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ABSTRACT VanLee is a singleton phage that was isolated from soil in Florida using
Gordonia rubripertincta NRRL B-16540 as the host. The genome is 84,560 bp and has
a GC content of 67.8%. VanLee has 164 predicted protein-coding genes and one
tRNA. VanLee can infect Gordonia terrae with the same efficiency as G. rubripertincta.

Bacteriophages provide a rich reservoir of uncharacterized genes and have been
critical for studying the evolution and adaptation of phage and bacterial defense

systems (1). To isolate evolutionarily diverse actinobacteriophages, the Science Education
Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) pro-
gram (2) utilizes eight different host actinobacteria (3).

VanLee was isolated from a moist soil sample from Tampa, Florida (28.063333N,
82.411389W), using Gordonia rubripertincta NRRL B-16540 as the host. All bacterial hosts used
in this study were grown at 30°C utilizing peptone-yeast-calcium agar (PYCa). Genomic DNA
was isolated from a high-titer phage lysate after three rounds of plaque purification using the
Wizard DNA cleanup kit (A7280; Promega). Genomic DNA was used to create sequencing
libraries with the NEBNext Ultra II FS DNA library preparation kit. Sequencing was performed
by the Pittsburgh Bacteriophage Institute, and the library was run on an Illumina MiSeq instru-
ment, yielding 889,244 paired-end 150-bp reads with 1,488-fold coverage. Raw reads were
assembled with Newbler (v2.9) (4), yielding a single phage contig. The results were checked
for completeness, accuracy, and genome termini using Consed (5). Default parameters were
used for all software unless otherwise specified. VanLee is circularly permuted and was bioin-
formatically linearized such that base 1 is assigned in accord with other Gordonia phages (6).
VanLee was autoannotated using DNA Master (v5.23.6) (7), and all of the genes were then
manually validated for correct starts and predicted functions for the protein products.
GeneMark (v2.5) (8) and Glimmer (v3.02) (9) were utilized to assess start sites and coding
potential, and Starterator (v1.2) (3) was used to summarize the starts across each family of
phage genes. To collect evidence for the gene function and the validity of each gene prod-
uct, HHpred (v3.2) (10), NCBI BLASTp (11), the Conserved Domain Database (12), TMHMM
(v2.0) (13), and SOSUI (14) were utilized. tRNAscan-SE (v2.0) (15) and ARAGORN (v1.2.41)
(16) were utilized to identify putative tRNAs and transfer-messenger RNAs. The data for
VanLee are archived in Phamerator (17).

Negative-staining transmission electron microscopy shows that VanLee is a siphovi-
rus and a putative member of the family Siphoviridae, with an icosahedral capsid of
;60 nm and a 240-nm tail (Fig. 1). VanLee has an 84,560-bp genome, has a GC content
of 67.8%, and contains 164 predicted protein-coding genes and one tRNA (Arg [TCT]).
Eighteen of the protein-coding genes are predicted to encode structural proteins, with an
additional 34 genes predicted to encode enzymes or DNA-binding proteins. VanLee has
,67% average nucleotide identity (ANI) to other phages in the Actinobacteriophage
Database, as determined by OrthoANI (18), and is classified as a singleton. Seventy-three of
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the predicted genes in VanLee do not encode proteins that have homologues among
known actinobacteriophages or other organisms, as evaluated using NCBI BLAST (11) or
HHpred (v3.2) (10). VanLee infection results in turbid plaques, suggesting that it is a temper-
ate phage. Consistent with this observation, VanLee has an immunity cassette containing a
tyrosine integrase (gp32), immunity repressor (gp34), control of repressors operator, Cro
(gp35), and excise (gp40). VanLee also contains both HicB-like and HicA-like toxin/antitoxin
genes (19). Finally, serial dilutions of VanLee lysates show identical infection efficiencies
when Gordonia rubripertincta NRRL B-16540 and Gordonia terrae 36212 are used as hosts.

Data availability. Data for VanLee are archived in the Actinobacteriophage Database
(3) (https://phagesdb.org/phages/VanLee). This whole-genome shotgun project has been
deposited in DDB/ENA/GenBank under the accession no. MZ028627 and SRX11195424. The
version described in this paper is the first version.
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