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Abstract

Parkinson’s disease (PD) is defined by motor symptoms such as tremor at rest, bradykinesia, 

postural instability, and stiffness. In addition to the classical motor defects that define PD, up 

to 80% of patients experience cognitive changes and psychiatric disturbances, referred to as PD 

dementia (PDD). Pathologically, PD is characterized by loss of dopaminergic neurons in the 

substantia nigra pars compacta (SNpc) and intracellular inclusions, called Lewy bodies and Lewy 

neurites, composed mostly of α-synuclein. Much of PD research has focused on the role of 

α-synuclein aggregates in degeneration of SNpc dopamine neurons because of the impact of loss 

of striatal dopamine on the classical motor phenotypes. However, abundant Lewy pathology is also 

found in other brain regions including the cortex and limbic brain regions such as the amygdala, 

which may contribute to non-motor phenotypes. Little is known about the consequences of α

synuclein inclusions in these brain regions, or in neuronal subtypes other than dopamine neurons. 

This project expands knowledge on how α-synuclein inclusions disrupt behavior, specifically 

non-motor symptoms of synucleinopathies. We show that bilateral injections of fibrils into the 

striatum results in robust bilateral α-synuclein inclusion formation in the cortex and amygdala. 

Inclusions in the amygdala and prefrontal cortex primarily localize to excitatory neurons, but 

unbiased stereology shows no significant loss of neurons in the amygdala or cortex. Fibril injected 

mice show defects in a social dominance behavioral task and fear conditioning, tasks that are 

associated with prefrontal cortex and amygdala function. Together, these observations suggest that 

seeded α-synuclein inclusion formation impairs behaviors associated with cortical and amygdala 

function, without causing cell loss, in brain areas that may play important roles in the complex 

cognitive features of PDD
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1. Introduction

Parkinson disease (PD) is characterized by loss of dopaminergic neurons in the substantia 

nigra pars compacta (SNpc) and intracellular inclusions composed mostly of α-synuclein, 

called Lewy bodies and Lewy neurites. Symptoms classically include tremor, rigidity, 

bradykinesia, and postural instability (Kalia and Lang, 2015). In addition to the initial 

extrapyramidal motor effects, individuals living with PD can eventually develop cognitive 

changes and psychiatric disturbances such as depression and anxiety (Jellinger, 2018; 

Russell et al., 2014). Conversely, Dementia with Lewy Bodies (DLB) presents first with 

cognitive changes followed by development of parkinsonism. DLB and PD are considered 

within a spectrum of synucleinopathies, with both having a loss of dopamine terminals 

within the striatum as well as Lewy bodies and Lewy neurites found throughout the brain 

in regions important for cognition, such as the cortex, and limbic regions, including the 

amygdala (Adler and Beach, 2016; Braak et al., 1994; Braak et al., 2003). In addition, 

approximately 60% of Alzheimer’s disease patients show Lewy pathology in the amygdala 

(Kotzbauer et al., 2001; Uchikado et al., 2006), suggesting that α-synuclein inclusions 

may contribute to behavioral changes associated with multiple neurodegenerative diseases. 

Supporting a role for α-synuclein in cognition and psychiatric symptoms are findings 

that severe dementia and psychiatric disturbances, such as fear and anxiety, predominate 

in patients with triplication of the SNCA gene, and in those with dominantly inherited 

mutations in SNCA, which supports a role for abnormal α-synuclein in these non-motor 

phenotypes (Lesage et al., 2013; Polymeropoulos et al., 1997; Singleton et al., 2003; 

Zarranz et al., 2004). A negative correlation between the density of α-synuclein pathology, 

particularly Lewy neurites, in the cortex and cognition also suggests a possible causal 

role of α-synuclein pathology and cognitive deficits (Beach et al., 2009; Irwin et al., 

2017; Irwin and Hurtig, 2018; Irwin et al., 2013; Irwin et al., 2012). However, analyses 

of Lewy bodies in the cortex showed that some patients had Lewy bodies but did not 

receive a diagnosis of dementia (Colosimo et al., 2003; Parkkinen et al., 2005). Animal 

models of synucleinopathy could help us understand the contribution of abnormal aggregates 

of α-synuclein on behaviors related to cortical and limbic dysfunction. Although current 

treatments improve motor symptoms, treatments for cognitive symptoms show minimal 

effectiveness and no treatments are able to stop disease progression. Pathogenesis must 

be further explored, especially regarding the contribution of α-synuclein pathology on 

cognitive decline and behavioral disturbances.

The α-synuclein fibril model recapitulates many features of PDD and DLB. According 

to this model, exposure of neurons to small fragments of fibrillar α-synuclein generated 

from recombinant protein induces recruitment of endogenously expressed α-synuclein into 

inclusions. Similar to Lewy pathology found in individuals that suffered from PD and DLB, 

these inclusions are hyperphosphorylated, ubiquitinated, and filamentous (Volpicelli-Daley 
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et al., 2011). The inclusions form in the substantia nigra pars compacta (SNpc), causing loss 

of dopamine neurons and motor defects. In addition, similar to PD and DLB, inclusions are 

found in other brains regions, including the cortex and amygdala (Luk et al., 2012a). In vivo 

imaging, which allows imaging of the same neurons over several weeks to months, shows 

that neurons with inclusions generated from fibril exposure eventually die, demonstrating 

inclusions cause toxicity in these neurons (Osterberg et al., 2015). Furthermore, early 

formation of fibril-induced inclusions in excitatory neurons causes synaptic dysfunction 

demonstrating that α-synuclein aggregation causes neuronal dysfunction even before neuron 

death (Blumenstock et al., 2017; Froula et al., 2018; Wu, 2019). The effects of inclusions on 

neurons in the cortex and amygdala may lead to non-motor behavioral defects.

Here, we show that bilateral injections of fibrils into the striatum result in robust α-synuclein 

inclusion formation in the amygdala and in the cortex, primarily corticostriatal projection 

neurons in layers IV/V. Fibril injected mice show defects in a social dominance behavioral 

task associated with prefrontal cortex function. They also show defects in fear conditioning, 

which is associated with amygdala function. Multiple interconnected neural networks 

are responsible for cognitive function; while lesions of individual regions (such as the 

basolateral amygdala in fear conditioning or prefrontal cortex in social dominance) causes 

clear phenotypes, an interplay between these regions is likely the cause for phenotypes 

observed. Indeed, prefrontal cortical function (in addition to the amygdala) plays a role 

in contextual fear conditioning (Rozeske et al., 2015); similarly, amygdalar dysfunction 

has been implicated in social dominance (Phillips and LeDoux, 1992). Inclusions in the 

amygdala and prefrontal cortex primarily localized to excitatory neurons. Together, these 

observations suggest fibril exposure can be an important technique in studying the non

motor deficits of PD and DLB.

2. Materials and methods

Unless otherwise stated, all materials were purchased from Fisher Scientific.

2.1. Animals

All animal protocols were approved by the Institutional Animal Care and Use Committee 

at the University of Alabama at Birmingham. C57BL/6J mice were obtained from Jackson 

Labs. Mice were on a 12-h light/dark cycle and had ad libitum access to food and water. 

Both male and female mice were used in this study.

2.2. Preparation of fibrils

Mouse α-synuclein was purified in E. coli as described previously. A Pierce LAL high 

capacity endotoxin removal resin was used to minimize endotoxin (Volpicelli-Daley et al., 

2014). Endotoxin levels were 0.017 Unit/μg of protein. The concentration of monomeric 

α-synuclein was measured by absorbance at 280 nm with an extinction coefficient of 7450 

M−1 cm−1. Fibrils were generated by incubating monomeric α-synuclein (300 μM) in 150 

mM KCl, 50 mM Tris-HCl at 37 °C with constant agitation for 7 days (Bousset et al., 2013). 

After the seventh day, fibrils were isolated from remaining monomer by centrifugation for 

10 min at 13,200 rpm and resuspended in half the initial volume of buffer. Five μL of fibrils 
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were incubated for 1 h with 8 M guanidinium chloride to dissociate the fibrils into monomer, 

the concentration of α-synuclein was measured, and remaining fibrils were diluted to a final 

concentration of 300 μM. On the day of injection, fibrils were sonicated using a probe tip 

sonicator (Fisher, FB120110) for 30 s total time, with 1 s pulses at 30% amplitude.

2.3. Intrastriatal injection of recombinant α-synuclein fibrils

At 3 to 4 months of age, male and female mice were deeply anesthetized with vaporized 

isoflurane on a stereotactic frame. Animals were bilaterally injected with 2 μL (per side) 

of 300 μM sonicated fibrils, or 300 μM monomeric α-synuclein, or phosphate-buffered 

saline (PBS) as controls. Solutions were injected at a constant rate of 0.5 μL/ min and the 

needle left in place for 5 min followed by slowly withdrawing the needle. Coordinates for 

the striatum were + 0.2 mm AP, ± 2.0 mm ML, −2.6 mm DV. Two separate cohorts were 

utilized in this study. The first cohort had an experimental group injected with sonicated 

fibrils and a control group injected with PBS, as performed previously (Luk et al., 2012a). 

However, recent evidence has suggested monomeric α-synuclein as a control for injection of 

α-syn protein is the optimal control (Polinski et al., 2018). Therefore, a second cohort using 

monomeric α-synuclein was used for tube test analyses. No differences were noted between 

the experimental groups.

2.4. Behavior testing

Behavior tests to assess motor and non-motor function were conducted 6 months after 

injection of fibrils or control. Mice were handled for 3 days before testing began and 

habituated to testing room for 1 h at the start of each testing day. The order of test was 

designed to minimize stress to the animals, such that low-stress tasks were completed 

before high-stress tasks. Additionally, mice received at least one rest day between each test. 

Specifically, mice completed behavior testing in the order listed below, with the first cohort 

completing open field, elevated zero maze, rotarod, and fear conditioning. The second cohort 

also completed open field test followed by tube test. The researcher conducting the tests was 

blinded to treatment. To minimize scents, all apparatuses were cleaned with 70% ethanol 

between trials.

2.5. Open field test

To test general motor activity as well as anxiety, mice were placed in a clear plastic chamber, 

and allowed to explore for 10 min. Noldus Ethovision XT 11 recorded the total distance 

traveled, as well as time spent in center of the chamber.

2.6. Elevated zero maze

To test anxiety, mice underwent a variant of the elevated plus maze. In this variant, mice are 

placed in an elevated maze consisting of a single, round track. Half of the track is enclosed, 

with quarters of the track being divided (Kulkarni et al., 2007; Tucker and McCabe, 2017). 

Mice were placed at a uniform starting location at the border between an open and enclosed 

arm and allowed to freely explore for 5 min. Total time spent in open and closed arms was 

recorded.
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2.7. Rotarod

To further test motor activity, mice were placed on an accelerating rotarod apparatus, and 

time taken to fall was measured. Mice were trained on the apparatus over 5 days, with the 

rotarod speed increasing from 4 rpm to 40 rpm over 300 s. If mice had not fallen by 120 s on 

the testing trial, the rotation was halted, the mouse was removed, and the time was recorded 

as 120 s. Mice underwent two trials per day, with an inter-trial rest time of at least 30 min.

2.8. Cued and contextual fear conditioning

To test fear learning and memory, mice were placed in a novel environment and trained 

to associate a tone (conditioned stimulus; CS) with a mild foot shock (unconditioned 

stimulus, US). After 2 min in the novel environment, a continuous tone would play for 30 s, 

culminating with a mild (0.8 mA) foot shock that lasted 2 s. One minute later, the tone and 

shock would repeat. Mice showed a fear response by exhibiting freezing behavior. During 

testing, mice were placed in the same environment for 5 min and freezing behavior was 

measured for every minute. One hour later, mice were exposed to a novel environment and 

the US is re-presented, this time without the foot shock. Freezing behavior during the tone 

was measured. Freeze Frame software was used to record sessions, and freezing behavior 

was scored by an experimenter blinded to conditions. Freezing behavior was defined as 

previous (Blanchard and Blanchard, 1969; Fanselow, 1990; Paylor et al., 1994) as the 

absence of movement except for respiratory-related movements.

2.9. Tube test

Tubing was uniformly 30.5 cm long, but a range of internal diameters (ID) were used based 

on animal size to dissuade mice from climbing over each other, requiring them to push the 

other out of the tube to proceed forward. Mice were paired with a non-cagemate mouse of 

the same sex and released into opposite ends of a tube. As previously published, all mice 

(monomer and fibril injected) were prompted to enter the tube and were not released until 

both mice had all four paws within the tube (Arrant et al., 2016). Mice were tested against a 

total of 3 other animals and side of the tube was randomly chosen. The first mouse with two 

feet outside of the tube was considered non-dominant. Any test that lasted longer than 2 min 

was aborted and re-run at the end of the testing cycle.

2.10. Immunofluorescence and immunohistochemistry

At 3 or 6 months after injection, after the completion of behavior testing, mice were deeply 

anesthetized with isoflurane and transcardially perfused with 0.9% saline and 10 units/mL 

heparin and sodium nitroprusside (0.5% w/v) followed by cold 4% paraformaldehyde (PFA) 

in phosphate buffered saline (PBS). Brains were dissected, postfixed in 4% PFA in PBS 

for 12 h at 4 °C, cryoprotected with 30% sucrose in PBS for 24–48 h, and stored at −80 

°C. Brains were sectioned at 40um thickness on a freezing microtome and stored in 50% 

glycerol, 0.01% sodium azide in tris-buffered saline (TBS). Serial sectioning was performed 

by placing each section into a well of a 6 well tray such that one well represented the entire 

forebrain with sections spaced 240 μm apart. For immunofluorescence, sections were rinsed 

five times in TBS and then incubated in an antigen retrieval solution (10 mM sodium citrate, 

0.05% Tween-20, pH 6.0) for 1 h at 37 °C. Sections were blocked and permeabilized for 1 
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h at 4 °C with agitation in 5% normal goat or donkey serum, 0.01% TritonX-100 in TBS. 

Next, sections were rinsed and then incubated in primary antibody in 5% normal goat or 

donkey serum (Equitech-Bio Inc) in TBS for 24 h at 4 °C with agitation. Table 1 shows 

the primary antibodies used. The pSer-129-α-syn antibodies have been extensively used 

elsewhere and validated using tissue from α-synuclein knockout mice (Delic et al., 2018; 

Rutherford et al., 2016). After rinses, sections were incubated with secondary antibodies 

(Goat anti-mouse IgG1 Alexa Fluor 488 conjugate, Goat anti-mouse IgG2a Alexa Fluor 

555 conjugate, or Goat anti-rabbit IgG Alexa Fluor 555; Invitrogen) in 5% goat or donkey 

serum in TBS for 2 h at 4 °C with agitation. Sections were then rinsed and mounted on 

charged slides using Prolong Gold (Invitrogen). Brains from animals sacrificed 3 months 

after injection were utilized to identify pSer29-α-synuclein inclusions, as we and others 

have reported a peak in inclusion burden at 2–3 months post-injection (Patterson et al., 

2019). It has been suggested that these inclusions eventually disappear, likely as the neurons 

die off, but potential clearance of aggregates remains to be rigorously tested (Osterberg et 

al., 2015). All other tests and analyses (including unbiased stereologic counts) used brains 

from animals sacrificed 6 months after injection.

For immunohistochemistry, sections were rinsed five times in TBS and then quenched in 

0.6% H2O2 in TBS for 20 min, followed by rinsing. Sections then underwent antigen 

retrieval, blocking, and primary antibody solutions as above. Biotin-SP AffiniPure Donkey 

Anti-Mouse IgG H&L (Jackson ImmunoResearch) was used as a secondary antibody; 

sections were then incubated with Avidin-Biotin Complex Peroxidase Standard Staining 

Kit reagent for 30 min at 4 °C and then developed using ImmPACT-3, 3′-diaminobenzidine 

(DAB, Vector Labs). Sections were sequentially dehydrated using ethanol and Histo-Clear 

(30 s water followed by 3 min each 70%, 95%, 95%, 100%, and 100% ethanol, culminating 

in three 5 min washes in Histo-Clear) and mounted on charged slides using Permount. 

For proteinase K digestion, sections were incubated in 20 μg/mL proteinase K diluted 

in in tris-buffered saline for 10 min at 37 °C. Following 3 rinses in TBS, sections were 

incubated in 0.6% H2O2 for 20 min, rinsed, blocked with 5% normal goat serum, and 0.05% 

Tx-100 for 30 min, and then incubated with an antibody to total α-synuclein overnight 

(Abcam AB51252) at 4 °C in TBS/5% normal goat serum. The sections were then incubated 

biotinylated goat anti-rabbit secondary antibody (Jackson Immunoresearch), followed by 

avidin-biotin complex (Vector Labs), and developed using ImmPACT-3,3′-diaminobenzidine 

substrate kit (Vector Labs).

2.11. Fluorescent microscopy, colocalization quantitation, and unbiased stereology

Sections were imaged using a Zeiss Axiovert.Z1 microscope for wide-field fluorescence, 

Olympus BX51 microscope for bright field, or a Leica TCS-SP5 laser scanning confocal 

microscope. The researcher capturing images was blinded to the treatment group. At least 

3 images were obtained from each region of interest for analysis. Colocalization was then 

determined using the JACoP plugin from ImageJ (Bolte and Cordelieres, 2006).

Unbiased stereological analyses were conducted on a brightfield microscope using an 

optical fractionator probe (Stereo Investigator software, Stereology Resource Center) on 

sections immunoprocessed for NeuN and were conducted by a researcher blinded to the 
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experiment. For stereology of the basolateral amygdala, a 4× objective was used to identify 

the borders (see Fig. 5B). Sections covered the entire BLA amygdala and were equally 

spaced 200um apart. Ten percent of the area was quantified, with a guard zone height of 

2um to avoid artifacts. A total of 6–8 sections per animal were quantified. Stereology of 

the prefrontal cortex was modeled based on a previous study (Lemmens et al., 2011), and 

serial sectioning was used to identify sections between bregma coordinates +2.46 to +1.10 

mm. The prefrontal cortex was delineated using a 4× objective. The optical dissector height 

was 22 μm and the distance between the counting frame was 250 by 250 μm. The counting 

variability was measured with the Schmitz-Hof coefficient of error (CE) (Schmitz, 1998) 

and was 0.017.

2.12. Statistical analyses

Analyses and graphs were generated using GraphPad Prism. Significance between groups 

for the fear acquisition tests was determined by repeated measures analysis of variance 

(ANOVA). Open field, elevated zero maze, fear conditioning, and stereology used unpaired 

t-tests. A binomial test was used for tube test. An ANOVA was utilized for determining 

significance in colocalization analyses. All data fit a normal distrubtion as determined by a 

Shapiro-Wilk or Kolomogorov-Smirnov test for normality.

3. Results

3.1. Localization of α-synuclein inclusions in cortex and amygdala following bilateral 
intrastriatal injections of fibrils

Mice received bilateral injections into the dorsolateral striatum with α-synuclein fibrils 

or controls. To examine the localization of α-synuclein inclusions, immunofluorescence 

was performed using an antibody that recognizes α-synuclein phosphorylated at Ser129 

(pSer129-α-syn). This antibody recognizes Lewy neurites and Lewy bodies in PD and DLB 

brains (Fujiwara et al., 2002). In rodents, exposure of neurons to fibrils induces formation 

of p-α-synuclein inclusions (Ayers et al., 2017; Luk et al., 2012a; Masuda-Suzukake et al., 

2014; Osterberg et al., 2015; Paumier et al., 2015; Rey et al., 2018; Sacino et al., 2013). 

However, there is very little pSer129-α-synuclein in neurons from wild type mice injected 

with PBS or monomer, or fibril exposed neurons from α-synuclein knockout mice (Delic 

et al., 2018; Dhillon et al., 2017; Volpicelli-Daley et al., 2011) (Also see supplemental fig. 

1, this study). Here, bilateral injections of fibrils produced pSer129-α-synuclein positive 

inclusions in the amygdala (Fig. 1A), which projects to the striatum (Hunnicutt et al., 2016). 

Both the central and basolateral amygdala showed thread-like pSer129-α-synuclein positive 

inclusions that appeared similar to Lewy neurites, and skein-like inclusions in the soma 

in the amygdala (Fig. 1B). Double labeling immunofluorescence with pSer129-α-synuclein 

and the neuron specific marker, NeuN, confirmed that the somal inclusions were found in 

neurons (Fig. 1B).

Abundant pSer129-α-synuclein inclusions were also found in the cortex (Fig. 2A); in 

particular, the following areas of the cortex showed pSer129-α-synuclein inclusions: 

prefrontal, prelimbic, somatosensory, motor, cingulate, insular, perirhinal, and entorhinal 

(Fig. 2A). Layers IV/V and VI of the cortex, which contain corticostriatal projection 

Stoyka et al. Page 7

Neurobiol Dis. Author manuscript; available in PMC 2020 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons, particularly showed a robust burden of pathologic α-synuclein (Fig. 2B, C), and 

a distinct “band” of pSer129-α-synuclein positive inclusions appeared throughout many 

cortical regions (see Fig. 2A). Similar to the amygdala, the majority of inclusions in the 

soma appeared juxtaposed to NeuN, demonstrating localization to neurons (Fig. 2B). To 

confirm that these inclusions localized to layer IV/V, double labeling immunofluorescence 

was performed with antibodies to pSer129-α-synuclein and Necab1, a calcium signaling 

molecule with selective expression in layer IV/V cortical neurons (Fig. 2C; Sugita et al., 

2002). The majority of pSer129-α-synuclein inclusions showed overlap with Necab1 in 

layers IV/V. As another method to visualize α-synuclein inclusions, immunohistochemistry 

was performed on tissue sections treated with proteinase K, which digests normal α

synuclein, and incubated in an antibody that recognizes total α-synuclein (Supplemental 

Fig. 2). The proteinase K aggregates appeared very similar in morphology as the pSer129-

α-synuclein inclusions. This method identified proteinase K insoluble α-synuclein as 

another way to identify inclusions independent of the pSer129-α-synuclein. In the cortex 

and amygdala of proteinase K treated sections from control injected mice, there are no 

aggregates of α-synuclein. In the cortex and amygdala of fibril injected mice, proteinase K 

resistant α-synuclein aggregates are visible in the soma and in neurites (Supplemental fig. 

2).

In accordance with other studies (Abdelmotilib et al., 2017; Luk et al., 2012a), pSer129-α

synuclein inclusions were seen in the substantia nigra pars compacta and striatum following 

injection with fibrils (Supplemental fig. 3). Studies completed by others and within our lab 

have shown a 20–30% loss of TH+ neurons in the substantia nigra at 6 months after fibril 

injection (Froula et al., 2019).

3.2. Fibril-injected mice show impaired fear memory and social dominance

Behavioral assays of motor, cortical, or amygdala function were performed to determine 

the extent of behavioral phenotypes. Compared to controls, fibril-injected mice showed no 

significant deficits on gross motor function or anxiogenic behavior as evaluated by open 

field test (Fig. 3A–C). There were no significant differences between control mice and mice 

injected with fibrils in the total distance traveled (Fig. 3A), time spent in the center of the 

field (Fig. 3B), or velocities of movement (Fig. 3C). Additionally, there was no effect on 

time to fall in the accelerating rotarod test for motor dysfunction when comparing fibril to 

PBS (Fig. 3D). Overall, mice did not exhibit overt motor defects, suggesting there would be 

no confounding factor of reduced motor function on further behavioral tests of cortical and 

amygdala function.

Mice exhibited robust inclusions in the basolateral amygdala after intrastriatal fibril 

injections (Fig. 1B), suggesting an amygdala-dependent phenotype may be present at later 

time points. To test this, mice underwent tests for anxiety, and fear learning and memory. For 

the acquisition phase of fear learning, mice were subject to two foot shocks introduced at 

the culmination of a 30 s auditory tone. Fibril-injected mice did not significantly differ from 

control animals during the acquisition phase of fear conditioning (Fig. 4A). As expected, 

mice increased in freezing behavior from pre-shock to post-shock behavior. Freezing 

behavior was comparable between groups before administration of the first unconditioned 
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stimulus (foot shock), and increased in both groups up to 80% after both foot shocks had 

been administered. For cued fear conditioning, mice were exposed to a novel environment 

and allowed to briefly explore before being re-introduced to the auditory tone from fear 

acquisition. Freezing behavior for the duration of the tone was measured. Fibril-injected 

mice and control mice showed no difference in cued fear conditioning (Fig. 4B). During 

contextual fear conditioning, mice were exposed to the same context (cage) as during fear 

acquisition, and freezing behavior for the duration of exposure was measured. Compared to 

control mice, mice that received bilateral injections of fibrils showed a significant decrease 

of approximately 20% in percent time freezing during the first minute of exposure in 

contextual fear conditioning (Fig. 4C). This suggests fibril-injected mice were specifically 

impaired in contextual fear conditioning.

We further tested anxiety behavior via the elevated zero maze, a variant of the elevated 

plus maze, which utilizes thigmotaxic behavior to evaluate anxiety and amygdala function. 

According to this test, increased anxiety is indicated by an increase in the proportion of time

spent in closed arms. In this study, mice spent the majority of time in the closed arms, 

and there were no significant differences in the percentage of time spent in the closed arms 

between fibril-injected mice compared to control animals (Fig. 4D–E). These data suggest 

that fibril-injected mice had no impairment in innate anxiety-specific behavior.

Given the abundant pSer129-α-synuclein inclusions in the cortex, we performed behavioral 

tests of cortical function. The social dominance test reveals defects in prefrontal cortical 

function (Arrant et al., 2016; Filiano et al., 2013; Lindzey et al., 1961; Wang et al., 2014). 

In the experiments performed in this study, non-cagemates were placed in a clear tube 

as one pushed the other, less dominant mouse, out of the tube (Fig. 4F). When a mouse 

had two hind paws outside the tube, it was scored a 0, for non-dominant and the other 

mouse was scored a 1, for dominant. Fibril-injected mice were less socially dominant than 

control mice across trials (Fig. 4G), with the cohort winning less than a third of all runs. 

The majority of control animals won at least 2 of their 3 trials (Fig. 4H), which showed 

a significant difference in wins per mouse. This suggests that fibril-injected mice are less 

socially-dominant than control mice.

3.3. Basolateral amygdala inclusions are selectively found in excitatory neurons

Unilateral fibril injections cause an approximately 30% loss of tyrosine-hydroxylase positive 

neuron loss in the ipsilateral SNpc (Luk et al., 2012b). However, it is unknown if other brain 

regions show similar degeneration. To assess if the inclusions in the basolateral amygdala 

(Fig. 5A) led to neurodegeneration at 6 months, we performed immunohistochemistry 

for the neuron selective marker, NeuN, and unbiased stereology to count neurons. The 

basolateral amygdala was identified as the region of interest (Fig. 5B) and serial sections 

were quantified. Stereologic counts revealed an approximately 13% loss of volume, and a 

18% loss of neurons in fibril injected mice compared to controls measured by volumetric 

and cell counts, respectively, in the experimental animals compared to controls (Fig. 5C). 

However, the differences between the two groups did not achieve significance (p < .055). 

Correlation between stereologic estimates (Fig. 5C) and context-specific freezing behavior 
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(Fig. 4C) failed to show significance (Supplemental fig. 4), suggesting that neuron loss alone 

may not be the only effector on behavioral outcomes.

To determine the neuronal subtype to which α-synuclein localizes in the amygdala, double 

labeling immunofluorescence for pSer129-α-synuclein and CaMKII, or SATB2, markers of 

excitatory neurons (Bemben et al., 2014; Huang et al., 2013), or parvalbumin, calretinin, 

and calbindin, markers of inhibitory neurons. In the amygdala, pSer129-α-synuclein

positive inclusions were localized almost exclusively to excitatory neurons (Fig. 5D). 

Specifically, SATB2+ cells extensively colocalized with pSer129-α-synuclein. Quantitation 

of colocalization revealed an 89% overlap with SATB2+. pSer129-α-Synuclein inclusions 

also overlapped with the excitatory neuron marker, CamKII+, although to a slightly lesser 

extent than SATB2+, with a 63% overlap. In contrast, pSer129-α-synuclein showed minimal 

overlap with the inhibitory neuron markers, parvalbumin, calretinin, and calbindin-positive 

neurons, with a 1.2, 0.9, and 3.5% overlap, respectively (Fig. 5E).

3.4. Prefrontal cortical inclusions are specific to excitatory neurons

Stereologic analyses allowed for evaluation of potential neurodegeneration in the prefrontal 

cortex. Estimations revealed no significant difference in NeuN+ cell count or volume of the 

prefrontal cortex, with both groups containing approximately 1 million neurons (Fig. 6B and 

C). This suggests that neuron loss alone cannot be responsible for behavioral dysfunction, 

and inclusions are likely leading to cellular dysfunction before cell death (Froula et al., 

2018). However, it cannot be excluded that a more detailed evaluation of specific cell layers 

or regions within the prefrontal cortex may reveal specific degeneration.

Similar to the basolateral amygdala, a high percentage of excitatory neurons contained 

pSer129-α-synuclein-positive inclusions in the prefrontal cortex (Fig. 6A). Specifically, 

SATB2+ and CamKII+ neurons colocalized extensively with pSer129-α-synuclein in the 

prefrontal cortex, with SATB2+ overlapped at 100% and CamKII+ at a 55% overlap. Triple 

immunofluorescence imaging with pSer129-α-synuclein, CamKII, and SATB2 showed that 

in both the amygdala and prefrontal cortex, CAMKII overlaps with SATB2, however 

there exist SATB2 neurons with no immunofluorescence for CAMKII, which could 

account for a higher proportion of pSer129-α-synuclein inclusions colocalizing with SATB2 

(Supplemental fig. 5). Markers of inhibitory neurons (parvalbumin, calretinin, and calbindin) 

did not colocalize with inclusions (Fig. 6B), with an overlap of 1.9%, 2.2%, and 10.8%, 

respectively. Therefore, the majority of α-synuclein inclusions in the amygdala and cortex 

localized to excitatory neurons.

4. Discussion

It has been previously shown that unilateral injection of fibrils into the striatum induce 

formation of inclusions located in the SNpc, among other brain regions, (Abdelmotilib et 

al., 2017; Luk et al., 2012a; Masuda-Suzukake et al., 2013). Most of these studies focus 

on the effect of seeded α-synuclein inclusion formation on loss of dopamine neurons in 

the SNpc because reduced nigral-striatal dopamine is responsible for motor deficits in 

PD. However, little is known about the impact of abnormal α-synuclein in other brain 

regions, other neuron subtypes, and the potential consequence for the non-motor phenotypes 
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related to PDD and DLB. This is important because α-synuclein inclusions, and amygdala 

and cortical changes, are well documented in PDD/DLB patients, and likely contribute to 

cognitive changes and psychiatric disturbances (Beach et al., 2009; Bowers et al., 2006; 

Halliday et al., 2014; Hurtig et al., 2000; Irwin et al., 2013; Kempster et al., 2010; Mattila 

et al., 2000; Trnka et al., 2018). In this study, bilateral injections of fibrils into the mouse 

striatum produced robust pathology in the central and basolateral amygdala on both sides of 

the brain, as well as throughout the neocortex, particularly in layers IV/V. These inclusions 

were pSer129 positive and resistant to proteinase K digestion. The brain regions identified 

send projections to the dorsolateral striatum (Hunnicutt et al., 2016). A potential avenue 

for further research would be to determine if injection directly into the prefrontal cortex or 

amygdala would produce similar results, or if retrograde transport of misfolded α-synuclein 

is necessary for dysfunction. The inclusions appeared predominantly in excitatory neurons, 

consistent with enrichment of α-synuclein in this neuronal subtype (Taguchi et al., 2016). 

Mice with inclusions showed reduced performance in fear conditioning, a measure of 

amygdala function, and the social dominance test, a measure of prefrontal cortex function. 

Thus, our findings suggest that bilateral injections of fibrils into the striatum provides a 

model of cortical and amygdala dysfunction in PDD and DLB.

Our data support other studies showing cognitive impairments in other mouse models 

of synucleinopathy. In particular, overexpression of human α-synuclein using the Thy1 

promoter produces cognitive and behavioral phenotypes (Chesselet et al., 2012; Magen et 

al., 2012; Magen et al., 2015). These mice presented with difficulties in rule-reversing tests, 

spontaneous alternation, and an increase in anxiety. Thus, our data contribute to the growing 

evidence that abnormal α-synuclein contributes to non-motor phenotypes in PDD and DLB. 

One advantage of the fibril model is that endogenously expressed α-synuclein is corrupted. 

This feature allows researchers to assess which neurons are particularly vulnerable to α

synuclein aggregation without the potential confound of aberrant α-synuclein expression 

caused by the Thy1 promoter.

α-Synuclein normally localizes to the presynaptic terminal and axons (Boassa et al., 2013; 

Vargas et al., 2017). In this study, we showed that intrastriatal fibril injections produced 

abundant inclusions in brain nuclei that project to the striatum. This supports the previous 

in vitro finding of aggregates initially forming in axons and retrogradely traveling to the 

soma (Bieri et al., 2018; Brahic et al., 2016; Volpicelli-Daley et al., 2011). In addition, 

fibril-induced inclusions predominantly formed in neurons in which α-synuclein is highly 

expressed, particularly glutamatergic excitatory neurons (Taguchi et al., 2016). Inhibitory 

neurons in the cortex and amygdala expressing calretinin, calbindin, or parvalbumin showed 

minimal to no inclusion formation, similar to findings in brains from patients who suffered 

from PD and DLB (Gomez-Tortosa et al., 2001). This suggests that susceptibility to forming 

α-synuclein inclusions is dependent on cell type (excitatory vs. inhibitory), endogenous 

α-synuclein expression, and anatomical connections. It is also possible that the higher 

expression of calcium buffering proteins in inhibitory neurons prevented calcium activated 

protease cleavage of α-synuclein, which enhances fibrillization (Duftyet al., 2007). In 

addition, it is also possible that excitatory neurons express lower levels of proteins involved 

in degradative pathways, thus leading to buildup of aggregates, as has been shown for the tau 

protein (Fu et al., 2019).
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Fibril-injected mice show abundant inclusions in the amygdala and defects in fear 

conditioning. Fear conditioning in mice is partially an amygdala dependent test, suggesting 

that fibril injections and α-synuclein inclusions caused dysfunction in this brain region 

(Ciocchi et al., 2010; Muller et al., 1997; Phillips and LeDoux, 1992; Rozeske et al., 2015). 

However, the fibril injected mice did not show significant differences in the elevated plus 

maze or the open field test, also tests of amygdala function and anxiety. It is possible that 

the fibril injected mice had a selective defect in conditioned fear memory as revealed by the 

contextual fear conditioning, but not in innate, unconditioned fear responses such as walking 

in the open arms in a raised platform. Also, the α-synuclein inclusions also apspeared in 

other brain areas such as the prefrontal cortex and midbrain dopamine neurons, which also 

play a role in fear memory (Curzon et al., 2009; Rozeske et al., 2015). Thus, complex 

defects in neuronal circuitry likely contributed to the differences in the distinct behavioral 

tasks.

The tube test for social dominance has been shown to be functionally dependent on the 

prefrontal cortex (Arrant et al., 2016; Filiano et al., 2013; Wang et al., 2011) and amygdala 

(Jonason and Enloe, 1971) in rodent models, with both dysfunction and lesions impairing 

performance. Thus, fibril-injected mice likely showed defects in the tube test resulting from 

neuronal dysfunction in the prefrontal cortex and/or amygdala. This behavior translates to 

humans, as the prefrontal cortex also plays a role in social hierarchies, working memory, 

attention, and inhibition control (Schneider and Koenigs, 2017; Teffer and Semendeferi, 

2012) – all functions that are impaired in PD or DLB (Jellinger, 2012). Therefore, we 

believe these phenotypes produced by bilateral intrastriatal injections represented a model of 

non-motor manifestations of synucleinopathies.

Overall, bilateral injection of synuclein fibrils cause defects in fear conditioning and social 

dominance which may provide a model of dysfunction in the cortex and amygdala, helping 

us to further understand mechanisms that contribute to some of the cognitive phenotypes in 

PDD and DLB. These symptoms are associated with inclusions reminiscent of Lewy body 

pathology in both regional and cellular location, as well as subcellular morphology and 

modifications. Specifically, pSer129-α-synuclein positive and protease K resistant inclusion 

burden was heavy in amygdala and prefrontal cortex, both areas shown to correlate with 

cognitive dysfunction and psychiatric symptoms in synucleinopathy patients (Beach et 

al., 2009; Bowers et al., 2006; Halliday et al., 2014; Hurtig et al., 2000; Irwin et al., 

2013; Kempster et al., 2010; Mattila et al., 2000; Trnka et al., 2018). The observations 

noted in this manuscript support the hypothesis that inclusions of α-synuclein contribute 

to symptoms observed in PDD and DLB. It is important to note however, that other 

pathologies likely contribute to cognitive changes as well including concomitant AD-like 

pathology, and/or cerebrovascular lesions which should be studied in the future. Non-motor 

and cognitive symptoms remain largely untreated in PDD/DLB patients, with therapies 

such as acetylcholinesterase inhibitors providing only mild to moderate relief of symptoms 

(Kalia and Lang, 2015). Cognitive and behavioral impairments are the biggest reason for 

institutionalization and lead to rapid decline of patient quality of life. Thus, these findings 

provide an avenue for elucidating mechanistic causes to sporadic synucleinopathies and 

determining potential therapeutics for halting cognitive decline in synucleinopathy patients.
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Abbreviations

α-synuclein alpha-synuclein

AAV adeno-associated virus

ANOVA analysis of variance

BLA basolateral amygdala

CamKII Ca2+/calmodulin-dependent protein kinase II

CS conditioned stimulus

DAB 3,3′-diaminobenzidine

DLB Dementia with Lewy Bodies

ID internal diameters

LB Lewy body

MMSE mini-mental state examination

Necab1 N-terminal EF-hand calcium binding protein 1

NeuN neuronal nuclei

p- α-synuclein alpha-synuclein phosphorylated at Ser129

PBS phosphate-buffered saline

PD Parkinson’s disease

PDD Parkinson’s disease dementia

PFA paraformaldehyde

PV parvalbumin

REM rapid eye movement

SATB2 special AT-rich sequence-binding protein 2

SNpc substantia nigra pars compacta
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TBS tris-buffered saline

US unconditioned stimulus
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Fig. 1. 
Bilateral fibril injection leads to α-synuclein inclusion formation in the basolateral and 

central amygdala. Mice received bilateral injections of α-syn fibrils at 3–4 months 

of age. A) pSer129-α-synuclein (EP1536Y) immunofluorescence from a representative 

coronal section showing inclusions in the basolateral and central amygdala. B) Higher 

magnification of immunofluorescence for pSer129-α-synuclein (green) and NeuN (red) 

showing inclusions in neurons in the basolateral and central nuclei of the amygdala. Scale 

bar = 200 μm and 50 μm (zoom). Abbreviations: Amyg = amygdala, BLA = basolateral 
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nucleus of the amygdala, CEA = central nucleus of the amygdala, ENTI = entorhinal cortex, 

PERI = perirhinal cortex. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.)
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Fig. 2. 
Bilateral fibril injection leads to α-synuclein inclusion formation in the cortex. Mice 

received bilateral injections of α-syn fibrils at 3–4 months of age. A) pSer129-α-synuclein 

(green; EP1536Y) shows inclusions in coronal sections of the forebrain. Yellow outlines 

the prefrontal cortex and white outlines other subdivisions of the cortex. B) Double-staining 

immunofluorescence for NeuN (red) and pSer129-α-synuclein (green; EP1536Y) shows 

banding pattern of inclusions in lower layers (IV/V and VI) of the motor cortex. C) Double

staining immunofluorescence for Necab1 (red) and pSer129-α-synuclein (green; 81a) shows 

localization of inclusions to layer IV/V. Scale bar = 100 μm. Abbreviations: ACC = anterior 

cingulate cortex, IC = insular cortex, MC = motor cortex, PFC = prefrontal cortex, PLC = 

prelimbic cortex, SS = somatosensory cortex. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Fibril-injected mice lack overt motor deficits. Mice received bilateral injections of α-syn 

fibrils or PBS as a control at 3–4 months of age. Six months after injection, mice were 

subjected to tests of motor function. In the open field test, there were no significant 

differences between groups in A) distance traveled (unpaired t-test: p = .97, df = 16), B) 

percent time in center (unpaired t-test: p = .068, df = 16), or C) velocity (unpaired t-test: 

p = .9742, df = 16). D) Control and fibril-injected mice showed no significant difference 

in latency to fall on accelerating rotarod testing (repeated measures ANOVA: p = .9044; 

F(1,16) = 0.0149). Graph shows average of 3 trials per day over 5 days of testing. For all 

groups, N = 9.
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Fig. 4. 
Fibril-injected mice have deficits in fear memory and social dominance. All tests were 

performed 6 months after control (PBS, cohort 1, A, B,C,D, E; monomer cohort 2 F,G,E) or 

fibril injections. A) Fibril-injected and control mice showed no difference in fear acquisition 

(repeated measures ANOVA: p = .4266, F (1,16) = 0.6656) or in B) cued fear conditioning 

(repeated measures ANOVA: p = .2871; F(1,16) = 1.213). For contextual fear conditioning, 

control mice froze an average of 53% and fibril-injected mice froze an average of 34% 

(unpaired t-test: p = .0281; t = 2.414; df = 16). D) Mice showed no significant difference in 

time spent in closed arms of the elevated zero maze (unpaired t-test: p = .4117; t = 0.8429; 

df = 16). E) Average heat maps from the elevated zero maze. Closed arms are outlined 

in red. F) Schematic of tube test for social dominance. Mice underwent three rounds of 

testing against same-sex mice from the opposite treatment group. G) Compared to control 

mice, fibril-injected mice exhibited a losing phenotype (binomial test: p = .0081) and H) the 

majority of fibril-injected animals won less than one round. N = 9 for all groups. *p < .05, 

**p < .01. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version this article.)
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Fig. 5. 
pSer129-α-Synuclein inclusions localize primarily to excitatory amygdala neurons. Mice 

received bilateral injections of α-syn fibrils or monomeric α-synuclein as a control. A) 

Immunofluorescence double-labeling for pSer129-α-synuclein (green) and NeuN (red) as 

a marker of neurons shows inclusions in the basolateral amygdala. B) Representative 

immunohistochemistry for NeuN on animals 6 months after injection with tracing for 

the basolateral amygdala, used for unbiased stereology. C) Unbiased stereology in the 

basolateral amygdala showed slight, but nonsignificant, differences in volume (N = 7–8/

group; unpaired t-test: p = .0578; t = 1.686; df = 13) and neuron count (N = 7–8/group; 

unpaired t-test: p = .0553; t = 1.703; df = 14). D) Representative confocal images of 

excitatory and inhibitory markers (red) and pSer129-α-synuclein (green; EP1536Y used 
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for costaining with CamKII, CB, and CR; 81a used for costaining with SATB2 and PV). 

E) Quantification of colocalization of pSer129-α-synuclein over excitatory and inhibitory 

markers, normalized to pSer129-α-synuclein over NeuN (N = 3 with 3–5 images/animal; 

ANOVA: p < .0001; F(4,40) = 62.19. ***p < .0001. Scale bar = 100 μm (A), 500 μm 

(B), and 50 μm (D). Abbreviations: CR = calretinin, CamKII = Ca2+/calmodulin-dependent 

protein kinase II, CB = calbindin, PV = parvalbumin. (For interpretation of the references to 

colour in this figure legend legend, the reader is referred to the web version of this article.)
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Fig. 6. 
In the prefrontal cortex, p-α-synuclein inclusions localize primarily to excitatory neurons. 

Mice received bilateral injections of α-syn fibrils or monomeric α-synuclein as a control. 

A) Representative confocal images of excitatory and inhibitory markers (red) and pSer129-

α-synuclein (green; EP1536Y used for costaining with CamKII, CB, and CR; 81a used for 

costaining with SATB2 and PV) in the prefrontal cortex. B) Unbiased volumetric estimation 

in the prefrontal cortex (N = 6/ group; unpaired t-test: p = .2542; t = 1.210; df = 10) 

C) Unbiased neuron count (N = 6/group; unpaired t-test: p = .2338; t = 1.267; df = 10). 

D) Quantification of colocalization of pSer129-α-synuclein over excitatory or inhibitory 

markers, normalized to pSer129-α-synuclein over NeuN (N = 3 with 3–5 images/mouse; 

ANOVA: p < .0001; F(4,40) = 81.54. ***p < .0001. Scale bar = 50 μm. Abbreviations: CR 

= calretinin, CamKII = Ca2+/calmodulin-dependent protein kinase II, CB = calbindin, PV = 

parvalbumin. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.)
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