
Establishing gene regulatory networks from
Parkinson’s disease risk loci
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The latest meta-analysis of genome-wide association studies identified 90 independent variants across 78 genomic
regions associatedwith Parkinson’s disease, yet themechanisms bywhich these variants influence the development
of the disease remains largely elusive.
To establish the functional gene regulatory networks associatedwith Parkinson’s disease risk variants, we utilized an
approach combining spatial (chromosomal conformation capture) and functional (expression quantitative trait loci)
data.
We identified 518 genes subject to regulation by 76 Parkinson’s variants across 49 tissues, whicih encompass 36 per-
ipheral and 13 CNS tissues. Notably, one-third of these geneswere regulated via trans-actingmechanisms (distal; risk
locus-gene separated by .1 Mb, or on different chromosomes). Of particular interest is the identification of a novel
trans-expression quantitative trait loci–gene connection between rs10847864 and SYNJ1 in the adult brain cortex,
highlighting a convergence between familial studies and Parkinson’s disease genome-wide association studies loci
for SYNJ1 (PARK20) for the first time. Furthermore, we identified 16 neurodevelopment-specific expression quantita-
tive trait loci–gene regulatory connections within the foetal cortex, consistent with hypotheses suggesting a neuro-
developmental involvement in the pathogenesis of Parkinson’s disease. Through utilizing Louvain clustering we
extracted nine significant and highly intraconnected clusters within the entire gene regulatory network. The nine
clusters are enriched for specific biological processes and pathways, some of which have not previously been asso-
ciated with Parkinson’s disease.
Together, our results not only contribute to an overall understanding of themechanisms and impact of specific com-
binations of Parkinson’s disease variants, but also highlight the potential impact gene regulatory networksmay have
when elucidating aetiological subtypes of Parkinson’s disease.
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Introduction
Parkinson’s disease is considered to be primarily an idiopathic neu-
rodegenerative disorder, with monogenic forms contributing to just
5–10% of all cases.1 However, the idiopathic nature of Parkinson’s
disease is being questioned, as evidence increasingly supports
a complex involvement of genetics in the development of the
majority of cases.2,3 Genome-wide association studies (GWAS)
have identified .200 Parkinson’s disease risk loci,4 but only 90
Parkinson’s disease-associated single nucleotide polymorphisms
(Parkinson-SNPs) across 78 risk loci were replicated in the largest
meta-analysis to date.5 As is typically observedwith GWAS variants,
the majority of the Parkinson-SNPs are located within non-coding
regions of the genome,withnodirect or obvious influence onprotein
structure or function.6,7 Studies have shown that such non-coding
disease-associated variants are more likely to be located within
regulatory regions8 and thus contribute to risk through influencing
gene regulation and expression, either locally or distally. These regu-
latory interactions are likely to be tissue-specific, adding a further
layer of complexity. Consequently, determining how these variants
contribute to Parkinson’s disease risk, both individually and in com-
bination, poses a major scientific challenge.9,10

Although Parkinson’s disease is defined as a neurodegenerative
disease, mounting evidence demonstrates the role of non-CNS tis-
sues in the development and presentation of such disorders (i.e.
Huntington’s disease11 and Parkinson’s disease12,13). Both alpha-
synuclein protein pathology and modulation of Parkinson’s
disease-related genes have been identified in peripheral tissues
(e.g. the gastrointestinal tract and heart) of patients with
Parkinson’s disease.12,14–19 The contribution of peripheral tissue
in the origins of Parkinson’s disease warrants further research,
and thus the consideration of how Parkinson-SNPs mediate risk
should not be confined to tissues of the CNS.

Spatial gene regulatory interactions are hypothesized to be dri-
vers of complex trait heritability,20 acting through both cis- (nearby)
and trans- (distal; locus-gene separated by .1 Mb, or on different
chromosomes) mechanisms (Fig. 1).19,21,22 These cis- and trans-
acting elements can regulate the transcription of one or more
genes, in a tissue-specific manner, and are commonly detected in
the form of expression quantitative trait loci (eQTL).23 Genetic vari-
ationwithin elements of gene regulatory networks likely confer risk
at different developmental stages, including during foetal neurode-
velopment—a critical stage that has a growing body of support in
neurodegenerative diseases.24

Herewe performed correlational analyses of experimentally de-
rived data to identify eQTLs that physically connect Parkinson-
SNPs to the genes that they control, in three dimensions, with the
goal of understanding the putative functional impacts of known
Parkinson-SNPs.21 The integration of spatial and eQTL data allows

for the identification of trans-eQTL–gene associations,25 therebynom-
inating genes which have not previously been implicated in
Parkinson’s disease. Our analysis identified 518 genes subject to regu-
lationby 76 Parkinson-SNPsacross 49 tissues. Further, clustering ana-
lysis of the entire gene network revealed nine significant,
intraconnected clusters, enriched for both novel and known
Parkinson’s disease biological pathways, highlighting putative
disease-causative molecular mechanisms and areas for future
research.

Materials and methods
Data and reference files

The 90 Parkinson-SNPs (across 78 genomic regions; Supplementary
Table 1) investigated in this study were previously identified
by a GWAS meta-analysis as being of genome-wide significance
(P,5×10−8).5

All coordinates presented within this manuscript are according
to human reference genomeGRCh38 (hg38). The coordinates for the
90 Parkinson-SNPs were converted from hg19 to hg38 using the
UCSC LiftOver tool.

Identification of eQTL–gene pairs

The contextualize developmental SNPs using 3D information
(CoDeS3D)21 algorithmwas used to identify genes whose transcript
levels are putatively regulated by the 90 Parkinson-SNPs. CoDeS3D
integrates data on spatial interactions between genomic loci (Hi-C
data; Supplementary Table 2) with expression data (genotype–tissue
expression database version 8; GTEx v826) to identify genes whose
transcript levels are associated with a physical connection to the
SNP (i.e. spatial eQTL).

Hi-C captures regions of the genome that are physically inter-
acting and can be covalently connected by a cross-linking agent.27

The hg38 reference genome was digitally digested with MboI,
DpnII and HindIII to obtain all possible Hi-C fragment locations
for the 90 Parkinson-SNP loci. All identified SNP fragments (tagged
by the Parkinson-SNPs) were then queried against the Hi-C data-
bases (70 different cell lines from 12 studies; Supplementary
Table 2) to identify distal fragments of DNA that spatially connect
to the SNP loci. Spatial SNP–gene connections are established
when the SNP-containing fragment spatially connects to a frag-
ment that overlaps any region between the start and end of a
gene as defined by GENCODE. There was no binning or padding
around restriction fragments to obtain gene overlap. The resulting
spatial SNP–gene pairs were subsequently used to query the GTEx
v8 eQTL database26 to identify spatial SNP–gene pairs with
significant eQTLs [both cis- and trans-acting eQTL; false discovery
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rate (FDR) adjusted P, 0.05]. Using the same parameters, we also
identified spatial eQTL interactions for two sets of null distributions
generated from (i) all called variants in the GTEx v8; and (ii)
trait-associated SNPs in the GWAS Catalogue (accessed 18
November 2021). Each set contained 1000 simulations of 90
randomly selected SNPs without replication. We then intersected
the resulting gene sets with the original 518 Parkinson’s disease
genes. The proportion overlap for each simulation set was
calculated.

We performed a ‘brain-specific’ analysis by interrogating only
the subset of Hi-C libraries derived from brain-specific cell lines
(11 cell lines from four studies, highlighted in red in

Supplementary Table 2)28–31 and only expression data from the 13
brain-specific tissues in GTEx v8.

Identification of neurodevelopmental-specific
eQTL–gene pairs

We performed a neurodevelopmental stage-specific analysis by
interrogating Hi-C libraries from foetal-specific brain cell lines
(cortical plate neurons; germinal zone neurons; Supplementary
Table 2; datasets 1 and 2) with expression data from a foetal cortex
eQTL dataset.32

Figure 1 Methods workflow. Ninety Parkinson-SNPs were obtained from Nalls et al.5 Spatial interactions between the 90 Parkinson-SNPs and genes
were identified from Hi-C libraries (Supplementary Table 2). The resulting spatial SNP–gene pairs were then used to query GTEx v8 to identify signifi-
cant eQTLs. The significant spatial SNP–gene pairs were then analysed for functional relevance using multiple tools and databases (‘Materials and
methods’ section). Figure adapted from Schierding et al.19
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Functional analysis of eQTL SNPs

SNPnexus v433 (https://www.snp-nexus.org/v4/; accessed 22 June
2020) was used to obtain known epigenomic annotations for the
eQTL SNPs.

Probability of gene loss of function intolerance

The loss-of-function observed/expected upper bound
fraction (LOEUF)34 score for the genes, within the significant SNP–
gene pairs, was obtained from gnomAD v2.1.1 (https://gnomad.
broadinstitute.org/; accessed 21 July 2020) to determine the level
of constraint on the identified genes.

Protein–protein interaction and modularity
clustering

STRING35 (Search Tool for Retrieval of Interaction Genes/proteins;
https://string-db.org, accessed 22 July 2020) was queried to identify
published information on interactions between genes or their re-
spective proteins. Only protein–protein interactions (PPIs) with a
high confidence level (.0.700, as defined in STRING) were used
for this analysis, and interactions identified only through text-
mining were excluded. A Louvain method was used to determine
the syntality of each node, following four different criteria: (i) im-
mediate connection; (ii) shortest path (i.e. the minimum number
of edges connecting any two nodes); (iii) node acting as a bridge;
(iv) connections that nodes have in common. The proteins were
then hierarchically clustered using the Louvain algorithm36; clus-
ters were defined as significant if P,0.05.

Pathway analyses

The g:Profiler37 database was used to identify enriched pathways.
Querieswere run on: (i) all genes; (ii) the ‘cis’; and (iii) the ‘trans’ sub-
sets of genes (i.e. genes regulated only in cis, or only in trans). To test
the specificity of the identified pathways to Parkinson’s disease, we
compared their occurrence in the previously described 1000 simu-
lations of trait-associated SNPs in the GWAS Catalogue. We calcu-
lated a P-value for each pathway from the set of Parkinson’s
genes as the number of its occurrence in the simulations divided
by 1000. We also performed a similar bootstrapping on 1000 simu-
lations of 518 random genes from the GENCODE gene reference
(v26).

Additional analyses of genes and variants identified
by Makarious et al.

Makarious et al.38 recently utilized a multimodality approach to
identify genetic and transcriptomic features that contribute to
risk predictions of Parkinson’s disease. They highlighted two
SNPs (rs10835060 and rs4238361) and 29 genes. We performed
CoDeS3D analysis on the two SNPs, across all Hi-C cell lines and
GTEx tissues (as previously described). The resulting eQTL–gene
pairs, along with the 29 genes highlighted through transcriptomic
analysis, were combined with our set of 523 genes. Louvain cluster-
ing and PPI analysis were re-run on this combined list of genes to
see how or if the subset of genes co-locate within the networks.

URLs

CoDeS3D pipeline: https://github.com/Genome3d/codes3d-v2
gnomAD: https://gnomad.broadinstitute.org/
gProfiler: https://biit.cs.ut.ee/gprofiler/

UCSC: https://genome.ucsc.edu/index.html
STRING: https://string-db.org/
SNPNexus: https://www.snp-nexus.org/
Louvain clustering analysis: https://github.com/Genome3d/PPI-

network-analysis

Data availability

All data generated during this study are included in the supplemen-
tary information. Datasets analysed and tools used in this study
were all derived from publicly available resources (see ‘URLs’
section).

Results
Parkinson’s disease GWAS SNPs regulate the
expression of .500 genes

Nalls et al.5 identified 90 SNPs thatwere associatedwith Parkinson’s
disease at the level of genome-wide significance (Supplementary
Table 1), yet the mechanisms by which these variants influence
the development of the disease remains largely elusive. We used
the CoDeS3D algorithm21 to identify SNPs that have evidence of
physical interaction with the gene as captured by Hi-C
(Supplementary Table 2) and also associate with changes in gene
expression (hereafter eQTLs) and the genes whose transcript levels
were affected (Fig. 1).

Seventy-six (84%) of the 90 Parkinson’s disease-risk SNPs were
identified as eQTLs associated with the regulation of 518 genes
through 542 unique eQTL–gene pairs across the 49 tissues
(Table 1, Supplementary Table 3 and Supplementary Fig. 1). The

Table 1 Summary statistics for the spatial eQT–gene regulatory
network for the 90 Parkinson-SNPs

Parkinson’s disease
SNPs

1000 simulation SNP
sets [Mean (min–max)]a

Brain-specificb All
tissuesb

GWAS SNPs
(all tissues)

All SNPs
(all

tissues)

No. SNPs 90 90 90 90
No. eQTL SNPsc 55 76 54 (33–74) 7 (0–17)
No. genesd 165 518 235 (93–478) 18 (0–135)
No. eQTL–gene

pairse
167 542 244 (93–518) 19 (0–136)

No. trans eQTL–
gene pairs

30 178 37 (13–63) 2 (0–15)

SNPs were downloaded from the Nalls et al.5 GWAS (download date: 18 June 2020).
eQTLs (both cis- and trans-acting eQTL) were only called if: (i) a spatial interaction

connecting the SNP and gene had been captured; and (ii) if the adjusted P-value for

the eQTL association was P, 0.05 following a step-wise Bonferroni Hochberg

correction for the number of tests that were performed during the eQTL calling. All
adjusted P-values are presented for all eQTLs (cis and trans; Supplementary Tables 3

and 4).
aSpatial eQTL interactions identified for two sets of null distributions generated from

(i) all called variants in the GTEx v8; and (ii) trait-associated SNPs in the GWAS
Catalogue (accessed 18 November 2021). Each set contained 1000 simulations of 90

randomly selected SNPs without replication.
bFor full list of tissue eQTL–gene interactions see Supplementary Tables 3 and 4.
ceQTL SNPs were defined as having significant spatial interactions (FDR ≤ 0.05) with
at least one gene.
dGenes were those whose expression was shown to be affected by an eQTL SNP.
eThe total number of SNP-gene pairs reflects interactions with FDR ≤ 0.05 in at least

one GTEx tissue.
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identified gene sets were specifically enriched for the 90
Parkinson’s SNPs (P,0.001 based on 1000 bootstrap permutations;
Table 1 and Supplementary Fig. 2). The 76 eQTLs were individually
associated with the regulatory impacts of as few as one, or asmany
as 39 genes in cis and trans. We identified 178 of the 542 genes as
being associated with Parkinson’s disease through trans-eQTL–
gene connections. Consistent with previous studies,39–41 the effect
sizes associated with the trans-eQTLs are significantly smaller than
those associated with cis-eQTLs [Supplementary Fig. 3; Kruskal–
Wallis test, H(2)= 82.628, P, 2.2×10−16]. Bootstrapping confirmed
that the trans-eQTLs at Parkinson’s disease-associated SNPs occur
more frequently than expected at random. The proportion of
trans-eQTLs was similar to what was observed for an analysis of
autoimmune conditions that was also performed on the latest
GTEx release (v8).42 These results are consistent with an increasing
body of research that is noting the tissue-specific nature of
trans-interactions and their importance for gene regulation.41,43

We did not identify eQTL interactions for 14 of the 90 SNPs.
Conversely, eight of these 14 SNPs are annotated as being eQTLs
in the IPDGC GWAS Locus Browser44 and a further four are eQTLs
in GTEx (Supplementary Table 1). However, in these 12 instances,
the eQTLs occur in cis- (i.e. within 1 Mb) and are not supported by
Hi-C data. The apparent contradictions between the iPDGC and
GTEx datasets lie in the underlying eQTL sources. iPDGC harnesses
multiple brain-specific and blood-only eQTL datasets, whereas
GTEx includes data for 49 CNS and peripheral tissues, providing
the most comprehensive eQTL dataset across all tissues.
Furthermore, over half of the genes we identified, but which
iPDGC has not, involved the inclusion and analysis of trans-eQTLs
in GTEx. Such analysis was not conducted in the iPDGC browser
and thus only cis-regulated genes could be identified.

To highlight eQTL associations thatmay be of particular interest
for future studies, we looked to replicate our findings in a second
eQTL dataset. We used the eQTLGen dataset41 for replication.
eQTLGen performed cis- and trans-eQTL analyses using blood-
derived expression from 31684 individuals, and thus we looked to
replicate only the CoDeS3D eQTLs that we identified in the whole
blood. We found that 71.3% (62 of 87) of the whole blood cis-eQTLs
identified by CoDeS3D were replicated in the eQTLGen dataset
(Supplementary Table 3B). We were unable to test for replication
of our trans-eQTLs within the eQTLGen dataset for the following
reason. Specifically, only 11 of the Nalls et al.5 SNPs (rs10513789,
rs10797576, rs11158026, rs117896735, rs12456492, rs147045,
rs34311866, rs356182, rs35749011, rs76904798, rs823118) are present
within the curated Parkinson’s SNPs that were tested in eQTLGen
(Supplementary Table 3C; note that rs34778348 was filtered out of
the eQTLGen list prior to their analysis41). Of the 11 SNPs within
the overlapping set, CoDeS3D only identifies rs1474055 as a whole
blood trans-acting eQTL targeting TLK1, a distance of 2 736 939 bp.
Unfortunately, this 2.7 Mb distance is below the minimum intra-
chromosomal distance of .5 Mb set by eQTLGen.41 Therefore, we
were unable to test for any CoDeS3D trans-eQTL validations. We
note that eQTLGen did identify rs35749011 as a whole blood
trans-eQTL targeting HIST1H3H, HIST1H2BH and HIST1H2BD.
However, in our analyses CoDeS3D did not identify any spatial in-
teractions for this SNP and thus it was filtered out.

Consistent with observations for SNPs associated with other
traits,45 at least one trans-regulatory interaction was identified for
81.6% (62 of 76) of the eQTLs. Moreover, 92.7% (165 of 178) of these
trans-eQTL–gene interactions were identified in only one tissue.
By contrast, the cis-interactions were identified in eight tissues on
average (range of 1 to 49 tissues). Of the eQTLs, 11.8% (9 of 76;

Supplementary Table 1) were exclusively involved in trans-
regulatory interactions. Trans-eQTL interactions regulated 18.1%
of the genes identified in the brain (30 of 166; Supplementary
Table 4) and 32.8% of the genes among all 49 tissues (178 of 518;
Table 2 and Supplementary Table 3). Collectively, these results
highlight the importance of looking beyond the nearest gene to
identify the regulatory effects of disease-associated variants.

We reasoned that SNPs that are involved in eQTLs likely mark
enhancer or promoter sites.46 We queried SNPnexus33 to identify
those eQTLs that were marked by histone modifications or fell
within open chromatin regions, as indicated by DNAse accessi-
bility. Consistent with our hypothesis, 91% (69 of 76) of the
SNPs were marked by histone modifications associated with ei-
ther enhancers (58) and/or promoters (27). Of the SNPs, 27.6%
were within accessible chromatin (Supplementary Table 5).
Collectively, these results are consistent with the hypothesis
that the loci marked by these eQTLs may be involved in the regu-
lation of gene expression.

Pathway analysis was conducted on the complete set of 518
genes that were impacted by the eQTLs (Supplementary
Table 6). g:Profiler37 identified significant (adjusted P, 0.05) en-
richment within 10 known biological pathways (g:GOSt), includ-
ing organelle organization, synaptic vesicle recycling and
endocytosis. Bootstrapping analyses (see ‘Materials and meth-
ods’ section) identified which of the pathways were specifically
enriched for Parkinson’s disease (Supplementary Table 6, yellow
highlight). Of note, enriched pathways that are driven predomin-
antly by genes within the human leucocyte antigen (HLA)-region,
such as antigen processing and presentation, are not exclusive to
Parkinson’s disease and were identified in �17% of the pathway
bootstrapping simulations. This does not affect the relevance of
these pathways, but rather indicates the importance of these
pathways across multiple cellular functions and responses.

Brain-specific regulatory impact of Parkinson-SNPs

Fifty-five (61%) of the 90 Parkinson-SNPs were identified as eQTLs
associated with brain-specific regulation of 165 genes through
169 unique eQTL–gene pairs across the 13 GTEx brain tissues
(Table 1 and Supplementary Table 4; refer to the ‘Materials and
methods’ section for details). Notably, g:Profiler37 analysis only
identified regulation of neuron death as the one significantly

Table 2 Proportion of genes subject to cis- and trans-regulation

Genes subject to cis-
or trans-regulation

Brain-specifica All tissuesb

Cis eQTL–gene pairs 136 (82.0%) 364 (67.2%)
Trans-intrachromosomal eQTL–gene

pairs
10 (6.0%) 56 (10.3%)

Trans-interchromosomal eQTL–gene
pairs

20 (12.0%) 122 (22.5%)

The proportion of eQTL-gene pairs that are either cis-, trans-intrachromosomal or
trans-interchromosomal in 13 GTEx brain-specific tissuesa and all 49 GTEx tissuesb.

Brain-specific indicates the eQTL dataset obtained through analysing Hi-C cell lines

only from the brain and eQTLs only from the brain tissues in GTEx. All-tissues

indicates the eQTL dataset obtained through analysing all Hi-C cell lines and eQTLs
from all tissues in GTEx. There is a significant difference (chi square test

P-value , 0.01) between brain tissues and all tissues for the proportions of the cis

versus trans eQTLs.

For detailed information on the specific eQTL–gene pairs see Supplementary Tables
3 and 4.

2426 | BRAIN 2022: 145; 2422–2435 S. L. Farrow et al.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac022#supplementary-data


enriched biological pathway within the GTEx brain tissues
(Supplementary Table 6B). This enrichment is consistent with
neuronal cell death being one of the primary pathological charac-
teristics seen in Parkinson’s disease.47 We propose that the iden-
tified eQTLs associated with this pathway are likely contributing
to the dysregulation of neuron death seen in Parkinson’s disease.

The regulatory impact of Parkinson-SNPs extends
beyond the CNS

Although Parkinson’s disease is considered a degenerative disease
of the brain, it has become apparent that dysfunction and or alpha-
synuclein pathology is observed in non-CNS tissues of Parkinson’s
disease patients.13–15 Our spatial eQTL analysis included an assess-
ment of the tissue distribution of the effects of the identified eQTLs
within 13 CNS and 36 peripheral tissues. We identified peripheral
tissue-specific eQTLs for 28% of the Parkinson-SNPs (21 of 76).
Only 2 of 76 Parkinson-SNPs (i.e. rs10756907–SH3GL2, brain cortex;
rs873786–SLC26A1, brain cerebellum) had eQTLs that impacted
gene expression levels exclusively in the brain. This supports a pos-
sible role for peripheral tissues in Parkinson’s disease risk
(Supplementary Fig. 5).

The ability to detect eQTLs in specific tissues is known to correl-
ate with tissue sample size within GTEx.26 Consistent with this, we
identified highly significant correlations between tissue sample
numbers and (i) all-eQTLs in the brain tissues (Fig. 2A; identified
using brain-specific Hi-C and eQTL data; Supplementary Table 4);
or (ii) all tissues (i.e. the 49 tissues included within GTEx; Fig. 2E).
These highly significant correlations remained when analysing
the cis-eQTL subsets in the brain (R=0.93, P= 3.6× 10−6; Fig. 2B)
and all tissues (R= 0.9, P, 2.2× 10−16; Fig. 2F). Similarly, the correl-
ation was evident for trans-intrachromosomal eQTLs detected
in all tissues (R= 0.67, P, 1.8× 10−6; Fig. 2G). By contrast, there
was no observable correlation between the number of
trans-interchromosomal interactions and tissue sample number
(Fig. 2D and H). The substantia nigra and brain cerebellar hemi-
sphere exhibited more trans-interchromosomal-eQTLs (Fig. 2D),
while the thyroid exhibited more eQTLs than expected across all
three categories (Fig. 2E–H).

Genes subject to trans-regulation by Parkinson-SNPs
are more likely to be intolerant to loss-of-function
mutations

Genes that are intolerant to inactivation by loss-of-function var-
iants are deemed essential for healthy development.48 Intolerance
to loss of function variants leaves changes to regulation as one of
the few mechanisms that can be modified to introduce variation
at a population level. The 117 trans-interchromosomal-eQTL regu-
lated genes were significantly (P, 0.01, Kruskal–Wallis test) more
intolerant to loss-of-function mutations [LOEUF 0.42 (median); a
low LOEUF score is indicative of evolutionary constraint] than those
regulated by cis- or trans-intrachromosomal acting eQTLs [LOEUF
0.83 and 0.85, respectively (median); Fig. 3, Supplementary Fig.
4 and Supplementary Table 7]. This result is consistent with earlier
observations that trans-eQTLs are enriched in regulating con-
strained genes with low LOEUF scores.19

Parkinson’s disease GWASSNPs regulate expression
of a subset of genes within the foetal cortex

Emerging evidence suggests Parkinson’s disease has a neurodeve-
lopmental aspect,49 similar to recent observations in Huntington’s

disease.24 Therefore, we analysed the regulatory impacts of the
Parkinson-SNPsusing foetal cell lineHi-C (i.e. cortical plate neurons
and germinal zone neurons)29 and foetal cortex eQTL datasets32

(Supplementary Table 8). Thirty-three geneswere found to be regu-
lated by 22 Parkinson-SNPs in the foetal cortex. Of these, 16 genes
were regulatedby eQTLs involving Parkinson-SNPs in the foetal cor-
tex, without evidence of any eQTLs in adult brain tissues (Fig. 4 and
Supplementary Table 4). Ten genes were affected by eQTLs involv-
ing Parkinson-SNPs in both the foetal and adult cortex, with effect
sizes that were similar in both (Fig. 4). Finally, seven genes were
regulated by cis-eQTLs in the foetal cortex and adult non-cortical
brain tissues (Fig. 4). These findings are consistent with the hypoth-
esis that development stage-specific eQTL patterns impact on
disease-relevant mechanisms and thus may contribute to the pro-
posed temporal phases of Parkinson’s disease pathogenesis.50

Louvain clustering highlights nine intraconnected
protein clusters, enriched for disease-relevant,
biological pathways

Network representations of complex datasets can aid the identifi-
cation of biological relationships that are often not identified by en-
richment analyses.51 We used a Louvain clustering algorithm to
identify clusters of interacting genes and proteins from within a
PPI network generated from the 523 eQTL regulated genes (518
adult tissue eQTLs and the five unique foetal cortex eQTLs;
Supplementary Table 9). Nine significant (P,0.05) clusters consist-
ing of 122 genes were identified within the high-confidence
PPI network (Fig. 5). The genes within each cluster were regulated
by between five and 18 Parkinson-SNPs (Supplementary Table 9)
and every cluster contained at least two genes that were
co-regulated by a single SNP (Supplementary Fig. 6). Notably, genes
that were subject to trans-acting eQTLs were central to the defin-
ition and identification of several clusters (Fig. 5). Pathway analysis
(g:Profiler; P, 0.05) of the genes within the individual clusters re-
vealed enrichment in categories that included immunological sur-
veillance (cluster 7), synaptic vesicle recycling (cluster 5) and
microtubule polymerization (cluster 3; Supplementary Table 10).

We analysed the nine clusters to identify clusters that were sig-
nificantly associated with increased numbers of risk or protective
SNPs (determined by GWAS-defined odds ratio). Analysis according
to the proportions of risk:protective SNPs found that no clusters sig-
nificantly differed from the expected proportion (Supplementary
Table 9B). However, in many of the clusters, a single SNP may
have multiple impacts, meaning a protective SNP can act as an
eQTL for several genes. Therefore, we analysed the proportions of
genes that were affected by risk or protective SNPs. This analysis
highlighted a notable shift for cluster 7 (binomial test, Bonferroni
adjusted P,0.01; risk proportion= 0.105), consistent with the idea
that the immune pathways associated with cluster 7 are protective
against Parkinson’s disease.

Makarious et al.38 recently used a multimodal machine learning
approach, incorporating multi-omics datasets, to inform and im-
prove predictions of Parkinson’s disease. Beyond the 90 GWAS
SNP signals (which collectively were the top genetic feature), they
also identified rs10835060 and rs4238361 as two SNPs that impact
on Parkinson’s disease biology. CoDeS3D analysis identified eQTLs
for both rs10835060 (KRTAP5-AS1, CCDC88A, KRTAP5-5, BRSK2) and
rs4238361 (USP47; and RP11-507B12.2 and RP11-259A24.1;
Supplementary Table 11). Notably, BRSK2 co-locates with cluster 2
through an established interaction with the Tau-encoding MAPT
gene.52 Themodel alsohighlighted29genes through transcriptomic
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Figure 2 Correlation between genotype samples per tissue and number of eQTLs present in the tissue. (A) Correlation between the number of geno-
typed samples per tissue (in GTEx) and the number of eQTLs (including cis, trans-intrachromosomal and trans-interchromosomal) per tissue, in 13
brain-specific tissues. (B) Correlation between the number of genotyped samples per tissue (in GTEx) and the number of eQTLs (including cis,
trans-intrachromosomal and trans-interchromosomal) per tissue, in all 49 tissues. (C) Correlation between the number of genotyped samples per tissue
(in GTEx) and the number of cis-eQTLs per tissue, in 13 brain-specific tissues. (D) Correlation between the number of genotyped samples per tissue (in
GTEx) and the number of cis-eQTLs per tissue, in all 49 tissues. (E) Correlation between the number of genotyped samples per tissue (in GTEx) and the
number of trans-intrachromosomal-eQTLs per tissue, in 13 brain-specific tissues. (F) Correlation between the number of genotyped samples per tissue
(in GTEx) and the number of trans-intrachromosomal-eQTLs per tissue, in all 49 tissues. (G) Correlation between the number of genotyped samples per
tissue (in GTEx) and the number of trans-interchromosomal-eQTLs per tissue, in 13 brain-specific tissues. (H) Correlation between the number of gen-
otyped samples per tissue (in GTEx) and the number of trans-interchromosomal-eQTLs per tissue, in all 49 tissues. The tissues that fall furthest from
the confidence interval are annotated. The grey dots show the correlation for all GTEx tissues. The 13 brain tissues (from GTEx) are indicated by the
coloured dots, as shown in the legend. For information on all tissues outside of the 95% confidence interval, see Supplementary Table 12.
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analysis. Three of these genes (MMP9, TRIM4 and SYS1) integrate
into clusters 1, 4 and 5, respectively (Supplementary Fig. 7). The co-
location of genes and eQTLs, identified as being important for
Parkinson’s disease diagnosis,38 within the nine clusters supports
the potential importance of the gene–gene interactions and en-
riched pathways in Parkinson’s disease.

Four hundred and two genes did not segregate in the nine clus-
ters. Of note, 211 of the 402 genes (52.5%) had not previously been
associated with Parkinson’s disease GWAS loci (iPDGC
Parkinson’s disease browser).44 Of the 211 genes, 123 were regu-
lated by trans-eQTL–gene connections. Notably, iPDGC identified
five genes (DNAI1, EYA4, LYVE1,MYO5B, PDZRN4) as being regulated
by cis-eQTLs, yet these five genes were exclusively identified
through trans-eQTL regulatory connections in our analysis.

Discussion
Assigning functionality to Parkinson-SNPs is a critical step towards
determining how they contribute to the risk of Parkinson’s disease
development. In this study, we identified 518 genes whose expres-
sion was regulated in cis or trans by Parkinson-SNPs and the tissues
where this regulation occurs. We also demonstrated that 22
Parkinson-SNPs impact the regulation of a subset of 16 genes solely
in the foetal cortex and a further 10 genes in both the foetal and

adult cortex. Of all 523 identified genes, a subset of 122 cis- and
trans-regulated genes formed nine clusters within a PPIN that
were enriched for specific biological pathways, some of which
have not been previously associated with Parkinson’s disease.
Our findings support the hypothesis that both cis- and trans-
dysregulation of gene expression contributes to the risk of
Parkinson’s disease and provide insight into possible disease-
causing mechanisms.

Of note, the effect sizes associated with trans-eQTLs are gener-
ally smaller than those associated with cis-eQTLs, consistent with
previous observations.39–41 Our findings are consistent with predic-
tions from the omnigenicmodel,20which suggests that theweak ef-
fects of trans-eQTLs significantly contribute to overall heritability of
a complex disease. Further, the effects of the trans-eQTLs identified
in our data converge on a smaller set of trait-relevant pathways,
which are central to the regulatory networks underlying these
pathways. Despite the relatively weak effects of the trans-eQTLs
we identified, there are a couple of key examples that deserve fur-
ther discussion.

SYNJ1 (PARK20) encodes synaptojanin-1, a presynaptic phos-
phoinositide phosphatase that dephosphorylates PI(4,5)P2 to trigger
the removal of the clathrin coat during synaptic vesicle recycling.53

SYNJ1 is a highly constrained gene (LOEUF score=0.33) and rare
missense mutations in SYNJ1 have been linked to early-onset par-
kinsonism.54 Despite SYNJ1 being acknowledged as a high-

Figure 3 Genes subjected to trans-regulation by Parkinson-SNPs are enriched for loss-of-function intolerance. Genes that are loss-of-function intoler-
ant, as measured by a continuous LOEUF score, are enriched in trans-regulatory interactions involving Parkinson-SNPs. The LOEUF score is a continu-
ous value that indicates the tolerance of a given gene to inactivation. Low LOEUF scores indicate stronger selection against loss-of-function variation.
The distribution is shown as a violin plot with themedian (LOEUF) values for each eQTL group (black text). The groupswere compared using a Kruskal–
Wallis test (**P-value, 0.01); the absence of a significance value indicates the LOEUF values of the two groups were not significantly different. No eQTL
=all genes in gnomADwith anassignedprobability of being loss-of-function intolerant (pLI) or LOEUF forwhich an eQTLwasnot identified in this study
(�18 500 genes). Not all genes had LOEUF scores (Supplementary Fig. 2 and Supplementary Table 7).
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confidence Parkinson’s disease gene,3,55 GWASs have not identified
any SNPs proximal to SYNJ1 as being significantly associated with
Parkinson’s disease, nor have they attributed any significant
Parkinson-SNP (near or far) to SYNJ1. Critically, we identified that
the Parkinson’s disease-associated SNP rs10847864 acts as a trans-
acting eQTL for SYNJ1 expression. rs10847864 is intronic to, and
also acts as a cis-eQTL with, HIP1R, another gene that is involved
in clathrin-mediated endocytosis.56–58 Our discovery of the
trans-eQTL–SYNJ1 connection merges observations from popula-
tion level (i.e. GWAS) and familial studies, reinforcing the potential
importance of SYNJ1 in Parkinson’s disease. Such convergence and
pleomorphism has previously been reported for other Parkinson’s
disease genes such as SNCA (PARK1) and LRRK2 (PARK8), with both
genes being identified as risk genes through population-level and
familial studies.59

Our analysis identified trans-eQTLs for approximately
two-thirds of the known Parkinson-SNPs. Of note, RAI14 (retinoic
acid induced 14) is regulated by two trans-eQTLs, involving two in-
dependent Parkinson-SNPs (rs2251086, chr15 and rs55818311,
chr19). Although not yet directly linked to Parkinson’s disease,
RAI14 (and its encoded protein ankycorbin) has been shown to
play a role in the inflammatory response in glial cells60 and in the
establishment of neuronal morphology,61 both of which are path-
ways of known importance in Parkinson’s disease pathogenesis.62

Retinoic acid, a regulator of RAI14 (one of multiple roles of retinoic
acid), is being explored as a potential therapeutic target for
Parkinson’s disease.63

Our results provide support for the role of peripheral tissues in
Parkinson’s disease, notably the oesophagus and thyroid. First,
the oesophagus is enriched for cis and trans regulatory eQTLs.
rs76904798 [Parkinson’s disease odds ratio (OR)= 1.155] is an eQTL

that upregulates LRRK2 expression in 19 peripheral tissues, includ-
ing in the oesophagus. Notably, this cis-eQTLwith LRRK2 is not iden-
tified in any CNS tissues. Second, we identified the thyroid tissue as
being enriched for eQTLs, many of which were not represented in
CNS tissues. The thyroid is a component of the dopaminergic sys-
tem and hypothalamic–pituitary–thyroid axis network.64 A poten-
tial link between thyroid hormone disorders, Parkinson’s disease
risk and symptom severity has been suggested.64 Specifically, one
study identified patients with hypothyroidism to have a twofold
elevated risk of developing Parkinson’s disease.65 Collectively,
these findings support the growing body of evidence for the import-
ance of the oesophagus66,67 and thyroid64 in Parkinson’s disease.

We hypothesized that genes regulated by Parkinson-SNPs in
foetal cortical tissue may contribute to potential neurodevelop-
mental aspects of Parkinson’s disease.24,68,69 Sixteen genes were
regulated by Parkinson-SNP eQTLs within the foetal cortex. Two
of these genes, CNTNAP1 and GALC, are particularly notable.
CNTNAP1 encodes Caspr1, a Neurexin family membrane protein.
Reductions in Caspr1 concentrations delay cortical neuron and
astrocyte formation in the mouse developing cerebral cortex.70

GALC encodes a lysosomal galactosylceramidase that ensures nor-
mal turnover of myelin71 and has been linked to neuronal vulner-
ability.72 While connections between the remaining 14 genes and
Parkinson’s disease development are less clear, we speculate that
SNP-mediated regulation of these genes specific to the foetal cortex
may contribute to early neurodevelopmental disturbances that
render an individual more susceptible to Parkinson’s disease.

Our analyses identified nine clusters that are enriched for spe-
cific biological processes and pathways, most of which have been
previously associated with Parkinson’s disease to some degree
(e.g. synaptic vesicle recycling,73 microtubule polymerization74

Figure 4 Gene regulation in the foetal cortex compared to the adult cortex.The leftmost section shows genes that are regulated only in the foetal cortex,
with no eQTLs seen in any of the 13 adult brain tissues. Themiddle section shows genes that are regulated in both the foetal and adult cortex. The black
dots show the regulation effect size of the gene in the adult cortex, and the grey dots show the regulation effect size of the gene across the different
brain tissues (where an eQTL is seen). The rightmost section shows genes that are regulated in both the foetal cortex and adult non-cortical brain tissue.
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Figure 5 Louvain clustering analysis highlights nine significant clusters, indicative of biological connectivity. The grey and orange shading of the
nodes is indicative of whether the gene is subject to regulation via cis- or trans-mechanisms. The pink- and turquoise-shaded circles indicate genes
that are regulated in adult brain tissue and foetal cortex, respectively. The clusters were also analysed in STRING with an increased stringency
[only PPIs with a high confidence level (.0.700, as defined in STRING) were used for this analysis, and interactions identified only through text-mining
were excluded]. This exclusion led to very few changes, with cluster 6 the only cluster to lose any connectivity within the cluster (WDHD1, NCAPG and
PARPBP no longer connect). Experimentally determined= imported from experimental repositories; gene neighbourhood= similar genomic context in
different species suggest a similar function of the proteins; gene fusions = fused proteins are recognized by orthology of the fused parts to other, non-
fused proteins; gene co-occurrence = indicates the presence of a specific gene pair is in agreement in all species—must be expressed together;
co-expression = predicted association between genes/proteins based on RNA and/or protein expression.
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and autophagosome assembly75; Supplementary Table 10B).
Dysregulated expression of the componentswithin these pathways
is potentially the basis of the risk conferred by the Parkinson-SNPs.
The clusters aid in understanding how Parkinson’s disease SNPs
mechanistically contribute to disease risk, and some interesting
points can be drawn from these. For example, genes within cluster
6 are enriched for functions in DNA replication and repair, a path-
way previously associated with the development of other neurode-
generative diseases.76 Notably, BRCA1 and RPA2 (both previously
linked to DNA damage response and repair)77,78 are regulated in
trans by Parkinson-SNPs (rs11950533; rs9568188; rs62053943) and
are central to cluster 6. It is notable that cluster 6 contains several
factors associated with PARP1 activity [e.g. the PARP1 binding
protein (PARPBP) and BRCA1] that link this cluster to the repair of
single stranded breaks, which are enriched at neuronal enhancers
in post-mitotic neurons.79 A further example is the regulation of au-
tophagy initiation by Parkinson-SNPs, highlighted in cluster
8. Three interacting proteins within cluster 8, encoded by VMP1,
BECN1 and ATG14, are each regulated by a different Parkinson-
SNP (rs12951632 chr17; rs11158026 chr14; rs10748818 chr10;
SupplementaryTable 3), including a trans-eQTL connection regulat-
ing VMP1. rs12951632 (OR=0.93) and rs11158026 (OR= 0.919) are
protective Parkinson-SNPs that, respectively, increase BECN1 and
ATG14 expression, two interacting core components of the PI3–
kinase complex, required for autophagosome formation.80

Individuals with both of these variants would potentially have in-
creased autophagic capacity relative to individuals with one
variant.

The genes in cluster 7 are strongly enriched for antigen process-
ing and presentation, which is increasingly being implicated in the
progression of Parkinson’s disease.81 Both rs504594 and rs9261484
are associated with a reduced risk of developing Parkinson’s dis-
ease (OR=0.8457 and OR=0.9385, respectively). We identified a
spatial eQTL between rs504594 andHLA-DRB1 in both the foetal cor-
tex and adult brain (including cortex and substantia nigra), impli-
cating this regulatory eQTL–gene connection in both the
neurodevelopment and neurodegenerative stages of Parkinson’s
disease. Interestingly, rs504594 (previous ID: rs112485776) was re-
cently validated in a SNP-level meta-analysis (OR= 0.87), with re-
sults displaying no residual HLA effect in adults after adjusting
for the SNP.82 Instead, three amino acid polymorphisms within
the HLA-DRB1 gene were identified as drivers of the association be-
tween the HLA region and Parkinson’s disease risk.82We agree that
the impacts of rs504594 are contingent upon the HLA-DRB1 allele—
both in terms of regulation and protein sequence. We contend that
the effects of the rs504594 eQTL are developmental. Future studies
must untangle these developmental effects and identify the neuro-
developmental stages that may prime certain individuals to be
more vulnerable to later triggering mechanisms. We note that
such interpretation should be taken with caution given the highly
polymorphic nature of the HLA-region.

The 90 SNPs used in our analyses explain 16–36%of the heritable
risk of Parkinson’s disease and contribute to a predictive polygenic
risk score for Parkinson’s disease [area under curve AUC)= 0.651;
95% confidence interval (CI) 0.617–0.684].5 Nalls et al.5 also con-
ducted polygenic risk score analyses using a set of 1805 SNPs, iden-
tified from the NeuroX-dbGAP and Harvard Biomarker Study
cohorts, using a P-value threshold for inclusion of 1.35× 10−3.
Notably, the polygenic risk score calculation using 1805 versus 90
SNPs only improved the AUC to 0.692 (95% CI 0.660–0.725), and
thus we did not include these additional SNPs in our analysis.
However, statistical significance is simply a measure of confidence

in the signal:noise ratio and does not prove function or causality.
Therefore, because GWAS ‘tag’ SNPs are typically part of a larger
linkage disequilibrium blocks, it remains possible that some of
the 90 tag-SNPs are not the causal variant, but rather they are in
strong linkage disequilibrium (i.e. co-inherited) with the causal
variant. This means, that as noted by Nalls et al.,5 there are thou-
sands of SNPs that correlate with an increased risk of Parkinson’s
disease. Despite considerable progress in the development of
methods to prioritize functional SNPs (e.g. using chromatin acces-
sibility83 or epigenetic marks84,85) there is still no definitive predict-
ivemethod for distinguishing the causal variant. Thus, we used the
90 independent SNPs that reached genome-wide significance level
as the proxy for determining larger associated risk gene networks.

We identified spatial eQTLs, under the premise that regulation
occurs due to the physical connection that was captured by
Hi-C. Additional trans-eQTLsmay occur through indirectmediation
as a result of cis-effects on a target gene (e.g. transcription fac-
tor).39,86 While we did not observe this directly, we did not perform
an in-depth exploration of eQTLs that might occur through this in-
directmediation. Future research that incorporates the potential of
indirect mediation may identify additional important Parkinson’s
disease-associated eQTL relationships.

We acknowledge several limitations to our analysis. First, the
Hi-C cohort and GTEx libraries were generated from unrelated sam-
ples thatwere not age- or gender-matched. Second, the sampled do-
nors in GTEx are predominantly of European descent, limiting the
significance of our findings to this ethnicity. However, the GWAS co-
hort also used individuals of European ancestry, meaning for this
analysis the datasets were congruent. Third, our eQTL analysis as-
sumes that mRNA concentration correlates directly with protein le-
vels. While it is true that protein levels are to some extent
determined by their mRNA concentration, there are many post-
transcriptional processes that can lead to a deviation from the ex-
pected correlation.87 The fourth limitation is that eQTL data re-
present composite datasets across developmental periods (e.g.
foetal samples were aged from 14 to 21 weeks post-conception and
the adult samples were from individuals aged 21–70 years). Finally,
the approach that we have taken throughout this study is correl-
ational, and thus causality cannot be inferred. Future work may
look at the utility of additionalmethods, such asMendelian random-
ization, to affirm causative associations. Despite such limitations,
the identification of trans-eQTLs is a particular strength of ourmeth-
odology, relying on captured contacts within the genome organiza-
tion to reduce the impact of multiple testing correction. As such,
we contend that these limitations do not invalidate the significance
of our findings of trans-acting eQTLs and the genes that they impact.

Conclusions
Understanding the functional impact of Parkinson-SNPs is critical
to our understanding of how these variants contribute to the devel-
opment and clinical presentation of Parkinson’s disease. Our func-
tional interpretation of Parkinson-SNPs integrates individual loci
into a gene regulatory network, which includes genes with and
without prior Parkinson’s disease associations. The regulatory net-
work includes clusters, and within them genes, that are enriched
for biological functions that have known, putative or previously un-
known roles in Parkinson’s disease. Development-specific changes
to this network (within the foetal cortex) are suggestive of roles
for neurodevelopmental changes being early contributors to
Parkinson’s disease risk. Similarly, enrichments for regulatory
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changes within peripheral tissues may indicate a greater role for
these tissues in Parkinson’s disease than is currently appreciated.
Collectively, our findings not only contribute to an overall under-
standing of the multiple biological pathways associated with
Parkinson’s disease risk loci, but also highlight the potential utility
of gene regulatory networks when considering aetiological sub-
types of Parkinson’s disease.
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