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Objectives: The objectives of this study were to study the presence of mutators in a set of Acinetobacter baumannii
isolates and to explore whether there is a correlation between mutation rates and antibiotic resistance.

Methods: The variation in mutation rate was evaluated for 237 clinical A. baumannii isolates by determining the
frequency of their mutation to rifampicin resistance. For each isolate, the antibiotic resistance profile was determined
by disc diffusion and/or Etest. Isolates were divided into susceptible, resistant and MDR groups according to their
resistance to five groups of different antibiotics. A comparison between differences in mutation frequency (f) and
strain-specific factors was performed.

Results: Of the 237 isolates 32%, 18% and 50% were classified as susceptible, resistant and MDR, respectively.
The f of rifampicin resistance varied between 2.2×10210 and 1.2×1026. Of the strains under investigation, 16%
had an ≥2.5- to 166-fold higher f. The presence of mutators (definition ≥2.5-fold increase in f compared with
ATCC 19606) in the MDR group (22%) was significantly higher (P,0.05) than that in the susceptible and resistant
groups (11% and 7%, respectively). Furthermore, f was significantly higher in the MDR group compared with that in
the susceptible and resistant groups.

Conclusions: The facts that 26 of 37 mutator isolates (70%) in the population were MDR and that there was a
significantly higher general f in isolates exhibiting an MDR profile suggest that hypermutability can be of advantage
for the organism in a selective environment with extensive exposure to antimicrobials.

Introduction
Acinetobacter baumannii is increasingly involved in nosocomial
infections, especially in the ICU setting. This pathogen is fre-
quently MDR and has shown a propensity to adapt to the environ-
ment through up-regulation of intrinsic resistance and acquisition
of antibiotic resistance determinants.1,2 Another parameter that
modulates the progression of resistance is an increase in general
mutation rate (hypermutability), which can influence resistance
development through mutation,3 frequency of lateral gene trans-
fer,4 up-regulated gene expression and compensatory evolution
of a bacterial population.5

Studies of mutator distribution and level of hypermutability
have shown that ≤50% of clinical isolates from a variety of bac-
terial species exhibit a mutator phenotype/genotype. Many of
these mutators are found among infection-causing bacteria,
which are isolated from an environment of high selective pressure
due to intense antibiotic usage.6 No previous study has evaluated

the existence of mutator isolates in an A. baumannii population, to
our knowledge. The aims of this study were to determine the
prevalence of mutators in A. baumannii and their hypermutability
and to explore whether there is any correlation between changes
in the mutation frequency (f) and antibiotic resistance.

Materials and methods

Bacterial isolates, antimicrobials and culture media
Two-hundred-and-thirty-seven A. baumannii isolates originating from
Europe, the USA and Sweden between 1990 and 2007 were investigated.7,8

A. baumannii ATCC 19606 was chosen as a comparator strain for f assays
due to its isolation in 1948 and exposure to less antibiotic selection pressure.
The WT Escherichia coli MG1655, E. coli dam (damD 16::Kanr) and mutS
(DmutS::FRT) mutants were used as quality-control strains.9 All experiments
were performed in freshly prepared Mueller–Hinton (MH) broth and MH agar
(BD, Sweden); rifampicin was purchased from Sigma-Aldrich, Sweden.
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Susceptibility testing
Resistance profiles were determined using Etest (Biodisk/bioMérieux,
Sweden) and/or disc diffusion (BD/Fisher Scientific, Sweden). The EUCASTclin-
ical breakpoints were used for sorting isolates into antibiotic resistance profile
groups (ARPGs) as follows; susceptible, susceptible to all antibiotic groups
tested; resistant, resistant to one or two antibiotic groups; and MDR, resistant
to three to five antibiotic groups.10 ARPGs are defined in Table 1.

Determination of f against rifampicin
To determine f, assays were performed as previously described by Baquero
et al.11 Ten independent cultures for each isolate were grown overnight
with shaking, and cells were plated onto MH plates with and without rifam-
picin (100 mg/L).

The distribution of f values in the population was categorized as previ-
ously described (Table 1).11,12 The f values were normalized to control
strain ATCC 19606 (f¼7×1029), which was set at 1. Isolates with an
≥2.5- to 10-fold higher f were defined as weak mutators and those with
a .10-fold higher f were defined as strong mutators.

Data comparison and statistical methods
Isolates were grouped according to their ARPGs and further into hypo-
normomutators (f,2.5-fold) and mutators (f≥2.5-fold) before analysis.
The Mann–Whitney U-test and Kruskal –Wallis analysis of variance
(ANOVA) statistical methods were used to compare resistance groups.
For associations between ARPG and the number of mutator isolates in
each group, the Pearson’s x2 test was used, and logistic regression was
used to further investigate the relationship between these variables.
P values ,0.05 were considered significant.

Results

Antimicrobial susceptibility profiles

The division of isolates and the percentage of each isolate in each
ARPG are shown in Table 1.

Distribution of f values in bacterial populations

The frequency of rifampicin resistance was determined, and iso-
lates were sorted according to their f, which varied between
2.2×10210 and 1.2×1026 (Figure 1). A sharp peak in frequency
distribution was found at �1028; however, 68% of the population
had a lower frequency. To the right of the peak, 15% of the isolates
had a moderately higher f, whereas only two isolates (,0.1%) had
a frequency .1027 (Figure 1a). No A. baumannii isolate displayed
hypermutability as high as that of the E. coli mutS strain
(f¼3×1026), and only one isolate (f¼1.1×1026) had a frequency
higher than that of the E. coli dam-knockout strain (f¼3.9×1027).
When the population was sorted according to their ARPGs, the dis-
tribution of the susceptible group showed three peaks, at 2×1029,
6×1029 and 1×1028, respectively, while the frequencies of the
resistant group were spread over the whole interval, and for the
MDR group, �45% of the isolates were clustered in a sharp
peak, with f ranging between 8×1029 and 2×1028 (Figure 1b).

Hypermutability and resistance profile in mutator isolates

Compared with the A. baumannii ATCC 19606 control strain, 200
isolates had an f ranging between 0.03-fold and ,2.5-fold. Of
these, 80 were classified as hypomutators (,1.0-fold), composed
of 39% susceptible, 19% resistant and 43% MDR isolates, respect-
ively. The overall occurrence of weak and strong mutators Ta
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was �16%; when the population was divided into ARPGs, the
prevalence of mutators in the MDR group (22%) was significantly
higher (P,0.05) than the prevalence in the susceptible and resist-
ant groups (11% and 7%, respectively). The geometric mean and

median of f for the population and the percentage of mutators in
each ARPG are presented in Table 1.

Thirty-seven isolates had an ≥2.5- to 166-fold increase in
f (73% with ≥2.5- to 5-fold, 19% with .5- to 10-fold and 8%
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Figure 1. Distribution of f of 237 A. baumannii isolates. (a) Vertical continuous lines indicate the division of isolates into categories by their mutability status:
H, hypomutators (f≤4×1029); N, normomutators (4×1029 , f,1.7×1028); W, weak mutators (1.7×1028 , f,7×1028); and S, strong mutators
(f.7×1028).11,12 The vertical broken line indicates f for the control strain A. baumannii ATCC 19606 (7×1029). (b) Distribution of f when isolates are
divided according to their ARPGs. Numbers in brackets indicate numbers of isolates in respective ARPGs. SUS, susceptible; RES, resistant.
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with .10-fold) (Table S1, available as Supplementary data at JAC
Online). Of the mutators, 70% were MDR isolates with a median/
mean increase f of 3.6/11.1-fold (Figure 2a). There was no signifi-
cant difference in increased f between the mutators in the suscep-
tible, resistant and MDR groups (P¼0.51– 0.74) (Figure 2a).
However, there was a significant correlation between MDR and
increased f (P,0.05) (Figure 2b).

Of the 34 weak mutators, 7, 3 and 24 of the isolates had a sus-
ceptible, resistant and MDR phenotype, respectively. All the weak
resistant mutators (f 3.19–4.29-fold) were susceptible to cephalos-
porins and carbapenems, with a varied range of susceptibility to the
other ARPGs. Four weak MDR mutators (f 2.51–3.25-fold), which
displayed antibiotic resistance to three of five antibiotic groups,
were all susceptible to the carbapenem group in combination
with susceptibility to either the tetracycline-like, aminoglycoside
or fluoroquinolone group of antibiotics. Of the remaining
20 weak MDR isolates, nine were resistant to all antibiotic groups
(f 3.14–8.29-fold), 5 were resistant to all except tetracycline-like
antibiotics (f 2.57–5.89-fold) and 6 were resistant to all except
carbapenem-group antibiotics (f 2.71–10.0-fold) (Table S1).

The remaining three strong mutators, one susceptible isolate
and two MDR isolates, displayed 11.1-fold (AB95), 19.5-fold
(AB279) and 166-fold (AB190) increased f (Table S1). In compari-
son with the control mutator E. coli strains (dam and mutS
mutants, 55.7- and 429-fold increased f), the AB190 isolate can
be regarded as a strong mutator.

Discussion
This study is the first one, to our knowledge, on the occurrence of
mutators in an A. baumannii population, and we have shown that
16% of isolates from our collection displayed an ≥2.5- to 166-fold
increase in f. The prevalence of mutators and their f values were
significantly higher in the MDR group compared with those of the
susceptible and resistant groups. We also found 0.42% and 15.2%
of isolates to be strong and weak mutators, respectively, which
are around the same range as findings for E. coli urinary tract iso-
lates, where the proportions were �0.5%–1% and 25%–40% for
strong and weak mutators, respectively.11,13

Variation in mutation rates and its effect on resistance devel-
opment and bacterial adaptability have been studied extensively
over recent years. It was shown that even a small (2–4-fold)
increase in mutation rate can drive the evolution of fluoroquino-
lone resistance, and, furthermore, a slight increase in f favours the
evolution of MDR.9,14 In E. coli, selection with rifampicin and cipro-
floxacin showed that mutator strains generated both higher
resistance levels and resistance mutations with ≤1000-fold
higher f.15

Studies of clinical isolates have revealed that weak mutators
can be present at earlier stages of infection, and a modestly ele-
vated mutation rate can give them an adaptive advantage.16

Another aspect of mutators is the notion that some genotypes
can exhibit increased frequency of recombination, interspecies
recombination and transformation.17,18 These events might
explain in part the ability of A. baumannii to adapt, whereby
a mutator can integrate DNA that carries resistance markers
and/or increase the chance of gaining mutations that promote
the survival of the organism in clinical settings.

Carbapenems are still the drugs of choice to treat A. baumannii
infections, even though resistance rates are increasing.1 To

understand the progression of carbapenem resistance, Zander
et al.19 investigated three isolates recovered from patients dur-
ing an outbreak in a hospital in Krakow, Poland. Sequencing
of blaOXA 51-like genes showed that carbapenem resistance
was caused by a conversion of OXA-66 into OXA-82 and that
blaOXA-82 was also associated with the IS element ISAba1. A
second study looked at related isolates possessing similar plas-
mids that encode the carbapenemase OXA-58 and exhibit varying
levels of carbapenem resistance. Sequencing revealed genetic
variability composed of multiple copies of the blaOXA 58 gene
and that extra copies were due to IS-element transposition or
recombination events.20 These adaptive modifications could be
elevated in a population composed of mutators, where hypermut-
ability can drive the progression of survival and evolution of gen-
etic elements such as b-lactamase genes. However, whether any
of the genetic changes seen in these studies was due to an altered
mutation rate is not known.

In conclusion, we have shown that 16% of the A. baumannii
strains were weak-to-strong mutators and that there was a strong
correlation with an increased f with an MDR phenotype. The fact
that a high percentage of MDR A. baumannii isolates show an
increased mutability in clinical settings calls for further studies
that could form the basis of novel treatment strategies.
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