEK) and Descemet’s membrane
endothelial keratoplasty (DMEK), can achieve high surgical success rates. Compared to traditional
full-thickness penetrating keratoplasty (PK), endothelial keratoplasty (EK) techniques are reported to
have better visual outcomes, lower risks of graft rejection, and superior graft survival outcomes [14–19].
Unlike PK, DSAEK/DMEK techniques use smaller incisions, avoiding full-thickness corneal trephination
and intraoperative “open-sky” situations which are associated with risks of sight-threatening
complications such as expulsive hemorrhage [20]. Being minimally invasive, DSAEK/DMEK
also preserves the biomechanical integrity of the cornea. In the event of trauma, the risks of
sight-threatening open-globe injuries are higher in eyes that have undergone PK compared to eyes
that have undergone DSAEK/DMEK, as inherent weaknesses exist at the graft–host junctions of PK
eyes. Thus, DSAEK and DMEK are now considered the standard of care for the treatment of corneal
blindness from endothelial diseases.

However, the number of corneal transplants performed annually is significantly limited by a global
shortage of donor corneas suitable for transplantation [21]. A survey published in 2016 revealed that,
although 184,576 corneal transplants were performed between 2012–2013, an estimated 12.7 million
individuals were still waiting for sight-restoring transplant surgeries [2]. This implied that only 1 in
70 of the overall needs of corneal transplantation were met [2]. Within the same report, the authors
revealed that, out of the 283,530 corneas procured in 82 countries, approximately 35% of the corneas
were not used due to either (1) low ECD or (2) positive infectious serological testing. Furthermore,
it was also estimated that over 50% of patients worldwide have no access to corneal transplantation [2].
As ECD and donor-tissue quality is inversely related to donor age, some surgeons are reluctant to
use corneal tissue retrieved from older donors for conventional corneal transplantation. To avoid
tissue wastage and the unnecessary cost of retrieval, many eye banks have set upper age-limits for
donor eligibility [22,23]. With an overall increasing life expectancy across nations worldwide [24],
it is inevitable that the average age of donors will rise [25]. As such, the numbers of donor corneas
harvested that are usable for transplantation will most likely decline [25–27].

With these restrictions in donor-reliant transplantations, there is a strong drive to search for
alternative treatment modalities, such as scalable cell-based therapies, to meet the global demands for
corneal transplantation [28–34]. Current research in corneal cell-based therapies involves the delivery
of functional human CECs isolated from younger donor corneas and propagated in culture [31–38].
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Currently, there are two main approaches to deliver such propagated cells: either via (1) cell injection
or (2) as a tissue-engineered construct [31–38]. In the cell-injection approach, cultured human CECs are
delivered by direct injection of the cells into the anterior chamber. This is followed by at least three hours
of posturing facedown to allow the injected CECs to adhere onto the posterior corneal surface [31–39].
Investigators have also described the use of magnetic attachment of iron-endocytosed CECs [33],
superparamagnetic microspheres [40], or magnetic nanoparticles [41] to aid in the distribution and
adherence of injected cells. The tissue-engineered construct approach involves engineering the cells
onto a suitable scaffold carrier; this is then transplanted into the eye, using techniques that are similar
to current EK techniques [36,37,42].

In 2018, a landmark study reporting the clinical efficacy of cell-injection therapy for the treatment
of bullous keratopathy in humans was published [38,43]. Investigators found that the intracameral
injection of cultured human CECs suspended in growth medium supplemented with rho-associated
protein kinase (ROCK) inhibitor (Y-27632) successfully reversed corneal edema, with clinical outcomes
being stable up to two years postoperatively [38]. In our recent publication, we demonstrated
the functionality of a single technique of expanded CECs, delivered by either cell-injection or
tissue-engineered approaches, within a rabbit model of BK [37,42]. Institutional review board
(IRB)-approved clinical trials investigating cell-based therapies for corneal endothelial diseases are
currently underway (www.clinicaltrials.gov NCT04319848). Nevertheless, obtaining human CECs
expanded in culture requires specialized laboratory facilities and trained personnel with the appropriate
expertise, specifically the ability to propagate CECs within an accredited Good Manufacturing Practices
(GMP) environment [21,28–30,42]. Regulatory safety standards must also be met in order to use these
cultured CECs in human clinical trials [42].

An alternative to the expansion of human CECs in culture and another means of maximizing
donor corneal tissue availability may be the repurposing and utilization of donor corneas deemed
unsuitable for endothelial transplantation. For endothelial transplantations of DSAEK and DMEK,
given the inevitable iatrogenic cell loss of donor graft observed in the perioperative transplantation
period [19], donor corneas must have a minimum threshold of ECD to ensure that the remaining
transplanted cells are able to adequately function to maintain corneal transparency over time following
transplantation [44,45]. As such, donor corneas with low ECD (<2500 cells/mm2) are generally deemed
unsuitable for EK procedures [44,45]. Furthermore, there is also a pool of donor corneas that are often
excluded by eye banks for use in specific EK procedures such as DMEK. DMEK is the most recent
advancement in EK procedures where only donor Descemet’s membrane (DM) and CE are harvested
and transplanted into the recipient [46]. Certain donor characteristics such as young donor age [47–49],
diabetes mellitus [50,51], or old DM scars [52] can affect DM adherence and fragility, increasing the
difficulties of harvesting an intact undamaged DMEK graft. Thus, despite having sufficiently high
ECD, these donor corneas are often rejected for DMEK surgery.

We hypothesized that viable and functional CECs for cell-injection therapy could be harvested
from donor corneas that are unsuitable for conventional corneal endothelial transplantations. In this
preclinical study, we introduced a simple approach of harvesting CECs from donor corneas through a
two-step incubation and dissociation technique. Unlike published methodologies, this approach does
not require complex cellular propagation techniques. It involves the isolation of the DM, incubation of
the peeled DM/CE within a stabilization medium for at least 48 h, and dissociation of CECs into single
cells through mild enzymatic digestion. Using our established rabbit model of BK, we then showed
that these dissociated CECs could be pooled into a concentration sufficient for a simple non-cultured
endothelial cell (SNEC)-injection therapy for the treatment of corneal endothelial dysfunction [37,42].

www.clinicaltrials.gov
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2. Materials and Methods

2.1. Study Design

This study was approved by the local centralized institutional review board (SingHealth IRB
reference: 2016/2839). There are two main objectives to this study. The first objective was to characterize
and establish the two-step incubation and dissociation approach of isolating pure populations of
single CECs from research grade donor corneas through a series of donor-matched comparisons.
Morphometric analyses of cultured cells following isolation were assessed. The second objective was
to demonstrate the functionality of the isolated single cells using a rabbit model of BK through a
cell-injection approach as previously described [37]. New Zealand white rabbits were used, and their
care and treatment strictly adhered to the regulations of The Association for Research in Vision
and Ophthalmology (ARVO) statement for Use of Animals in Ophthalmic and Vision Research.
All experimental procedures were approved by the local SingHealth Institutional Animal Care and
Use Committee (IACUC reference: 2017/SHS/1343). Following the removal of the host rabbit CE via
scrapping, the functionality of the injected single cells was assessed for their capacity to rescue the
insult and to keep the cornea clear. Rabbits receiving the harvested non-cultured single cells were
known as rabbits that received “SNEC injection”. There were two control groups: a positive control
group, where the BK rabbits received an injection of CECs propagated in culture (regular “CE-CI”),
and a negative control group, where the BK rabbits received an injection of solution with no CECs (“no
cells” control). The positive control would allow the evaluation of the efficiency of SNEC injection
of CECs compared to regular CE-CI from cultured CECs; the negative control would indicate any
occurrence of or dictate the rate of spontaneous recovery as a result of the rabbits’ host CE [53]. Slit lamp
images were obtained and corneal thicknesses were measured throughout the study. At the week-3
end point, corneas of rabbits were processed and assessed for the expression of human specific nuclei
by immunohistochemistry.

2.2. Materials

Ham’s F12, Medium 199, Human Endothelial-SFM, Dulbecco’s Phosphate-Buffered Saline (PBS),
TrypLETM Select (TS), gentamicin, amphotericin B, penicillin, and streptomycin were purchased
from Life Technologies (Carlsbad, CA, USA). Insulin/Transferrin/Selenium (ITS) was purchased from
Corning (Corning, NY, USA), and ascorbic acid was purchased from Avantor (Radnor Township,
PA, USA). Collagen IV from human placenta and Trypan blue (0.4%) were purchased from Sigma
(St. Louis, MO, USA). Recombinant human basic fibroblast growth factor (bFGF) and rho-associated,
coiled-coil protein kinase inhibitor Y-27632 were purchased from Miltenyi Biotec (Bergisch Gladbach,
Germany). FNC coating mixture was obtained from United States Biologicals (Swampscott, MA, USA).
Liberase TH was purchased from Roche (Mannhein, Germany). EquaFetal®, the bovine serum used to
supplement the culture medium, was from Atlas Biologicals (Fort Collins, CO, USA).

2.3. Research-Grade Human CorneoScleral Tissues

All research-grade human cadaver corneal tissues were procured from either Lions Eye Institute
for Transplant and Research (Tampa, FL, USA) or Miracles in Sights (Winston-Salem, NC, USA),
with informed consent from the next of kin. All research performed with human-derived tissue was
carried out in accordance to the principles outlined in the Declaration of Helsinki. All corneoscleral
donor tissues were preserved and transported in Optisol-GS (Bausch & Lomb, Rochester, NY, USA) at
4 ◦C until they were processed.

2.4. Corneal Endothelial Cell Culture for Regular CE-CI

For regular “CE-CI”, primary CECs were isolated from pairs of donor corneas propagated using a
dual media approach to the second passage as previously described [30,42]. The CECs were dissociated
and resuspended at a concentration of 6.0 × 105 cells in 150 µL of M5-Endo medium containing
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ROCK inhibitor Y-27637 within a 1 mL syringe attached to a 30-gauge needle in preparation for cell
injection [37]. This suspension of CECs containing ROCK inhibitor for cell injection therapies to
improve cellular adhesion and to prevent apoptosis has been well-established [37–39]. All cultures
were maintained within a humidified atmosphere at 37 ◦C and 5% CO2.

2.5. Preparation of Single-Cell Human CECs for Characterization or Cell-Injection Surgery

The DM/CE from paired donor corneas were carefully peeled under a stereoscopic dissecting
microscope (Nikon, Tokyo, Japan) as previously described [28]. Following isolation of the DM/CE
pieces, they were collected and incubated in a serum-supplemented media for at least 48 h.

For initial donor-matched comparison, DM/CE pieces isolated from one donor cornea were
incubated in M4-F99 medium (Ham’s F12/M199, 5% serum, 20 µg/mL ascorbic acid, 1 × ITS,
and 10 ng/mL bFGF), whereas the isolated DM/CE pieces from the contralateral donor-matched
cornea were incubated in M5-Endo medium (Human Endothelial-SFM supplemented with 5% serum).
Following incubation, each condition media was replaced with TS (1×) and incubated for between 30
to 50 min, with periodic checks for the status of trypsinization based on the cellular morphologies of
CECs—every 10 min after the first 20 min, as the rate of trypsinization varied between donor corneas.
Upon dislodgement of the majority of CECs on the DM, the DM/CE pieces were lightly agitated with
a 1-mL pipette before a final incubation of 5 min. Thereafter, the respective media comprising of the
trypsinized cells were collected and passed through a pre-wet 100-µm filter, before being resuspended in
an Eppendorf tube. For characterization studies, filtered cells were then seeded within an FNC-coated
12-mm glass area of a Willco culture dish and incubated in M5-Endo medium for 4 weeks, where images
were taken for morphometric analysis as previously described [29]. Briefly, cellular morphologies of
CECs were captured using a Nikon TS1000 phase contrast microscope with a Nikon DS-Fil digital
camera (Nikon, Minato City, Tokyo, Japan). Morphometric data of the area and perimeter of randomly
selected cells from phase contrast images were manually outlined by point-to-point tracing of the cell
borders using ImageJ software [54]. Cell circularity was then determined using the formula: circularity
= (4π × area)/perimeter2, where a value approaching 1.0 indicates a circular profile. Hence, hexagonal
CECs will have a profile closer to 1.0 compared to CECs of irregular shapes.

For subsequent cell-injection studies, it should be noted that all incubations of isolated DM/CE
pieces from pairs of corneas from a single donor were pooled and incubated in M5-Endo medium for at
least 48 h. Given the theoretical risk of rejection with multiple allogenic antigen exposure, we did not
pool cells obtained from different donors. Following trypsinization and passing through the 100-µm
filter, single cells were resuspended in an Eppendorf tube before they were prepared in a volume of
150 µL of M5-Endo containing 10 µM of a Rho-associated kinase inhibitor, Y-27632.

2.6. Animal Surgeries

New Zealand white rabbits (n = 12) used in this study were separated into a treatment group of
rabbits receiving SNEC injection (n = 4), a positive control group of rabbits receiving regular cultured
CE-CI (n = 4), and a negative control group of rabbits receiving an injection of solution containing
Y-27632 without CECs (n = 4). Lens extraction surgeries were performed by H.S.O. and F.M.-W.,
and cell-injection procedures were performed by J.S.M., V.K., and H.S.O. All surgical procedures
and follow-up evaluations were performed under general anesthesia achieved by intramuscular
injections of 5 mg/kg xylazine hydrochloride (Troy Laboratories, New South Wales, Australia) and
50 mg/kg ketamine hydrochloride (Parnell Laboratories, New South Wales, Australia), along with
topical application of lignocaine hydrochloride 1% (Pfizer Laboratories, New York, NY, USA).

2.7. Lens Extraction Surgeries

The crystalline lenses of rabbits were extracted by means of a standard phacoemulsification
technique using the White Star phacoemulsification system (Abbott Medical Optics, Santa Ana, CA,
USA) [37]. Surgeries were performed through 2.8-mm clear corneal incisions. To achieve mydriasis,



Cells 2020, 9, 1428 6 of 19

tropicamide 1% (Alcon Laboratories, Geneva, Switzerland) and phenylephrine hydrochloride 2.5%
(Alcon Laboratories, Geneva, Switzerland) eye drops were administered approximately 30 min before
lens extraction surgery. Corneal incisions were closed with 10/0 nylon sutures, and the rabbits
were left aphakic with an intact posterior capsule for at least one week before the experimental
cell-injection procedures.

2.8. Simple Non-Cultivated Endothelial Cell (SNEC) and Corneal Endothelial Cell Injection (CE-CI)

The method of delivery of human CECs was based on our previous studies [37]. Briefly, prior to
cell injection, a single intravenous dose of heparin (500 units in 1.0 mL; Hospira, Melbourne, Australia)
was administered to the rabbits to reduce intraocular fibrin formation. Subsequently, an AC maintainer
was placed to infuse a balanced salt solution (BSS) containing additional heparin (1 unit per mL).
A paracentesis was then created with a diamond knife to accommodate the insertion of a 30-gauge
silicone soft tipped cannula (catalogue number: SP-125053, ASICO, Westmont, IL, USA) for the
scrapping of rabbits’ CECs. The aim was complete removal of all rabbits’ CECs from limbus to limbus
whilst keeping the DM intact. This was performed for both rabbits in the experimental group and
control group. Continuous irrigation with BSS ensured that the endothelial cells did not remain on
the surface of the DM. A solution of trypan blue (Vision Blue, Dorc, Zuidland, The Netherlands) was
injected intracamerally to aid in the assessment of the DM denudation. Areas of DM devoid of CEs
were stained blue, and any areas with residual CE stood out against blue-stained DM. The scraping
process was then repeated to target these areas until the entire DM was stained blue, indicating that all
corneal endothelial cells had been removed. Subsequently, 0.5 mL of 100 µg/mL carbochol (Miostat®,
Alcon Laboratories, Geneva, Switzerland) was injected to achieve intraoperative miosis. Both the
paracentesis incision and the AC maintainer paracentesis sites were secured with 10/0 nylon interrupted
sutures. This was followed by a 0.2 mL anti-inflammatory and anti-infective subconjunctival injection
of a 1:1 mixture of 4 mg/mL dexamethasone sodium phosphate (Hospira, Melbourne, Australia) and
40 mg/mL gentamicin sulfate (Shin Poong Pharmaceutical, Seoul, Korea). Using a syringe and 30-gauge
cannula, 0.4 mL of aqueous humor was removed to shallow the anterior chamber. CECs suspended in
ROCK inhibitor Y-27632 and M5-Endo medium were then injected through a separate tunneled track via
a 30-gauge needle. Immediately following cell injection, rabbits were placed in a manner that ensured
that the cornea was in a downward position maintained for three hours under volatile anesthesia.

2.9. Postoperative Care

Following cell-injection procedures, all rabbits received a postoperative regime of topical
prednisolone acetate 1% (Allergan Inc, Dublin, Ireland) and topical antibiotic moxifloxacin
hydrochloride 0.5% (Vigamox, Alcon Laboratories, Geneva, Switzerland) four times a day.
An intramuscular injection of 1 mL/kg dexamethasone sodium phosphate (Norbrook Laboratories,
Newry, Northern Ireland, United Kingdom) was also administered once daily. This medication regime
was maintained until the rabbits were sacrificed.

2.10. Corneal Imaging and Intraocular Pressure Measurement

All corneal imaging and measurements of intraocular pressures (IOP) were performed prior to
transplantation as well as at the following postoperative time-points: day 1, day 4, week 1, week 2,
and week 3. Slit lamp photographs were taken with a Zoom Slit Lamp NS-2D (Righton, Tokyo, Japan)
and corneal cross-sectional scans, and measurements of corneal thickness were performed using an
anterior segment-optical coherence tomography (AS-OCT) system (Optovue, Fremont, CA, USA).
Three measurements were taken for the assessment of central corneal thickness (CCT): at the corneal
center (0.0 mm) and at 1 mm either side of the center (+1.0 mm, and −1.0 mm); mean values were
calculated. Measurements of IOP were performed using a calibrated tonometer (Tono-pen Avia Vet,
Reichert Ophthalmic Instruments, Depew, NY, USA). In vivo confocal images were obtained using
the Heidelberg Retina Tomography (HRT) 3 system combined with the Rostock Corneal Module
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(HRT3/RCM; Heidelberg Engineering, Heidelberg, Germany) to evaluate corneal ECD following cell
injection, where random areas of between 50 to 100 cells were assessed for cell density using the
software within. A minimum of at least three confocal images were evaluated to obtain the corneal ECD.

2.11. Analysis of Corneas

All rabbits were followed for 21 days following surgery before being sacrificed under anesthesia
with an overdose of 85 mg/kg sodium pentobarbitone (Jurox, New South Wales, Australia)
intracardiac injection.

2.12. Immunohistochemistry

For immunohistochemistry, excised corneal samples were embedded in frozen section compounds
(Surgipath; Leica Microsystems, Nussloch, Germany), and stored at −80 ◦C until sectioning. Serial
sections of 8-µm sections were cut using a HM525 NX cryostat (Thermo Scientific, Waltham, MA, USA)
and collected on polylysine-coated glass slides (Thermo Scientific, Waltham, MA, USA). Samples were
rinsed and blocked in 5% normal goat serum in PBS for 30 min at room temperature (RT). Subsequently,
samples were incubated with the primary antibodies at RT for 2 h or at 4 ◦C overnight. The primary
antibody used was antihuman nuclei antibodies (1:50; Merck Millipore, MA, USA). Samples were
then labelled with an AlexaFluor 488 conjugated goat anti-mouse IgG secondary antibody (2.5 µg/mL,
Life Technology, Waltham, MA, USA), mounted in Vectashield containing DAPI (Vector Laboratories,
Burlingame, CA, USA), and visualized using a Zeiss Axioplan 2 fluorescence microscope (Carl Zeiss,
Oberkochen, Germany). At least 6 sections per eye were analyzed.

2.13. Statistical Analysis

Data was managed in Excel (Microsoft) and analyzed using Statistical Program for Social Sciences
(SPSS©) Version 22 (IBM, Armonk, NY, USA). Differences in the distribution of continuous variables
between groups were analyzed using the two-tailed independent t-test. When distributions of more
than two groups were compared, one-way analysis of variance (ANOVA) with Bonferroni correction
was used. Significance level was set at p < 0.05.

3. Results

3.1. Information on Donor Characteristics

The characteristics of research-grade human donor corneas utilized for this study are listed in
Table 1.

A total of 22 donor corneas were procured for this study. Serial numbers 1 to 6 were single donor
corneas (denoted with an “*”), whereas 7 to 22 were paired donor corneas. Donor age ranged from
4 years old to 71 years old with a median age of 53 years. Days taken from death of donor to the
initiation of incubation for harvesting or cell expansion ranged from 5 days to 21 days, with a median of
12 days. Under the column donor utilization, optimization studies were represented by Opt, where the
donor corneas were utilized for (A) initial dissociation studies, (B) morphometric analyses, and (C)
cell count estimation experiments following isolation. “SNECi” represents donors where corneal
endothelial cells were harvested using our non-cultured technique and used for cell-injection therapy
for in vivo functionality rabbit studies; “CE-CI” represents donors where cells were cultured for at
least 1 passage before cell injection for functionality rabbit studies.
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Table 1. Information of donor corneas procured for this study.

Serial
Number Age Sex Days to

Process
Cell Count
(OS/OD) Cause of Death Medical History Donor

Utilization

01 * 59 F 12 2576/N.A. Cardiopulmonary
Arrest HTN, Throat cancer, anxiety Opt (C)

02 * 34 F 8 1454/N.A. Anoxia from Drug
Overdose N.A. Opt (C)

03 * 52 F 18 2809/N.A.
Sudden Cardiac Event

Congestive Heart
Failure

CHF, CKF, HTN, IDDM (w/neuropathy),
ischemic cardiomyopathy,

hypothyroidism, depression, tobacco use
Opt (A)

04 * 71 M 10 N.A./2092 Exsanguination

BCC, HTN, IDDM, chronic tracheostomy,
chronic aspiration, hernia with bleeding,

esophageal stenosis, hypothyroidism,
hyperlipidemia, GI bleed

Opt (A)

05 * 69 F 10 2320/N.A. Acute Cardiogenic
Shock

AKI, CAD, CHF, ECMO, HTN, IDDM, MI
(x4), PE, LVAD, replacement LVAD,

arteriosclerosis, ischemic cardiomyopathy,
aortic regurgitation, neuropathy,

pulmonary HTN

Opt (A)

06 * 66 F 12 2160/N.A.
Cardiac Arrest:

Congestive Heart
Failure

CHF, COPD, HTN, IDDM, tobacco use Opt (A)

07 70 M 8 1215/2039 Lung Cancer N.A. Opt (A)

08 65 M 14 2723/3125 Cardiopulmonary
Arrest

CAD, CKD, DVT, HTN, chronic back pain,
diabetes mellitus, cardiac stents, obesity,

nephrectomy
Opt (A)

09 28 M 7 2882/2740 Subarachnoid
Haemorrhage Depression, ETOH/tobacco use Opt (B)

10 42 F 12 2447/3454 Multisystemic Failure Arrythmia, ETOH/tobacco use Opt (C)

11 58 F 17 2670/2568 Acute Cardiac Event Tobacco use Opt (C)

12 52 F 13 2182/2836 Abdominal/Thoracic
Aortic Aneurysm

HTN, Acute Type 1 Aortic dissection,
Discoid Lupus, Systemic Lupus,

Secondary Raynauds, Acute ischemic
stroke

SNECi

13 56 F 5 2538/2770 Bronchitis
AKI, CHF, CKD, COPD, HTN, anemia,
chronic lymph-edema, restrictive lung

disease
SNECi

14 54 F 10 2793/2849 Anoxic Brain Injury Asthma, COPD, ETOH/tobacco use SNECi

15 59 M 11 2342/2273
Intracranial

Bleeding/Intracerebral
Haemorrhage

HTN, AFib, pericardiac tamponade,
hyperlipidemia, RA, GERD, GI bleed,
osteoarthritis, tremor disorder, bipolar,

depression, ETOH/tobacco use

SNECi

16 39 F 14 2833/2857 Central Nervous
System Tumour

Brain tumour, seizures, anxiety,
ETOH/tobacco use Opt (B)

17 57 F 17 2551/2404 End-stage Renal
Disease

AFib, RVR, CAD, CHF, COPD, ESRD,
HTN, MI, NIDDM, RLS, hyperlipidemia,

polycystic kidney disease, brain aneurysm,
GI bleed, skin cancer, anxiety, tobacco use

Opt (B)

18 29 F 21 3046/2858 Hanging N.A. Opt (B)

19 9 M 11 3096/3247 Anoxia N.A. CE-CI

20 11 F 10 3040/2907 Drowning N.A. CE-CI

21 23 F 8 2601/2398 Multi-Vehicle
Accident ETOH CE-CI

22 4 F 8 2717/3623 Anoxic
Encephalopathy N.A. CE-CI

AFib: Atrial Fibrillation; AKI: Acute Kidney Injury; BCC: Basal-cell carcinoma; CAD: Coronary Artery Disease;
CHF: Congestive Heart Failure; CKF: Chronic Kidney Failure; CKD: Chronic Kidney Disease; COPD: Chronic
Obstructive Pulmonary Disease; DVT: Deep vein thrombosis; ECMO: Extracorporeal Membrane Oxygenation;
ESRD: End-stage Renal Disease; ETOH: Alcohol use; GERD: Gastroesophageal Reflux Disease; GI: Gastrointestinal;
HTN: Hypertension; IDDM: Insulin-dependent Diabetes Mellitus; LVAD: Left Ventricular Assist Device; NIDDM:
Non-insulin-dependent Diabetes Mellitus; MI: Myocardial Infarction; OD: Ocular Dextrus (right eye); OS: Ocular
Sinister (left eye); RA: Rheumatoid Arthritis; RLS: Restless Leg Syndrome; RVR: Rapid Ventricular Rate.
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3.2. Characterization of Harvested CECs

Isolation of Single Cells from Peeled Donor Descemet’s Membrane

Initial attempts to dissociate donor CE as single cells off peeled DM using both enzymatic digestion
(collagenase, dispase, papain, ethylenediaminetetraacetic acid (EDTA), and TS) and a combination of
chelating agent with manual titrating [55,56] resulted in variable outcomes. The following examples
were representative of outcomes after treatment for at least 1 h. Treatment with collagenase resulted
in the detachment of the corneal endothelial cells as a whole sheet of cells or larger clusters, whilst
treatment with either papain or dispase resulted in the formation of corneal endothelial cell-clusters
of various sizes (Supplementary Figure S1; top panel). The use of EDTA by itself was not effective
in the detachment of cells, and manual titrating with a flame polished pipette resulted in cells
with apparent poor viability and minimal cell attachment (Supplementary Figure S1; bottom panel).
As previously reported [28], direct treatment with TrypLE reagent alone or in combination with
papain was insufficient for single cell isolation where only partial detachment of single cells was
observed in the combination treatment (Supplementary Figure S1; bottom panel). The incubation
of the peeled DM/CE in either M4-F99 or M5-Endo media for 48 h prior to TS exposure enabled
the successful isolation of single cells with robust consistencies (Figure 1A). When exposed to TS,
CECs from peeled DM/CE incubated in M4-F99 medium took a shorter time to dislodge as single
cells from the DM (n = 3; 38 ± 3 min) compared to CECs from donor-matched tissue incubated in
M5-Endo medium (n = 3; 53 ± 15 min) (Table 2; Figure 1A). However, following 4 weeks of culture,
we observed that single CECs, isolated from DM/CE incubated in M4-F99, were morphologically larger
and less homogeneous (mean cell size 1671.7 ± 837.3 µm2, coefficient of variance, CV 0.501) compared
to donor-matched DM/CE incubated in M5-Endo (mean cell size 998.3 ± 449.3 µm2, CV 0.450) (p < 0.05)
(Table 2; Figure 1B). CECs harvested from DM/CE incubated in M5-Endo were also more circular
(circularity index 0.86 ± 0.003 vs 0.83 ± 0.03, p = 0.08) (Table 2; Figure 1C). The overall cellular yield
was found to be higher in 2 of the 3 donor-matched samples when incubated in M5-Endo than in
M4-F99 media (1.83× and 0.27×); there was no difference in the third donor-matched sample (0.03×)
(Table 2). As the cellular morphology of established dissociated CECs following incubation in M5-Endo
medium were consistently more homogeneous and smaller compared to cultures established following
incubation in M4-F99 medium, all subsequent characterization and in vivo functionality studies were
performed with 48 h of incubation in M5-Endo medium prior to TS treatment.

Table 2. Donor-matched DM/CE incubation in either M4-F99 or M5-Endo medium: in vitro culture at
week 4.

Donor 18 Donor 17 Donor 09

OS (M4) OD (M5) OS (M4) OD (M5) OS (M4) OD (M5)

ECD (cells/mm2) 3046 2858 2404 2551 2740 2882

TS Enzymatic Treatment (mins) 35 40 40 50 40 70

Cell Size (µm2) ± S.D.
2546.46 ±
1640.65

862.99 ±
462.77

1591.20 ±
773.17

1499.76 ±
681.42

877.58 ±
552.08

632.24 ±
270.23

Cell Circularity Index ± S.D. 0.79 ± 0.09 0.86 ± 0.06 0.85 ± 0.08 0.86 ± 0.07 0.83 ± 0.08 0.86 ±0.06

Overall CEC Count (Week 4) 34,382 91,156 56,662 58,584 95,115 126,985

Overall CEC Yield (Week 4) 1.83 ×M5 > M4 0.03 ×M4 > M5 0.27 ×M5 > M4

DM: Descemet’s membrane; CE: Corneal endothelium; M4: M4-F99; M5: M5-Endo medium; ECD: Endothelial cell
density; TS: TrypleTM Select; CEC: Corneal endothelial cells.
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Figure 1. Single cell isolation and morphometric analyses of isolated primary human corneal endothelial
cells (CECs): (A) Representative images of isolated primary human Descemet’s membrane/corneal
endothelium (DM/CE) at various timepoints of dissociation in TrypLE Select (TS), following incubation
in either M4-F99 (M4) or M5-Endo (M5) medium for 48 h; (B) representative images of confluent
donor-matched primary human CECs at four weeks following the initial 48-h incubation in either
M4 or M5; the CECs were annotated in Image J (yellow), where manual morphometric analyses were
applied; at least 1500 cells were evaluated from each donor (n = 3); (C) graph showing pooled (n = 3)
cellular circularity of the donor-matched primary human CECs cultured to four weeks following the
two incubation conditions: M4 (represented by red bars) and M5 (represented by blue bars).

To obtain a better estimate of CECs that could be harvested per donor cornea, we isolated DM/CE
from an additional 3 donors (a pair of corneas from 1 donor and a single cornea each from 2 different
donors) and incubated them separately in M5-Endo medium for 48 h before dissociation using TS
treatment. Following cell-straining, manual cell counts indicated a final cell yield of 65,500 cells,
49,168 cells, and 32,500 cells from donor corneas with average ECDs of 2619 cells/mm2, 2576 cells/mm2,
and 1454 cells/mm2 respectively. This equated to an arbitrary estimated yield of between 16.7% to
22.1% per donor cornea, factoring in a 25% attrition from procedural cell loss and cell death (Table 3).

3.3. Preoperative Assessment of Rabbits Following Cataract Extraction

All rabbits were assessed one week following lens extraction surgery before the planned
experimental cell-injection procedures. The corneas of all rabbits were clear with no visible epithelial
defects, opacities, or vascularization. No intraocular inflammation was observed.

The mean CCTs of rabbits in the “SNEC-injection” treatment group, the regular “CE-CI” positive
control group, and “no cells” negative control groups were 331.2 ± 50.5µm (n = 4), 352.4 ± 69.0 µm
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(n = 4), and 366.8 ± 18.9 µm (n = 4), respectively. There were no significant differences in preoperative
CCT among the three groups (p = 0.62) (Figure 2A).

Table 3. Percentage yield of isolated single cells from DM/CE incubated in M5-Endo medium.

Donor 11 Donor 01 Donor 02

OS OD OS OS

ECD (cells/mm2) 2670 2568 2576 1454

Average CEC Density (cells/mm2) 2619 N/A N/A

Theoretical Maximum CECs *
(A = 2 π r h) 394,736 388,255 219,147

TS Enzymatic Treatment (mins) 40 35 50

Final Cell Yield
(per donor) 65,500 49,168 32,500

Arbitrary Yield (with 25% attrition) 22.1% 16.7% 19.8%

* Based on the formula to calculate the surface area of a spherical cap: A = 2 π r h, where r = radius of curvature
and h = height of cap, and working on the assumption that a regular donor cornea has a mean curvature radius of
7.5mm, with an anterior chamber depth (height) of 3.2mm; DM: Descemet’s membrane; CE: Corneal endothelium;
M5: M5-Endo medium; ECD: Endothelial cell density; CEC: Corneal endothelial cells; TS: TrypleTM Select.

Figure 2. Functional assessment of simple non-cultured endothelial cells (SNEC) injection within a
rabbit model of bullous keratopathy: (A) Graph summarizing the mean central corneal thickness (CCT)
of rabbits that received SNEC injection of CECs (n = 4), regular cultured corneal endothelial cell injection
(CE-CI) (n = 4), and “no cells” controls (n = 4) throughout the study period (*/† p < 0.05, **/†† p < 0.01);
representative in vivo anterior segment optical coherence tomography (Optovue, California, USA) and
corresponding slit lamp corneal images of (B) rabbits that received SNEC injection (SNEC-i), (C) rabbits
that received regular CE-CI, and (D) control rabbits where no cells were injected, all at week 3.
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3.4. Postoperative Clinical Outcomes in Rabbit Model of Bullous Keratopathy

3.4.1. Corneal Transparency

Following the SNEC-injection procedure, there were signs of intraocular inflammation with mild
flare observed in the anterior chamber. These resolved within one week after surgery. The corneas of
rabbits receiving SNEC injection (Figure 2B) and regular CE-CI (Figure 2C) were progressively clearer
throughout the follow-up period, and corneal clarity from both groups of rabbits were maintained
throughout the length of the study. The corneas of rabbits in the “no cells” negative control group
remained hazy throughout the postoperative period (Figure 2D). No significant IOP elevation was
noted in any of the postoperative eyes.

3.4.2. Central Corneal Thickness

Following the SNEC-injection procedure, the mean CCTs of rabbits in this group increased to
802.9 µm ± 147.8 µm on day 1 but were maintained at approximately 853.1 µm ± 305.1 µm on day
4. Subsequent mean CCTs of rabbits in this SNEC-injection group reduced significantly. They were
521.3 µm ± 33.1 µm at week 1, 457.1 µm ± 57.3 µm at week 2, and 385.5 µm ± 38.6 µm at week 3
(Figure 2A). In the CE-CI positive control group, there was an initial increase in mean CCT of rabbits to
711.7 µm ± 273.7 µm on day 1 and to 727.3 µm ± 226.6 µm on day 4, before reducing to 523.3 µm ±
82.3 µm, 653.8 µm ± 148.1 µm, and 516.0 µm ± 98.8 µm at week 1, week 2, and week 3, respectively
(Figure 2A). Throughout the experimental period, there were no statistical differences between the
mean CCT of rabbits in the SNEC-injection treatment group compared to the regular CE-CI positive
control group (p = 0.40, p = 0.17, and p = 0.08 at weeks 1, 2, and 3. respectively). In contrast, the CCTs
of rabbits in the “no cells” negative control group were significantly higher (>1000 µm) compared to
the other two treatment groups from day 1 (p < 0.05), day 4 (p < 0.05), and the rest of the follow-up
period (p < 0.01) (Figure 2A).

3.5. Characterization of Excised Corneas: In Vivo Confocal Microscopy and Immunohistochemistry

Corneas of rabbits receiving SNEC injections remained significantly thinner throughout the course
of the study. Periodic capture of in vivo confocal images revealed a confluent layer of polygonal
CECs in a mosaic pattern from postoperative week 1 onwards, which was maintained throughout
the follow-up period. Imaged at week 3, it was evident that the rabbits’ CE (Figure 3A), taken from
the rabbits’ contralateral eyes, looked vastly different to the monolayer formed by the human CECs
that adhered on the posterior corneas of the rabbits receiving SNEC injections (Figure 3B) and regular
cultured CE-CI (Figure 3C). Although SNEC injections were able to form functional CE, the monolayers
that were established towards the center of the cornea were not compact, with irregularly shaped
polygonal cells and a mean central ECD assessed at week 3 of approximately 953 ± 191 cells/mm2;
in comparison, the mean central ECD of rabbits’ native CE was 2940 ± 29 cells/mm2. The mean central
ECD of rabbits that received regular CE-CI was 1208 ± 270 cells/mm2. These results were confirmed by
the immunohistochemistry staining using a human-specific nuclei antibody. No staining was detected
in the excised corneas comprising only rabbit CE (Figure 3A), whilst nuclei of the CE from the rabbit
that received SNEC injections (Figure 3B) and regular CE-CI (Figure 3C) were positive. It should be
noted that the peripheries of the excised corneas from both cell injections were relatively sparse of cells.
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Figure 3. In vivo confocal microscopy and immunohistochemistry of rabbits’ corneas: The in vivo
confocal images of corneal endothelium of (A) a control rabbit with its own native corneal endothelium,
(B) a rabbit that received simple non-cultured endothelial cells (SNEC) injection, (C) rabbits that
received regular cultured corneal endothelial cell injection (CE-CI); all images were taken on the last
day of experiment prior to sacrifice. Immunostainings with human-specific nuclei antibodies were
performed on the excised rabbits’ corneas and presented alongside the confocal images. Scale bars:
50 µm.

4. Discussion

Corneal endothelial failure is one of the most common indications for corneal transplantation
in the world [3,12,13]. Although the current standard of care for the treatment of corneal endothelial
failure through conventional EK surgeries are effective in reversing corneal blindness [1,3,12,13,57,58],
the number of transplant surgeries that can be performed is greatly limited by the availability of
suitable donor corneas [2]. There is thus a need to search for alternative approaches to treat corneal
endothelial failure that are less donor reliant. In this study, we described a simple non-cultivated
endothelial cell (SNEC) harvesting approach to obtain single-cell populations of viable CECs directly
from donor corneas. The donors used in this study were “research-grade” corneas, some of which had
ECDs that are not suitable for conventional EK surgeries (Table 1). We subsequently demonstrated that
the isolated CECs from these donor corneas could be sufficiently pooled for a single application of
CE-CI. Through cell injection, we then demonstrated the functionality of these CECs, harvested by
means of our SNEC approach, using a previously established rabbit model of bullous keratopathy [37].

In the initial phase of this study, we first optimized the cell-harvesting approach to obtain viable
single cells directly from the donor DM. Digestion of the DM (collagenase/liberase) or direct isolation of
CECs off the DM using different dissociative enzymatic solutions (dispase, papain, and trypsin alone or
in various combinations) generally resulted in (1) the isolation of whole cell sheet or cellular clusters of
various sizes, (2) ineffective cellular dissociation, or (3) partial isolation of single cells (Supplementary
Figure S1). Even when harsher approaches (such as incubation in an EDTA-buffered solution followed
by physical coaxing through a flame-polished pipette to detach the CECs from the DM [56]) were
used, cellular viability following isolation and overall cell yield were found to be poor (Supplementary
Figure S1).

Eventually, we were able to consistently harvest viable single cells. Cell culture studies have
indicated that preincubation of DM/CE in stabilization media improves the success of cultivation
of CECs to higher passages and the rates of cellular proliferation [59]. Here, we introduced a 48-h
incubation period of donor corneas in a stabilization media (either M4-F99 or M5-Endo), followed
by the dissociation of the DM/CE using a mild enzymatic solution (TS) (Figure 1A). Mechanical
cell-straining was then performed to eliminate any cellular clusters and potential debris generated
from the dissociation. Injecting single cells is crucial, as the injection of cellular clusters or clumps
through a 30-gauge needle during cell-injection procedures subjects the CECs to shear stress, which can
affect cellular viability [37]. Interestingly, differences were detected when paired donor DM/CEs were
stabilized in either of the two media: M4-F99 or M5-Endo (Figure 1B, 1C; Table 2). Whilst single
cells could be dissociated from DM/CE incubated in M4-F99 medium in a shorter time (Table 2),
the morphological outcomes of the established monolayer were consistently less homogeneous and
larger compared to CECs isolated from donor-matched corneas incubated in M5-Endo medium
(Figure 1B). Furthermore, quantification of overall cellular yield at week 4 showed that more CECs
were obtained following incubation in M5-Endo medium in 2 out of the 3 donor-matched samples
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(Table 2). As we have shown in previous reports, a homogeneous population of propagated CECs
is important in the functional outcomes of cell-based therapies [37]. With the observation that the
incubation of isolated DM/CE in M5-Endo medium resulted in CECs with better morphologies and
marginally better yield, M5-Endo medium was hence selected as the incubation medium of choice.

Based on the formula to calculate the surface area of a spherical cap: A = 2 π r h, where r = radius
of curvature and h = height of cap [60], and working on the assumption that a regular donor cornea has
a mean curvature radius of 7.5 mm, with an anterior chamber depth (height) of 3.2 mm, approximately
3.0 × 105 CECs can potentially be isolated from a donor cornea with an ECD of 2000 cells/mm2.
However, initial characterization studies showed that approximately 65,500, 49,168, and 32,500 CECs
could be isolated from donor cornea with ECD of 2619, 2576, and 1454 cells/mm2, respectively (Table 3).
Factoring in an estimated attrition of 25%, this signified an isolation yield of between 16.7% to 22.1%
per donor cornea (Table 3). However, it is important to bear in mind that the estimations of donor ECDs
are based on specular microscopy imaging. It must also be noted that current techniques using specular
microscopy to estimate donor corneal ECDs have their limitations. Given that only a small area of
central cornea is imaged, counted, and inferred to get an ECD quantification, ECD values obtained in
this manner may be lower than the actual cellular densities of the entire cornea [61]. Likewise, specular
microscopy only gives an image quantification of cells, not their physiological capabilities. Despite
this, based on these yields, approximately 1.0 to 1.3 × 105 CECs could thus be potentially isolated from
a donor pair with ECD of 2000 cells/mm2 for SNEC-injection therapy. This is less than a quarter of the
quantity of CECs used in regular CE-CI using CECs propagated in culture, where, in previous studies,
at least 5.0 × 105 CECs were injected [37–39].

In order to test our hypothesis, we used research-grade donor corneas, where single-cell
populations were harvested and used for the in vivo animal experiments; some donor corneas
had similarly low ECD (<2500 cells/mm2) that are unacceptable for conventional EK procedures
(Table 1). Despite the unfavorable donor status, we observed comparable in vivo functional outcomes
in our rabbit model of BK receiving regular CE-CI and SNEC injections (Figure 2A). Within the
SNEC-injection group, there were also no observable differences in the post-injection ECD (range 923
to 1158 cells/mm2) and corneal thicknesses between rabbits’ corneas that received cells harvested from
donors <2500 cells/mm2, compared to those that received cells harvested from donors with higher
ECD. These results indicated that a much lower quantity of CECs from “SNEC” preparation was
sufficient to restore corneal endothelial function. Furthermore, there were no detectable differences in
time intervals from death of donors to harvesting CECs for SNEC injection, which ranged from 5 to
13 days. Of note, in the current practice of EK procedures, donor corneas preserved in Optisol-GS have
a maximum shelf life of 10 days. In our SNEC-injections, three out of 4 of our donors used had shelf
lives of ≥10 days.

At week 3, rabbit corneas receiving SNEC injection recovered to mean CCT of 385.5 ± 38.6 µm.
This was similar to preoperative levels. Interestingly, CCT in the SNEC-injection group were lower than
rabbits that received regular cultured CE-CI, where the corresponding mean CCT at week 3 was 516.0 ±
98.8 µm (p = 0.08). This may not be surprising as CECs used in SNEC injection did not undergo cellular
expansion and, thus, may be characteristically more similar to the original CE. Indeed, it has been
reported that the subculturing of CECs gradually leads to temporal cellular changes and progressive
loss of CE-specific gene expression [62], and this may result in a shift in their functional capacities.

From a clinical translational standpoint, a lower number of harvested cells may be sufficient for
SNEC injection. In our study, as rabbit CECs are known to be able to regenerate within the eye [63],
all native rabbit CECs had to be removed by a complete 12 mm (white-to-white) scraping of rabbits’
DM. This is to prevent rabbit CEC repopulation during the functional assessment of injected human
CECs. However, in clinical conditions such as pseudophakic BK or failed corneal grafts, based on the
current techniques for treating corneal endothelial failure, only the removal of diseased endothelial cells
from the central 7.5 to 8 mm cornea is necessary. Therefore, by targeting cell-injection therapy to the
central diseased area of the cornea, the overall quantity of cells required to restore corneal functionality
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will be significantly lower. To illustrate this, we take an example of donor 15 (Table 1) with low ECD
unsuitable for conventional EK surgeries (OD 2342 cells/mm2; OS 2273 cells/mm2). In our experiment,
CECs harvested from donor 15 by an SNEC approach were pooled for cell injection and functionality
was demonstrated by a clear rabbit’s cornea at week 3. With an average ECD of 2308 cells/mm2 for the
paired corneas from donor 15 and assuming a high harvest yield of 22.1%, approximately 76,877 cells
per donor (1.54 × 105 cells for a pooled donor pair) could potentially be harvested; we showed that
the CECs harvested were able to reverse the effect of corneal blindness even with the entire 12-mm
posterior corneal area of native rabbit CECs removed [37]. As the mean post-SNEC-injection ECDs
of corneas was approximately 950 cells/mm2, this implied that the number of injected cells covering
the 12-mm posterior corneal surface was approximately 1.15 × 105. This indicated a cell loss of 25.3%
following cell injection. Such loss may be the result of cellular outflow from the eye or nonadherence.
Extrapolating from these estimates, approximately 71,800 to 82,000 CECs will thus be required to cover
a 7- to 8-mm diseased central area to achieve functionality. It also suggests that donor cornea pairs
with an average ECD as low as 1250 cells/mm2 could potentially be utilized for SNEC-injection therapy.
Future work to validate this should be conducted in animal models of BK with native endothelium that
is nonregenerative, such as nonhuman primate [39] or feline [32] models similar to that of human. Also,
studies only investigating donor corneas with ECD < 2500 cells/mm2 or evaluating CECs harvested
from donors stored in other preservation media, such as organ culture media where shelf lives can be
as long as 30 days, are required.

The described “SNEC” harvesting technique is a simple process that requires minimal procedural
steps and uses reagents that have been approved for use in a first-in-man cell-based therapy clinical trial
(www.clinicaltrials.gov NCT04319848) [42]. This can potentially simplify the strict regulatory standards
required for the use of in vitro propagated CECs in human clinical trials, where there is a need for
more extensive cellular manipulation and where all processes must be performed within a laboratory
compliant with Good Manufacturing Practices (GMP) [42]. As the SNEC-injection approach requires
minimal cellular manipulation and does not involve cellular propagation, regulatory requirements may
be less stringent. With appropriate training, the “SNEC” harvesting processes could be incorporated
into standard practice in eye banks that are already routinely preparing corneal graft tissues for EK
surgeries (e.g., pre-stripped DMEK). If our harvesting technique is adopted in eye banks worldwide,
CECs can be harvested from the pool of donor corneas with low ECDs that are not suitable for
conventional EK procedures to treat endothelial diseases. This reduces wastage of donor tissues and
the unnecessary cost of organ retrieval.

As mentioned, another pool of corneas that can be used for SNEC harvesting are corneas that
have been procured for DMEK procedures. As the DM is highly fragile, harvesting DMEK grafts
without damage and wastage of donor tissue poses significant challenges. Studies have reported that
certain donor characteristics, such as young donor age [47–49], diabetes mellitus [50,51], or previous
DM scars [52], are associated with DMEK graft preparation failure due to increased risks of tears in
donors’ DM. As a consequence, despite having sufficiently high ECDs (>2500 cells/mm2), many corneas
harvested from these donors with such unfavorable characteristics are often excluded by eye banks for
use in DMEK to avoid unnecessary tissue wastage. For example, 6 out of 22 donors (27.2%) suffered
from diabetes mellitus in our study (Table 1) and corneas from these donors would normally be
excluded for DMEK in clinical practice. These corneas, however, could be used for SNEC harvesting,
as tears in donors’ DM do not exclude the use of these tissues for cell harvesting.

Based on the rapid advancement of research in cell-based therapies for the treatment of corneal
endothelial dysfunction, the translation of these therapies into clinical practice as an alternative to
conventional corneal transplantation is fast approaching. The scalability of human CECs through cell
expansion from a single donor can yield sufficient CECs for the treatment of multiple patients [36,64].
As such, with less reliance on donor availability, cell-based approaches which use cell cultivation
modalities present as attractive treatment options to address the global shortage of suitable donor
corneas [36,37,42,64]. This alternative technique of “SNEC” harvesting introduced in our study offers

www.clinicaltrials.gov
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the additional advantages (1) of utilizing and repurposing the pool of donor corneas unsuitable for
conventional EK surgeries; (2) of a simplified technique of obtaining CECs with minimal manipulation,
which can potentially bypass stringent regulatory requirements and the use of specialized GMP
facilities; and (3) of being an easier technique of delivering CECs to diseased corneas compared to
technically demanding keratoplasty procedures, e.g., DMEK.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/6/1428/s1.
Figure S1: Images obtained during optimization phase in unsuccessful trial attempts to directly dissociate the
corneal endothelium into single cells using various reagents.
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