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Abstract. Glioblastoma multiforme (GBM) is one of the most 
lethal and damaging types of human cancer. The current 
study was conducted to identify differentially methylated 
genes (DMGs) between GBM and normal controls, and to 
improve our understanding of GBM at the epigenetic level. 
The DNA methylation profile of GBM was downloaded from 
the Gene Expression Omnibus (GEO) database using the 
accession number GSE50923. The MethyAnalysis package 
was applied to identify DMGs between GBM and controls, 
which were then analyzed by functional enrichment analysis. 
Protein‑protein interaction (PPI) networks were constructed 
using the hypermethylated and hypomethylated genes. 
Finally, transcription factors  (TFs) that can regulate the 
hypermethylated and hypomethylated genes were predicted, 
followed by construction of transcriptional regulatory 
networks. Furthermore, another relevant dataset, GSE22867, 
was downloaded from the GEO database for data validation. 
A total of 476  hypermethylated and 850  hypomethylated 
genes were identified, which were mainly associated with the 
functions of ‘G‑protein‑coupled receptors ligand binding’, 
‘cytokine activity’, ‘cytokine‑cytokine receptor interac-
tion’, and ‘D‑glutamine and D‑glutamate metabolism’. The 
hypermethylated gene neuropeptide Y (NPY) and the hypo-
methylated gene tumor necrosis factor (TNF) demonstrated 
high degrees in the PPI network. Forkhead box protein A1 
(FOXA1), potassium voltage‑gated channel subfamily  C 
member 3 (KCNC3) and caspase‑8 (CASP8) exhibited high 
degrees in the transcriptional regulatory networks. In addition, 
the methylation profiles of NPY, TNF, FOXA1, KCNC3 and 
CASP8 were confirmed by another dataset. In summary, the 

present study systematically analyzed the DNA methylation 
profile of GBM using bioinformatics approaches and identified 
several abnormally methylated genes, providing insight into 
the molecular mechanism underlying GBM.

Introduction

Glioblastoma multiforme (GBM), which develops from astro-
cytes, is the most common primary brain tumor in adults and 
one of the most damaging types of human cancer. Despite 
aggressive multimodal treatment with surgery, radiotherapy 
and chemotherapy, the prognosis of GBM is extremely 
poor (1,2). Additionally, GBM demonstrates a high potential 
to infiltrate the brain parenchyma, which poses a challenge to 
the available treatment strategies. Typically, GBM results in 
mortality at 12‑15 months post‑diagnosis (1). Therefore, novel 
therapies for GBM are urgently required.

Identifying the mechanisms underlying the development 
of GBM is important for the development of new treatments. 
The genetic alterations that affect genes controlling cell 
growth, apoptosis and invasion have been widely examined 
in GBM (3). Epigenetic alterations have also been identi-
fied to be involved in GBM by affecting the expression of 
cancer‑associated genes alone or in combination with genetic 
mechanisms (4). Aberrant methylation of gene promoters is 
the most widely studied epigenetic change that occurs during 
oncogenesis. It is understood that increased methylation, 
termed hypermethylation, in the CpG island promotes carci-
nogenesis by silencing tumor suppressor genes, while loss 
of methylation, termed hypomethylation, enhances the tran-
scriptional activation of oncogenes and induces chromosomal 
instability (5,6). Decreased expression of tumor suppressor 
genes, including retinoblastoma gene, phosphatase and tensin 
homolog, and TP53, is associated with CpG island promoter 
hypermethylation and has been reported in GBM  (7‑9). 
Epigenetic silencing of O6‑methylguanine‑DNA methyltrans-
ferase, a DNA repair gene that can protect cancer cells from 
chemotherapeutic alkylating agents, has been revealed to be 
significantly associated with longer survival times in patients 
with GBM who are treated with alkylating agents (10,11). Such 
epigenetic changes may be promising targets for epigenetic 
anticancer treatments. Indeed, the DNA‑demethylating agents 
5‑azacitidine and 5‑aza‑2'‑deoxycitidine have been approved 
by the Food and Drug Administration for the treatment of 
myelogenous leukemia and myelodysplastic syndromes (12).
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Bioinformatics tools and algorithms assist the processing 
and analysis of high‑throughput DNA methylation data (13,14). 
For example, a previous study used a joint analysis of DNA 
methylation and gene expression data of GBM to demon-
strate that changes in DNA methylation can be associated 
with survival outcome (15). In addition, a recent study used 
a computational approach to integrate gene expression 
and genomic or methylation data to investigate biological 
networks in GBM (16). The current study used bioinformatics 
approaches to reanalyze the DNA methylation data deposited 
by Lai et al  (17). The present results may improve under-
standing of the epigenetic regulation mechanism of GBM 
and provide potential gene methylation biomarkers for GBM, 
which may contribute to the development of treatments.

Materials and methods

Microarray data. DNA methylation data from the GBM study 
by Lai et al  (17) were retrieved from the National Center 
for Biotechnology Information Gene Expression Omnibus 
(GEO) database (http://www.ncbi.nlm.nih.gov/projects/geo/) 
with the accession number GSE50923. The DNA methylation 
profiles of 54 GBM samples and 24 control brain samples were 
previously investigated using Illumina HumanMethylation27 
BeadChip. The patient details are presented in the original 
study by Lai et al (17). Only data from 31 GBM and 24 control 
brain samples were present in the GEO database, therefore, 
only these data were analyzed in the current study.

Identification of differentially methylated regions (DMRs). 
The original methylation data were processed using the 
Bioconductor lumi package version 2.18.0, which is designed 
to process the Illumina microarray data (18,19). Following 
quality control and background correction, these data were 
scaled by quantile normalization as implemented in the 
lumi package. The methyAnalysis package version 1.8.0 (20) 
was applied to identify DMRs between GBM and controls. 
P<0.001 and a difference in methylation levels, calculated as 
the M‑value (19), of >1 or <‑1 were considered to indicate a 
statistically significant DMR. The identified DMRs were 
then annotated using the methyAnalysis package and DMRs 
located at gene promoter regions, within 2 kb upstream of the 
transcription start site, were selected for further analysis.

Functional enrichment analysis. Functional enrichment 
analysis was conducted to explore the most significant differ-
entially methylated genes (DMGs) with relevant biological 
functions. Gene Ontology (GO) is a bioinformatics tool for 
annotating genes, gene products and sequences using defined 
GO terms (21). The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a comprehensive database linking genomic data, 
stored in the GENES database, with higher order func-
tional information, stored in the PATHWAY database (22). 
Reactome is a free online database of biological pathways (23). 
The KEGG pathway, Reactome pathway and GO functional 
terms for the DMGs were identified using the following cut‑off 
criteria: P<0.05 and number of over‑represented genes >2.

Construction of a protein‑protein interaction (PPI) network. 
The PPI data were retrieved from the STRING database 

(http://string.embl.de/). Subsequently, the DMGs were mapped 
into these interactions, and DMG pairs with an interaction 
score >0.9 were selected to construct the PPI networks, which 
were visualized using Cytoscape software version 3.1.0 (24).

Classification of DMGs. TSGene (25) is a database for tumor 
suppressor genes (TSGs) and the TAG database (26) provides 
information on well‑characterized oncogenes and TSGs. The 
known TSGs and oncogenes were identified from the list of 
DMGs based on information retrieved from the TSGene and 
TAG databases.

Identification of transcription factors (TFs) regulating DMGs 
and construction of a transcriptional regulatory network. The 
TF regulation data were downloaded from the Encyclopedia 
of DNA Elements data portal (27,28), and TFs that regulate 
the hypermethylated genes and hypomethylated genes were 
identified. The hypergeometric distribution was used to assign 
a P‑value for the prediction of these TFs and an adjusted 
P‑value of <0.05 was considered significant. Furthermore, 
transcriptional regulatory networks of hypermethylated genes 
and hypomethylated genes were constructed using Cytoscape 
(version 3.6.0) (24).

Data validation. To validate the identified DMGs from 
GSE50923, another relevant DNA Methylation Profiling 
dataset, GSE22867  (29), was downloaded from the GEO 
database and used for data validation. GSE22867 included 
55 GBM samples and 3 control brain samples. The platform 
was GPL8490 Illumina HumanMethylation27 BeadChip 
(HumanMethylation27_270596_v.1.2). The β‑value was 
calculated based on the methylated and unmethylated signal 
of the sample data, and a t‑test was implemented using the 
genefilter package (version 1.56.0) (30) to identify significant 
differentially methylated CpGs (P<0.05). In addition, selected 
CpG sites exhibited a mean methylation (β‑value) differ-
ence ≥0.05 between the disease group and the control group. 
Subsequently, the genes covering the differentially methylated 
CpGs were identified and compared with the identified DMGs 
from GSE50923.

Results

Identification of DMGs. Based on the methyAnalysis package, 
a total of 2,407 DMRs were identified between the GBM 
samples and normal controls. Among these DMRs, 476 hyper-
methylated and 850 hypomethylated regions were located 
in gene promoters, which clearly distinguished GBM from 
normal samples (Fig. 1).

Functional enrichment analysis. To gain insight into the 
dysregulated biological processes induced by DMGs, sepa-
rate functional enrichment analyses were performed for the 
hypermethylated and hypomethylated genes. The data indi-
cated that certain KEGG pathways, including ‘neuroactive 
ligand‑receptor interaction’, and ‘D‑glutamine and D‑glutamate 
metabolism’, were enriched by hypermethylated genes, while 
‘cytokine‑cytokine receptor interaction’ and ‘hematopoietic 
cell lineage’ were enriched by hypomethylated genes (Table I). 
GO terms were grouped into the following three categories: 
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Biological process, molecular function and cellular component. 
The most significantly enriched GO biological process and 
molecular function terms were ‘anatomical structure devel-
opment’ and ‘sequence‑specific DNA‑binding transcription 
factor activity’, respectively, while no statistically significant 
enriched cellular component terms were identified (Table II). 

For hypomethylated genes, the most significant GO terms 
were ‘defense response’, ‘cytokine activity’ and ‘extracellular 
region’ (Table II). Reactome pathway analysis demonstrated that 
both hypermethylated and hypomethylated genes were closely 
associated with the ‘G‑protein‑coupled receptor (GPCR) ligand 
binding pathway’ (Table III).

Figure 1. Cluster analysis of differentially methylated genes between patients with glioblastoma multiforme and controls. Each row represents a single gene 
and each column represents a single sample. Red represents hypermethylated genes and green indicates hypomethylated genes.

Table I. Top five KEGG pathways enriched by hypermethylated genes and hypomethylated genes.

A, Hypermethylated genes

KEGG ID	 KEGG pathway	 P‑value

4080	 Neuroactive ligand‑receptor interaction	 1.18x10‑3

471	 D‑Glutamine and D‑glutamate metabolism	 3.62x10‑3

4114	 Oocyte meiosis	 6.76x10‑3

250	 Alanine, aspartate and glutamate metabolism	 7.87x10‑3

4971	 Gastric acid secretion	 1.02x10‑2

B, Hypomethylated genes

KEGG ID	 KEGG pathway	 P‑value

4060	 Cytokine‑cytokine receptor interaction	 1.22x10‑10

4640	H ematopoietic cell lineage	 1.49x10‑5

5150	 Staphylococcus aureus infection	 1.35x10‑4

4610	 Complement and coagulation cascades	 2.72x10‑4

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Construction of PPI networks. A total of 476 hypermethylated 
and 850 hypomethylated genes were mapped to the STRING 
database and significant interactions with scores >0.9 were 
selected. A total of 83  hypermethylated genes and 204 
hypomethylated genes were screened to separately construct 
PPI networks involving hypermethylated genes (Fig. 2) and 

hypomethylated genes (Fig. 3). The DMGs adenylate cyclase 
type 2 (ADCY2; degree, 18), neuropeptide Y (NPY; degree, 11) 
and somatostatin (SST; degree, 11) demonstrated the highest 
degrees, determined by the number of interactions in the hyper-
methylated gene network. Kininogen 1 (KNG1; degree, 27), 
proto‑oncogene tyrosine protein kinase (SRC; degree, 18) and 

Table II. Top five GO terms enriched by hypermethylated genes and hypomethylated genes.

A, Hypermethylated genes

GO ID	 GO term	 P‑value

Biological process
  GO:0048856	 Anatomical structure development	 3.19x10‑8

  GO:0032502	 Developmental process	 4.06x10‑8

  GO:0044707	 Single‑multicellular organism process	 4.85x10‑8

  GO:0032501	 Multicellular organismal process	 8.26x10‑8

  GO:0007275	 Multicellular organismal development	 3.47x10‑7

Molecular function
  GO:0003700	 Sequence‑specific DNA binding transcription factor activity	 5.04x10‑9

  GO:0001071	 Nucleic acid binding transcription factor activity	 5.51x10‑9

  GO:0043565	 Sequence‑specific DNA binding	 1.76x10‑8

  GO:0044212	 Transcription regulatory region DNA binding	 6.04x10‑7

  GO:0000975	 Regulatory region DNA binding	 9.99x10‑7

Cellular component
  GO:0044459	 Plasma membrane part	 2.37x10‑1

  GO:0019897	 Extrinsic to plasma membrane	 2.61x10‑1

  GO:0008076	 Voltage‑gated potassium channel complex	 4.53x10‑1

  GO:0034705	 Potassium channel complex	 4.53x10‑1

  GO:0019898	 Extrinsic to membrane	 5.85x10‑1

B, Hypomethylated genes

GO ID	 GO term	 P‑value

Biological process
  GO:0006952	 Defense response	 8.19x10‑12

  GO:0006954	 Inflammatory response	 9.55x10‑12

  GO:0050896	 Response to stimulus	 6.68x10‑11

  GO:0002376	 Immune system process	 8.73x10‑11

  GO:0009611	 Response to wounding	 6.82x10‑10

Molecular function
  GO:0005125	 Cytokine activity	 3.13x10‑7

  GO:0005126	 Cytokine receptor binding	 1.30x10‑5

  GO:0004872	 Receptor activity	 6.25x10‑5

  GO:0005102	 Receptor binding	 1.39x10‑3

  GO:0005506	 Iron ion binding	 8.86x10‑3

Cellular component
  GO:0005576	 Extracellular region	 <1.00x10‑3

  GO:0005615	 Extracellular space	 <1.00x10‑3

  GO:0044421	 Extracellular region part	 <1.00x10‑3

  GO:0071944	 Cell periphery	 3.84x10‑9

  GO:0005886	 Plasma membrane	 5.56x10‑9
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Figure 2. Protein‑protein interaction networks for hypermethylated genes. White nodes with blue circles represent the hypermethylated genes and the node 
size indicates the degree value (larger nodes possess a higher degree). The degree display format of the node is gene_D: num, where ‘gene’ indicates the gene 
name, ‘D’ stands for degree and ‘num’ is the degree value. Lines/edges represent interactions.

Table III. Top five Reactome pathways enriched by hypermethylated genes and hypomethylated genes.

A, Hypermethylated genes

Reactome ID	 Name	 P‑value

500792	 GPCR ligand binding	 8.88x10‑2

112316	 Neuronal system	 1.61x10‑1

373076	 Class A/1 (Rhodopsin‑like receptors)	 3.55x10‑1

418597	 G α (z) signaling events	 4.98x10‑1

1296072	 Voltage‑gated potassium channels	 9.92x10‑1

B, Hypomethylated genes

Reactome ID	 Name	 P‑value

500792	 GPCR ligand binding	 5.94x10‑4

211897	 Cytochrome P450‑arranged by substrate type	 1.05x10‑3

373076	 Class A/1 (Rhodopsin‑like receptors)	 5.68x10‑3

211945	 Phase 1‑Functionalization of compounds	 6.96x10‑3

GPCR, G‑protein‑coupled receptor.
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tumor necrosis factor (TNF; degree, 15) exhibited the highest 
degrees in the hypomethylated gene network.

Classification of the DMGs. A total of 43 cancer‑associated 
genes were identified among the hypermethylated genes, 
including 8 oncogenes and 25 TSGs, while 41 hypomethylated 
genes were revealed to be cancer‑associated genes, including 
10 oncogenes and 24 TSGs.

Prediction of TFs that target the DMGs and construc‑
tion of transcriptional regulatory networks. A total of 55 
TFs that could regulate the hypermethylated genes were 

identified, including polycomb repressive complex 2 subunit, 
neuron‑restrictive silencer factor and cohesin complex 
component. Additionally, 55  TFs that could regulate the 
hypomethylated genes were identified, including signal 
transducer and activator of transcription 3, and forkhead box 
protein A1 (FOXA1). Notably, FOXA1 was also revealed to 
be hypermethylated. The transcriptional regulatory networks 
of hypermethylated genes and hypomethylated genes are 
presented in Figs. 4 and 5, respectively. The top 10 hyper-
methylated genes and hypomethylated genes with high node 
degrees in the regulatory networks are listed in Table  IV, 
including the hypermethylated genes, FOXA1 (degree, 35), 

Figure 3. Protein‑protein interaction network for hypomethylated genes. White nodes with blue circles represent the hypermethylated genes and the node size 
indicates the degree value (larger nodes possess a higher degree). The degree display format of the node is gene_D: num, where ‘gene’ indicates the gene 
name, ‘D’ stands for degree and ‘num’ is the degree value. Lines/edges represent interactions.
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adenine phosphoribosyltransferase (degree, 17) and potas-
sium voltage‑gated channel subfamily C member 3 (KCNC3; 
degree, 15), and the hypomethylated genes, proliferating cell 
nuclear antigen‑associated factor (degree, 14) and caspase-8 
(CASP8; degree, 12).

Data validation. From the GSE22867 validation dataset, 
2,151 DMGs were identified. As demonstrated in Fig. 6, a total 
of 690 overlapping DMGs were revealed. In particular, the 
hypermethylated genes NPY, FOXA1 and KCNC3, as well as 
the hypomethylated genes TNF and CASP8, were among the 
overlapping DMGs.

Discussion

The current study systemically analyzed the DNA methyla-
tion profile of GBM samples to improve our understanding of 
GBM at the epigenetic level and identify potential biomarkers 
as therapeutic targets for GBM.

Differential analysis revealed that the methylation levels of 
1,326 genes were altered in patients with GBM compared with 
those in the controls. The biological functions most associ-
ated with the DMGs were explored by functional enrichment 
analysis. The results revealed that DMGs were closely associated 
with the functions of ‘GPCR ligand binding’, ‘cytokine activity’, 
‘cytokine‑cytokine receptor interaction’, and ‘D‑glutamine 
and D‑glutamate metabolism’. Both ‘cytokine activity’ and 
‘cytokine‑cytokine receptor interaction’ are associated with 
inflammatory responses, and there is a close association between 
inflammation and cancer. Unresolved inflammation resulting 
from a failure in the regulation of the immune response creates 
a tumor microenvironment, an important aspect of tumorigen-
esis proliferation, survival and migration (31,32). GPCR ligands 
bind to GPCRs and activate the downstream signaling that regu-
lates cellular physiology. Aberrant G‑protein signaling is closely 
associated with cancer development and progression (33).

To investigate whether abnormally methylated genes are 
associated with GBM, PPI networks of the screened genes 

Figure 4. Transcriptional regulatory network of hypermethylated genes. Red nodes represent the hypermethylated gene, green arrows represent transcription 
factors and the size of node indicates the degree value. Lines/edges represent interactions.
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were constructed and the degrees of the nodes were analyzed 
in the present study. The results demonstrated that the top three 
genes with the highest node degrees were ADCY2, NPY and 
SST in the hypermethylated genes network, and KNG1, SRC 
and TNF in the hypomethylated genes network. Among these 
genes, NPY and TNF were validated in the alternative dataset. 
NPY encodes a 36‑amino acid neuropeptide that acts as a 
neurotransmitter in the brain and autonomic nervous system of 
humans. Using bioinformatic analysis, abnormal methylation 
of NPY has been observed in numerous types of cancer (34‑36). 
Furthermore, a previous study reported that NPY is expressed 
in various types of intracranial tumor in humans and that NPY 
mRNA is detectable in the temporal lobe in higher quantities 
compared with that in tumors (37). In addition, the present 
study identified that TNF was hypomethylated, which may 
lead to upregulation of the gene. The expression of TNF‑α 
has been identified to be increased in GBM (38), which corre-
sponds with the current study. Therefore, NPY and TNF may 

be involved in GBM due to their abnormal methylation and 
may result in the disturbance of biological processes.

The hypermethylated genes FOXA1 and KCNC3, as well 
as the hypomethylated gene CASP8, exhibited high degrees 
in the transcriptional regulatory networks, which was also 
confirmed by the second dataset. FOXA1 acts as a TF and has 
been demonstrated to be a potential regulator of human glioma 
progression (39). KCNC3, encoding the Kv3. 3 voltage‑gated 
potassium channel, is expressed in various neuronal cell types 
that are involved in motor function (40). Previous studies have 
demonstrated an association between KCNC3 expression 
and the poor prognosis of patients with GBM (41). Patients 
with GBM with higher KCNC3 expression exhibit improved 
survival times (42). Genomic loss of CASP8 by DNA meth-
ylation may result in tumor resistance to therapies targeting 
TNF‑related apoptosis‑inducing ligand‑associated apoptosis 
pathways  (43). In summary, the methylation of FOXA1, 
KCNC3 and CASP8 in GBM should be investigated in future 

Figure 5. Transcriptional regulatory network of hypomethylated genes. Red nodes represent the hypermethylated gene, green arrows represent transcription 
factors and the size of node indicates the degree value. Lines/edges represent interactions.



ONCOLOGY LETTERS  18:  1679-1688,  2019 1687

studies, as this may promote the development of therapeutic 
approaches.

In conclusion, the current study comprehensively analyzed 
the DNA methylation profile of GBM using bioinformatics 
approaches and identified several abnormally methylated 
genes, including NPY, TNF, FOXA1, KCNC3 and CASP8. The 
findings of the present study improve the understanding of the 
molecular mechanism underlying GBM, and provide potential 
biomarkers for GBM and the development of novel treatment 
strategies. However, the number of samples included in this 
study was relatively small. Experimental verification and addi-
tional studies with larger sample sizes are required to confirm 
the present results.
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