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Dynamic Bayesian networks 
for prediction of health status 
and treatment effect in patients 
with chronic lymphocytic leukemia
Piotr Ladyzynski1,2*, Maria Molik1,2 & Piotr Foltynski1

Chronic lymphocytic leukemia (CLL) is the most common blood cancer in adults. The course of CLL 
and patients’ response to treatment are varied. This variability makes it difficult to select the most 
appropriate treatment regimen and predict the progression of the disease. This work was aimed 
at developing and validating dynamic Bayesian networks (DBNs) to predict changes of the health 
status of patients with CLL and progression of the disease over time. Two DBNs were developed and 
implemented i.e. Health Status Network (HSN) and Treatment Effect Network (TEN). Based on the 
literature data and expert knowledge we identified relationships linking the most important factors 
influencing the health status and treatment effects in patients with CLL. The developed networks, and 
in particular TEN, were able to predict probability of survival in patients with CLL, which was in line 
with the survival data collected in large medical registries. The networks can be used to personalize 
the predictions, taking into account a priori knowledge concerning a particular patient with CLL. The 
proposed approach can serve as a basis for the development of artificial intelligence systems that 
facilitate the choice of treatment that maximizes the chances of survival in patients with CLL.

Chronic lymphocytic leukemia (CLL) is a non-Hodgkin lymphoma and the most common blood cancer in 
adults1. The standardized age-adjusted mean incidence of CLL in years 2013–2017 was equal to 5.0 per 100,000 
residents in USA per year2. The incidence of CLL in Western countries is similar to that of USA, but in Asian 
countries (i.e. China, Japan) CLL is extremely rare, and it is estimated to comprise only 10% of all leukemias. The 
incidence of CLL increases with age. It is rarely diagnosed in people under the age of 40 years. The median age at 
diagnosis is between 67 and 72 years3–5. As the incidence rate rises with age, the prevalence of CLL is expected 
to keep increasing in coming years due to the society aging.

The disease is more common in men than women with the incidence ratio of 1.7:1.06. Median overall survival 
has been estimated to be 10 years, but survival of individual patients may vary from months to decades3.

CLL is a lymphoproliferative disorder characterized by the clonal proliferation and progressive accumula-
tion of morphologically mature B lymphocytes in the bone marrow, blood, lymphatic nodes and spleen4. CLL is 
diagnosed when lymphocytosis lasts for at least 3 months and the number of lymphocytes is above 5 × 109 per 
liter7–9. The clonality of circulating B lymphocytes must be confirmed by flow cytometry by checking the levels 
of CD19 + , CD20 + , CD5 + , CD23 + antigens and the presence of λ and κ light chains.

In the majority of patients, i.e. 70–80%, there are no clinical symptoms of the disease at the time of diagnosis of 
CLL. Moreover, more than 30% of patients with CLL never require treatment and die from causes other than CLL.

A few studies have demonstrated that initiating treatment in the early stage CLL has no effect on survival7–9. 
Therefore, an early-intervention therapy with anti-leukemia drugs, including the Bruton tyrosine kinase inhibi-
tors (BTKi) or B-cell lymphoma 2 (BCL2) antagonists, alone or in combination with monoclonal antibodies, 
currently is not recommended2. In general practice, patients with asymptomatic early-stage disease should be 
monitored without therapy, applying so called “watch and wait” strategy, unless they have evidence of disease 
progression or disease-related symptoms.

The decision about the treatment is the resultant of the CLL stage, the presence of symptoms of the disease 
that impede the functioning of the patient, prognostic factors and disease activity10,11. According to iwCLL 
guidelines symptomatic or active disease is indicated if at least one of the following criteria is met: (1) evidence of 
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progressive marrow failure as manifested by the development or worsening of anemia and/or thrombocytopenia; 
(2) massive or progressive or symptomatic splenomegaly; (3) massive nodes (the largest diameter ≥ 10 cm) or 
progressive or symptomatic lymphadenopathy; (4) progressive lymphocytosis with an increase of ≥ 50% over a 
2-month period, or lymphocyte doubling time of less than 6 months; (5) autoimmune complications including 
anemia or thrombocytopenia poorly responsive to corticosteroids; (6) symptomatic or functional extranodal 
involvement, e.g. skin, kidney, lung, spine; (7) disease-related symptoms such as: unintentional weight loss ≥ 10% 
within the previous 6 months, significant fatigue, fevers 38.0 °C (≥ 100.5°F) for 2 or more weeks without evidence 
of infection or night sweats for 1 month or more without evidence of infection2.

The effectiveness of treatment is assessed using indicators such as progression-free survival (PFS) and overall 
survival (OS)12. The result of treatment, according to the criteria developed by the National Cancer Institute 
Working Group, may be: complete remission (CR), partial remission (PR), stable disease (SD) or progressive 
disease (PD). The sum of CR and PR is defined as the overall response rate (ORR) and it determines the percent-
age of patients who responded to the treatment13. Recently, the assessment of minimal residual disease (MRD) 
is an increasingly important category of response assessment, resulting in four different response categories2,4.

Until recently, the goal of CLL treatment was to keep lymphocytosis under control and to eliminate general 
symptoms. Currently, with the introduction of new methods of therapy, the goal, especially in younger people, 
should be to achieve CR, extend PFS and extend the OS, as well as improve the quality of life with maintaining 
professional activity14–16.

People with CLL commonly receive multiple treatments over the course of their disease, such as chemother-
apy, radiation therapy, biologic therapy, immunomodulating agents and other oral oncology agents, and allogenic 
stem cell transplantation. Currently, several CLL treatments are available. Monotherapy with alkylating agents 
has been considered as an initial, first-line therapy for CLL for a few decades, with chlorambucil being a “gold 
standard” treatment option17. Today, still chlorambucil (CLB) monotherapy may be considered as an inexpensive 
option in elderly or unfit patients4. Monotherapy with purine analogues such as fludarabine, pentostatin and 
cladribine is also used in CLL. Another treatment option is the use of monoclonal antibodies such as anti-CD20 
antibodies (i.e. rituximab, ofatumumab and obinutuzumab) or a monoclonal antibody against CD52 antigen (i.e. 
alemtuzumab). Recently a few other treatment modalities started to be introduced and tested, including agents 
targeting the signaling in CLL cells and their environment (i.e. idelalisib, ibrutinib, acalabrutinib, lenalidomid), 
inhibitors of B-cell lymphoma 2 (i.e. venetoclax, providing a new therapeutic option for very poor prognosis 
population), programmed death 1 (PD-1) blocking antibodies (i.e. pembrolizumab) and autologous T cells 
modified using a lentiviral vector expressing a chimeric antigen receptor (CAR) with specificity for the B-cell 
antigen CD19, coupled with CD137 and CD3-zeta signaling domains4. The combined use of different treatment 
options often leads to improvement of the response to and/or outcome of such a combination therapy in com-
parison with monotherapy. In younger patients resistant to purine analogs or those with unfavorable prognosis, 
hematopoietic cell transplantation with curative intent is also used18.

The course of CLL and patients’ response to treatment are varied, which is reflected in the available results of 
the randomized controlled trials (RCTs) comparing the effectiveness of selected treatment options. This variabil-
ity makes it difficult to select the most appropriate treatment regimen and predict the progression of the disease 
for a given patient. When deciding on initiating the treatment and selecting the treatment regimen, the follow-
ing parameters should be taken into consideration: the clinical stage of the disease, the general condition or the 
fitness and comorbidities of the patient, changes in the blood and marrow lymphocytes phenotype, prognostic 
factors, history of the treatment (e.g. first vs. second line, response vs. nonresponse to the last treatment), and 
family history of the disease. It should be also taken into consideration that during the relapse of the disease the 
effectiveness of subsequent treatment lines is lower due to the selection of clones of cells resistant to the previ-
ously used drugs. That is why choosing the right treatment is extremely difficult and needs to be personalized.

This work is aimed at developing and validating an artificial intelligence system using the dynamic Bayes-
ian network (DBN) framework to predict changes of the health status of patients with CLL and progression of 
the disease over time to create a basis for personalized treatment planning and maximizing the survival time.

Bayesian networks, thanks to their properties, i.e. simple structure and clear reflection of knowledge about 
causal dependencies and by combining expert knowledge with data are convenient tools for developing systems 
supporting medical diagnosis and treatment19. In general, Bayesian methods are particularly suited for capturing 
and processing uncertainty. They have been used in biomedical engineering and health-care for a few decades and 
have been applied, among others, in handling inexact knowledge associated with the risk prediction20, eliciting 
subjective opinion regarding CLL treatment21,22, establishing diagnosis of CLL with the use of genomic23–25 or 
flow cytometry26 data, and selecting optimal treatment in patients with CLL27–31.

Several of the above-mentioned studies investigated treatment effect in patients with CLL. However, none 
aimed to use the domain literature, medical recommendations and experts’ knowledge to select the most impor-
tant parameters influencing the health status and treatment outcomes, and to quantify the strength of the interac-
tion between these factors, in terms of conditional probabilities, to be able to predict the posteriori probability 
of temporal transition of these parameters between possible states utilizing a priori knowledge.

Results
Health status network.  Due to complexity of the problem, the first DBN that we developed, which was 
called Health Status Network (HSN), was aimed at predicting the health status of patients with CLL, assuming 
that each patient was treated in accordance with the best medical practice, reflected in the results presented in 
the available medical literature. This means that in HSN there are no nodes directly referring to the treatment 
of the patient, but the effect of the treatment indirectly influences changes of other nodes that are represented 
in the network. This approach made it possible to simplify the network structure, reduce the number of prob-
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abilities necessary to define conditional probability tables (CPTs) in individual network nodes, shortened the 
calculation time and allowed to determine, which nodes have the largest impact on the patient survival. Staring 
from the basic network, which is described in “Methods” section, modeling a health status of the patient with 
CLL at the time of diagnosis with the use of 3 nodes: Health, Disease and Complications we found, based on the 
literature review, that Health node is affected by: general condition of the patient, numerically expressed accord-
ing to the Eastern Cooperative Oncology Group Performance Status (ECOG scale), age and sex of the patient, 
family history of CLL and survival. We concluded that Complications node is affected by parameters that may 
worsen the patient’s condition, but are not directly related to the disease, i.e. concomitant diseases, other cancers 
and infections.

We found that Disease node is affected by parameters directly related to CLL, i.e. the stage of CLL, the 
phenotype of blood and marrow lymphocytes, cytogenetic aberrations, hematological tests, blood serum tests, 
abdominal palpation and the treatment applied, i.e. type of therapy, date of treatment initiation, prescribed drugs, 
the reason for discontinuation of treatment and the treatment result.

Altogether, the HSN consists of 16 nodes at the initial moment t = 0 and subsequent 16 nodes at the next 
considered moment. The time slice is equal to 6 months. The diagram of HSN is shown in Fig. 1. Two nodes 
(i.e. Prognosis and Stage of CLL) may take one of three values and the remaining 14 nodes are bi-valued. Table 1 
shows description of all 16 nodes.

An example of the CPT content of one of the nodes of HSN for which CPT was determined on the basis of 
the expert’s knowledge, is shown in Table 2.

Treatment effect network.  The Health Status Network was the first stage of the work leading to design of 
the Treatment Effect Network (TEN) that predicts treatment outcome and survival of the patient based on her / 
his health status and the treatment administered.

The developed TEN is a DBN consisting of 18 nodes, which can take from two (e.g. Sex or Survival node) to 
four (e.g. Treatment or Previous treatment node) discrete values.

The diagram of TEN showing links between individual nodes is illustrated in Fig. 2 and the description of all 
the nodes is provided in Table 3. The CPT content of Treatment node of TEN is shown in Table 4.

Implementation and testing.  Implementation of HSN and TEN was done using the Bayes Net Toolbox 
(BNT) software package34, which is an addition to the Matlab system. For inference we used jtree_dbn_inf_
engine, which applies the junction tree algorithm to pairs of neighboring slices at a time.

After defining CPTs of HSN and TEN, performance of the networks was tested. For each node, results of simu-
lations using a priori probabilities reflect results of an average patient with CLL. For some nodes, e.g. Survival, 
the results of the conducted simulations can be compared with the clinical information from the cancer registries 
(CRs) collecting data of a large number of patients with CLL who underwent different types of treatment.

In case of both networks for such a comparison we used the survival data from the US and Europe. In the 
US the survival results of patients with CLL come from the Surveillance, Epidemiology, and End Results (SEER) 
Program (SEER*Stat Database), which contains the data of 18 CRs covering 28% of the US population35,36.

From Europe we used the pooled survival data of patients with CLL and B cell small lymphocytic lymphoma 
(SBLL) from the EUROCARE-5 database, which collected the data from 99 CRs covering 50% of population of 
29 European countries37,38. In both databases, i.e. SEER*Stat and EUROCARE-5, we used the survival data of 
patients who were diagnosed in years 2000–2007. EUROCARE-5 is freely available and the access to SEER*Stat 
is granted upon registration. It is noteworthy that these databases provide the survival data with limited tools 
for subgroup analysis (e.g. male vs. female), which are hardly usable to learn CPTs in nodes of the network.

Output of other selected nodes of HSN and TEN were also verified using the literature data. In the case of 
HSN probabilities of transformation of CLL into an aggressive form of leukemia, mainly the Richter syndrome, 
predicted using HSN and reported by Perikh et al.39 were compared. Whereas in the case of TEN we evaluated 
feasibility of the network in predicting effectiveness of selected treatment options in comparison with the avail-
able results of clinical trials. Two such comparisons were made. They concerned survival of the treatment-naïve 
patients with CLL in whom the first drug used was one of the alkylating agents40–42 or purine analogues40–44 used 
as a monotherapy or in combination with other drugs.

An advantage of Bayesian networks is the ability to take into account a priori knowledge in performed simu-
lations by modifying the CPT content of individual network nodes. To illustrate this feature in relation to TEN, 
the survival curves of three groups of patients with CLL were simulated: (1) all patients, (2) patients with no 
treatment-related side effects leading to death, (3) patients with complications such as infections, autoimmune 
complications, other cancers or Richter syndrome during the period from diagnosis of CLL.

Predictions of the networks vs. clinical results.  In Fig. 3, the survival data predicted by HSN and TEN 
are compared with 60-months survival results from SEER*Stat and EUROCARE-5 databases in patients who 
were diagnosed with CLL in years 2000–2007.

In case of the EUROCARE-5, in addition to the pooled survival data, the results from CRs in regions with 
the highest (i.e. CRs in Switzerland covering 30% of national population: Basel, Geneva, Grisons, St. Gallen, 
Ticino and Valais) and the lowest (Bulgarian National CR covering 100% of the country population) survival 
rates are presented. The survival curve predicted using HSN lies below the survival curves, which were obtained 
using the data collected in EUROCARE-5 and SEER*Stat databases. The mean absolute difference calculated 
yearly during the first 60 months after CLL diagnosis is equal to 11.4% and 20.9% in comparison with the real-
life survivals calculated based on the data in EUROCARE-5 and SEER*Stat database, respectively. Nevertheless, 
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Figure 1.   Diagram of the Health Status Network (HSN). The network nodes at moments t-1 have gray 
background and dotted borders, and the nodes at moment t have white background and solid borders.
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the simulated results lie between the boundaries outlines by the survival data collected in the European regions 
where the treatment of patients with CLL is the least and the most efficient.

The survival curve predicted using TEN for an average patient with CLL is very close to the real survival curve 
calculated based on the pool of European CRs. The mean absolute difference is equal to 1.6% when calculated 
based on 5 survival rates reported yearly for the first 60 months after CLL diagnosis. In case of SEER*Stat database 
the mean absolute difference is larger, i.e. 7.8%, and TEN underestimates the real-life survival data starting from 
the second year after CLL diagnosis.

In Fig. 4 probability of transformation of CLL into an aggressive form of leukemia predicted using HSN and 
reported by Perikh et al.41 is compared.

Table 1.   Nodes of the health status network.

Node name Node description Node values

Age Patient’s age (up to 65 years or above)  ≤ 65 years,
 > 65 years

Autoimmune complications Complications related to hematologic disorders, i.e. thrombocytopenia and 
anemia Yes, no

CLL stage CLL stage according to the Rai staging system32 0, I–II, III–IV

CLL transformation Transformation of CLL into an aggressive form of leukemia, mainly 
Richter syndrome Yes, no

Death Patient died (regardless of the cause of death)—opposite to Survival Yes, no

Death from CLL transformation Patient died as a result of transformation of CLL Yes, no

Death from infections Patient died as a result of infections or is alive Yes, no

Death from other cancers Patient died as a result of cancers other than CLL Yes, no

Death from other causes Patient died due to reasons other than CLL, CLL transformation, infections 
or other cancers Yes, no

Endurance Patient is alive or died due to reasons other than CLL Yes, no

Health Patient’s general health condition according to ECOG Scale of Perfor-
mance Status33

ECOG 0–2,
ECOG 3–4

Infections Patient suffers from bacterial, viral or fungal infections Yes, no

Other cancers Patient has other cancers besides CLL, e.g. colorectal cancer Yes, no

Prognosis Synthetic prognosis based on analysis of cytogenetic parameters Good, intermediate, poor

Sex Patient’s gender Female, male

Survival Patient is alive or died (regardless of the cause of death)—opposite to 
Death Yes, no

Table 2.   Conditional probability table for CLL stage node in the health status network.

Prognosis (t-1) CLL stage (t-1) CLL transformation (t)

CLL stage (t)

III–IV I–II 0

Good III–IV Yes 1.00 0.00 0.00

Intermediate III–IV Yes 1.00 0.00 0.00

Poor III–IV Yes 1.00 0.00 0.00

Good I–II Yes 1.00 0.00 0.00

Intermediate I–II Yes 1.00 0.00 0.00

Poor I–II Yes 1.00 0.00 0.00

Good 0 Yes 1.00 0.00 0.00

Intermediate 0 Yes 1.00 0.00 0.00

Poor 0 Yes 1.00 0.00 0.00

Good III–IV No 0.90 0.10 0.00

Intermediate III–IV No 0.95 0.05 0.00

Poor III–IV No 1.00 0.00 0.00

Good I–II No 0.00 0.80 0.20

Intermediate I–II No 0.05 0.90 0.05

Poor I–II No 0.10 0.90 0.00

Good 0 No 0.00 0.00 1.00

Intermediate 0 No 0.00 0.40 0.60

Poor 0 No 0.05 0.95 0.00
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The course of changes in the probability of CLL transformation into a more aggressive form obtained during 
simulation is similar to the course of this probability reported in the literature41 over a period of 10 years. The 
mean absolute difference calculated biannually is equal to 0.49%.

Figure 5 shows the probability of survival of patients with CLL in whom the first drug used was one of the 
alkylating agents, predicted using TEN and determined based on the literature data42–44.

The simulation results fall within 95% confidence intervals (95% CIs) of the survival results obtained in RCTs. 
The differences between survival rates predicted by TEN and the mean values calculated using the results of the 
clinical trials start to increase 60 months after the CLL diagnosis.

In Fig. 6, similar comparison is presented concerning purine analogs used as the first-line treatment as the 
mono- or combination therapy42–46.

The simulation results obtained with the use of TEN are within 95% CIs of to the average survival rates 
reported in RCTs for 48 months. However, it must be stressed that discrepancies between results of individual 
clinical trials are high, which is demonstrated by wide 95% CIs.

In Figs. 5 and 6 the data are presented starting from the date of the first treatment, not from the date of CLL 
diagnosis to reflects the source data from the clinical studies presented on these Figures. These data were obtained 

Figure 2.   Diagram of the Treatment Effect Network (TEN). The network nodes at moments t-1 have gray 
background and dotted borders, and the nodes at moment t have white background and solid borders.
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by adding the a priori knowledge to the network informing it that a particular treatment should be applied at 
the beginning of the simulation period. This is an advantage of the Bayesian networks that the initial conditional 
probability tables can be modified to reflect a priori knowledge in the results of simulations.

Figure 7 shows that the probability of surviving 10 years after the diagnosis of CLL is equal to 37% for the 
average patient, whereas it is 56% for the patient who does not experience fatal treatment side effects, and it is 
only 16% in patients with complications such as other cancers, infections, autoimmune complications or Richter 
syndrome. In this example a priori knowledge was included by modifying CPT in Death after treatment node for 
group 2 and Complications node for group 3 at any time t. It is also possible to modify CPT in several nodes at 
the same time at selected moments t. Such modifications allow predicting the condition and treatment outcome 
of more precisely defined groups of patients or even an individual patient, thus, creating a framework for plan-
ning the personalized treatment.

Discussion
In this work two DBNs were developed, i.e. Health Status Network and Treatment Effect Network. The first net-
work—HSN allows predicting, among others, probability of survival, death due to infections, death from other 
cancers, death from causes not related to CLL and death from transformation of CLL into a more aggressive 
form of leukemia, in both, the patient described by average values of all the parameters included in the network 
when no a priori knowledge about a particular patient is available as well as the patient in whom the values of 
some parameters are known, i.e. when a priori knowledge about the patient can be used to adjust probabilities 
in CPTs of some nodes in the network. The HSN does not contain nodes directly related to the treatment, but 

Table 3.   Nodes of the treatment effect network. a AA alkylating agents, PA purine analogs, MA monoclonal 
antibodies. b CR + PR complete + partial remission, SD stable disease, PD progressive disease.

Node name Node description Node values

Age Patient’s age (up to 65 years or above)  ≤ 65 years,
 > 65 years

Break between treatments Time that has elapsed after the previous treatment was applied  ≤ 6 months,
 > 6 months

CLL stage CLL stage according to the Rai staging system32 0, I–II, II–IV

Complications Other cancers, infections, autoimmune complications, Richter syndrome Yes, no

Death from complications Patient died as a result of complications Yes, no

Death from treatment Patient died as a result of treatment complications Yes, no

Decision Results of analysis regarding necessity of treatment initiation Treatment, watch and wait, death

Endurance Patient is alive or died due to reasons other than CLL and treatment complications Yes, no

Health Patient’s general health condition according to ECOG Scale of Performance Status33 ECOG 0–2,
ECOG 3–4

Patient’s state Parameter which decides whether more aggressive treatments are applicable Good, poor

Previous treatment Previous-line treatment (the same values as in Treatment node) None, AA, PA, MAa

Previous treatment result Result of the previous-line treatment (the same values as in Treatment result node) CR + PR, SD, PDb, death

Prognosis Synthetic prognosis based on analysis of cytogenetic parameters Good, intermediate, poor

Progression The applied treatment has resulted in progression of the disease or not Yes, no

Sex Patient’s gender Female, male

Survival Patient is alive or died (regardless of the cause of death) Yes, no

Treatment Current-line treatment: alkylating agents (AA), purine analogs (PA) or monoclonal antibodies (MA) None, AA, PA, MAa

Treatment result Result of the current-line treatment: complete or partial remission (CR + PR), stabilization (SD), progression (PD) CR + PR, SD, PDb, death

Table 4.   Conditional probability table for the Treatment result node in the Treatment Effect Network. a CR + PR 
complete + partial remission, SD stable disease, PD progressive disease.

Treatment (t-1) Survival (t-1)

Treatment resulta (t)

CR + PR SD PD Death

None Yes 0.01 0.95 0.04 0.00

Alkylating agents Yes 0.60 0.21 0.19 0.00

Purine analogs Yes 0.75 0.10 0.15 0.00

Monoclonal antibodies Yes 0.72 0.25 0.03 0.00

None No 0.00 0.00 0.00 1.00

Alkylating agents No 0.00 0.00 0.00 1.00

Purine analogs No 0.00 0.00 0.00 1.00

Monoclonal antibodies No 0.00 0.00 0.00 1.00
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Figure 3.   Percentage of patient with CLL alive within 60 months from diagnosis. Survival of patients with CLL 
predicted by the Health Status Network (HSN) and Treatment Effect Network (TEN) in comparison with results 
collected in SEER*Stat35,36 and EUROCARE-5 databases37,38.

Figure 4.   The probability of transformation of CLL into an aggressive form of leukemia within 10 years from 
the CLL diagnosis. Comparison of the probability predicted by the Health Status Network and reported by 
Perikh et al.39.

Figure 5.   Probability of survival for patients with CLL treated with alkylating agents as the first-line treatment. 
Comparison of the probability predicted by the Treatment Effect Network and calculated based on results of 
RCTs40–42. The dotted lines indicate 95% confidence intervals (95% CIs).
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the treatment effect is reflected in values of conditional probabilities in CPTs of nodes, which are present in the 
network.

The second network—TEN allows to predict probability of survival, death from treatment, death due to 
complications related to CLL, death due to causes unrelated to CLL, but unlike HSN it contains nodes directly 
related to the selected treatment option as well as the course and the result of the treatment. As in the case of 
HSN, also in TEN simulations can be performed both—for the averaged patient and for the specific patients for 
whom a priori knowledge can be used to modify content of CPTs of particular nodes of the network.

Verification of the developed networks included a comparative analysis of simulation results for selected nodes 
with the results of clinical trials reported in the medical literature. In comparison with survival probabilities 
calculated based on the data of tens of thousands of patients gathered in medical databases, i.e. EUROCARE 
and SEER*Stat the HSN underestimates percentage of patients alive. A few possible reasons exist, which may 
explain the obtained discrepancies. Firstly, the network structure represents a compromise between the desire 
to make the most accurate prediction of clinical results on the one hand and the availability of the data that are 
necessary to determine the structure of the network and the content of CPTs in individual nodes on the other 
hand. Secondly, the structure of HSN is oversimplified and it does not contain all the variables and interrelations 
influencing the temporal changes in the health status of patients with CLL. Thirdly, probabilities in CPTs of all 
the nodes constituting HSN have been set constant whereas one can expect that those probabilities are chang-
ing with time. Additionally, in the simulations we used in all nodes CPTs with probabilities not modified by any 
a priori information reflecting populations whose data were collected in registries or who participated in the 

Figure 6.   Probability of survival in treatment-naïve patients with CLL treated with purine analogs. Comparison 
of the probability predicted by the Treatment Effect Network and calculated based on results of RCTs40–44. The 
dotted lines indicate 95% confidence intervals (95% CIs).

Figure 7.   Survival curves of three groups of patients with CLL predicted using the Treatment Effect Network. 
Comparison of the results predicted in patients with complications, patients with no fatal treatment side effects 
and all patients.
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clinical trials. It is possible that characteristics of these populations differed from the characteristics reflected in 
the CPTs of the network. For example, it can be hypothesized that at least some of the cancer centers providing 
data to the both above-mentioned databases (especially SEER*Stat) are reference centers offering better than 
average access to modern treatment methods and thus, a survival probability of patients treated in these centers is 
higher than the mean value modeled in the developed network. If a specific population characteristics is available 
then this a priori information can be used to modify the content of CPTs to fine-tune predicted survival rates 
or network response at another selected node to those achieved in a particular country or a particular cancer 
center. Nevertheless, in some nodes HSN was able to predict respective probabilities with higher accuracy than 
the overall survival. For example, the probability that CLL is transformed into an aggressive form of leukemia 
predicted using HSN is in a good agreement with the results reported in the literature. Also the simulation results 
regarding the probability of death due to transformation of CLL into more aggressive cancers are similar to the 
data from published clinical trials.

The ability of TEN to correctly predict overall survival of patients with CLL was improved in comparison with 
HSN although both networks suffers from the same, above-mentioned, weaknesses. Absolut differences of the 
survival rates predicted using TEN and calculated based on the data available in the EUROCARE-5 database were 
in average smaller than 2% during 5 years following the CLL diagnosis. In case of the data from the SEER*Stat 
registry the absolute differences were smaller than 8% in the same period.

The analysis of survival probabilities, when a priori knowledge about the type of the first-line treatment was 
taken into consideration, demonstrated that the results of simulations using TEN were in agreement with the 
average results of the available randomized clinical trials, i.e. they were contained inside 95% confidence inter-
vals for a period of approximately 5 years from the application of the treatment for alkylating agents and purine 
analogs. After this period, the probability of death reported in clinical trials increases significantly whereas the 
predicted probability is stable, which results in an increase of a difference between the actual and the predicted 
values. This increase is due, on the one hand, to a small number of patients observed for more than 5 years in 
clinical trials, and on the other hand, to possible changes in probability of survival over time, which are not cor-
rectly reflected in CPTs of the TEN nodes, where all the conditional probabilities are constant in time.

The most important limitation of the presented work is that there are no objective clinical data available to 
apply machine learning techniques to learn the structure of the networks or calculate the contents of CPTs in its 
nodes. Consequently, the final networks are truly belief networks reflecting interconnections among particular 
nodes that were revealed based on the domain literature, medical recommendations and the expert knowledge. 
As far as content of CPTs is concerned, it is, for example, relatively easy to find the data to define distribution 
of all cases of CLL among men and women. However, the contents of CPT in Health node of TEN, linking the 
health status of the patient in ECOG scale with Endurance, Complications (including other cancers, infections, 
autoimmune complications and Richter syndrome) and CLL stage, must be guesstimated by the medical expert, 
because such detailed clinical data are not available. Another limiting factor of our approach is related to the fact 
that building the domain knowledge on CLL treatment takes time. Consequently, we were not able to include 
in Treatment node the emerging treatment options such as BTKi or BCL2 inhibitors, despite the fact that they 
appeared in the newest recommendations for the first-line treatment in patients with CLL.

Although all the nodes of HSN and TEN are observable (i.e. each node can be set as the output for simula-
tions), the performance of the network can be validated only in those nodes for which there is adequate amount 
of medical data available. Therefore, we tested the performance of networks mainly on survival data. However, our 
goal was not to fine-tune the network to get as close to the survival data from the particular registries as possible, 
but rather develop a network which catches the most important interdependencies between nodes and does not 
generate response in any node which is contradictory to the literature data. Then, we checked how close such a 
network is able to reproduce survival data from the available registries. It should be emphasized that to use TEN 
as an effective tool that facilitates planning of a personalized treatment it is more important that the network is 
able to properly reflect relative dependencies between nodes and values within the nodes than that it is able to 
demonstrate high agreement in predicting output of the particular node with real clinical data.

It is noteworthy that the developed DBNs are much more flexible in incorporating patient evidence and 
answering prognostic queries compared to the proportional hazard models. The last-mentioned are able to 
model patient-specific covariates that modulate the patient hazard. However, such models cannot provide a 
causal explanation of how the covariates interact to influence patient survival. Furthermore, assumptions of 
proportionality, linearity and additivity of the covariates may not be fulfilled.

To the best of our knowledge the presented work constitutes the first attempt to develop dynamic Bayes-
ian networks, which take into account temporal, causal and decision-making characteristics and forecasts the 
health status and the outcomes of treatment in patients with CLL. The obtained results confirmed feasibility of 
the presented approach. The results also showed that addition of nodes directly related to the applied treatment 
improved ability of the Bayesian network to predict survival curves for an average patient with CLL.

In future, the Treatment Effect Network can be further expanded to accommodate more nodes and more 
values in the existing nodes, in particular those related to different treatment options and prognostic factors, to 
more accurately reflect clinical results and to take into account new therapies being offered to patients with CLL. 
However, to be able to use more extensive DBNs the exact inference algorithms, which are implemented in the 
Bayes Net Toolbox, should be substituted with some approximate algorithms, e.g. approximate particle filtering, 
which comprises the group of sequential Monte Carlo methods for dynamic state estimation45.

In conclusion, we demonstrated that it was possible, based on the literature data and expert knowledge, to 
design and develop dynamic Bayesian networks trying to quantify relationships linking the most important 
factors influencing the health status and treatment effects in patients with CLL. The developed networks, and in 
particular the Treatment Effect Network, were able to effectively estimate probability of survival in patients with 
CLL. The developed networks can be used as a framework to personalize these predictions by adjusting CPTs, 
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taking into account a priori knowledge concerning a particular patient with CLL. Consequently, the proposed 
approach can serve as a basis for the development of artificial intelligence systems that facilitate the choice of 
treatment that provides the best possible effectiveness of therapy and maximizes the chances of survival in 
patients with CLL.

Methods
In this work, we use the DBN methodology to predict the health status and treatment effect in patients with 
CLL. This methodology extends the formalism of standard Bayesian networks, and helps to capture the changing 
effect of some disease or treatment parameters on other parameters as the disease progresses over time, i.e. has 
the ability to represent temporal nature of the disease progression and implementation of a medical treatment 
strategy46. Moreover, the DBN framework offers features that are particularly suitable in medical applications, i.e. 
a causal modeling approach and the ability to learn from patient data. However, the heterogeneity of the course 
of the disease, its usually long duration, the multitude of treatment options and the fact that new treatments are 
introduced before the effectiveness of the earlier treatments was fully evaluated, mean that there are no large 
amounts of high-quality data that could be used to learn the structure and parameters of a particular prognostic 
model. Therefore, techniques that relay on such raw data and use machine learning (e.g. neural networks, sup-
port vector machines, decision-trees or partitioned DBNs) cannot be applied47. Therefore, the question arises 
whether, in such a case, it is possible to build an effective model based on the domain literature data and the 
expert knowledge. We tried to check it by recreating the way a physician learns how to treat a patient with CLL by 
studying the literature and asking better experienced colleagues. The DBN framework creates suitable platform 
to develop and test such a networks. The process of defining the network is not fully systematized, i.e. probably 
if other researchers had studied the same CLL literature and talk to the same CLL expert physicians, the net-
work they would have created would be different from ours. This is reflected in the alternative name of Bayesian 
networks which are called belief networks. Yet, this is also similar to the way physicians learn—they all have the 
same literature and recommendations on disposal, but ultimately each of them may have a different opinion on 
the treatment of a particular case. Besides, learning of the structure of the model from the data has also a serious 
limitation, i.e. what can be learned is limited to what is represented in the data collected in a particular database. 
Therefore, neither in the case of learning the network structure from the data nor in the case of designing the 
network structure based on the literature and the expert knowledge one can ensure that all the relevant nodes 
are included in the network or, contrary, that some non-relevant relations are captured in the network.

In the case of CLL, there is a wealth of literature and the expert knowledge to learn from, including results of 
RCTs comparing effectiveness of different treatment options. This information is usually available in aggregated/
averaged form, without sharing results of individual subjects.

The DBN models a multidimensional variable X over a time horizon [0, T], where the variable at the present 
time t can be calculated directly from parent variables at time t-1 and t. Therefore, the transitions of DBN can be 
expressed as a conditional Bayesian network over X(t) conditioned on X(t-1), i.e. a directed acyclic graph G with 
node set X(t-1) ∪ X(t), which defines a conditional distribution according to Eq. (1).

where: πG(Xi) ⊆ X(t-1) ∪ X(t) denotes the parent of Xi in G.
We assume that the DBN is time invariant, and thus it can be defined in terms of a priori network B0 , i.e. the 

structure of the network at time t = 0 and a transient network determining the changes that individual nodes are 
subject to, and their interrelationships as the modeled process progresses from time t-1 to time t. DBN is defined 
as a dynamic system over [X(0),…, X(T)] with the initial distribution, which is given by a Bayesian network B0 
over X(0) and transition distribution is given by a transient Bayesian network  B→ over X(t) conditioned on X(t-1). 
Hence, the unrolled DBN is expressed according to Eq. (2).

We designed networks for patients with CLL based on: state-of-the-art data on progression of CLL and 
effectiveness of different treatment options, recommendations concerning the diagnosis and treatment of CLL, 
anonymized data of patients with CLL collected in a BIAL registry48, and medical experts’ knowledge. The work 
was performed in accordance with relevant guidelines and regulations. We have not conducted any experiments 
involving human subjects, but we used the aggregated and anonymous data concerning people with CLL gathered 
from the publicly or on request available databases / registries and scientific papers.

The design of networks started by defining the basic variables (nodes) characterizing the diagnosis and treat-
ment of CLL and the interrelations between them46. In the most simplified form, the network modeling health 
status of the patient with CLL at the time of diagnosis, i.e. at time t = 0, consists of 3 nodes: Health describing all 
variables related to health condition, Disease including variables resulting from CLL and Complications sum-
marizing variables associated with any complications accompanying CLL, also those unrelated to CLL (Fig. 8a). 
Disease and Complications influence Health, hence edges connecting these nodes are present in Fig. 8a. In addi-
tion, Disease can affect Complications.

In order to forecast changes in the status of individual nodes over time, it is necessary to define relations 
between the values of nodes in two consecutive considered times (i.e. t-1 and t) (Fig. 8b).
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In Fig. 8b we assumed that Complications occurring at time t can be affected by the state of Complications 
in the previous moment (t-1) and the state of Disease in both—the previous and the current moments. In the 
subsequent stages of network design, we detailed its structure, using information found in the sources listed 
above, which define how diagnostic parameters, treatment that was applied and additional factors influence the 
nodes already present in it or how the nodes present in the network should be divided.

The value of a given node at the time t depends only on the value of those nodes forming the network, i.e. 
predecessors, at moments t-1 and t, which are connected to it and the connection runs towards the considered 
node. In each node a CPT has been defined that makes it possible to calculate the probability that a given node 
will adopt one from possible values depending on the value of its predecessors.

Such CPTs were created for each network node separately for the moment t = 0, i.e. the moment of CLL diag-
nosis and each subsequent moment assuming a 6-month period elapsing between the times t-1 and t.

To illustrate the development of the network, let’s consider the Death from other cancers node, which is bi-
valued, i.e. can take values yes or no. The value of this node at time t depends on values of Other cancers and Death 
from other cancers at time t-1. It is easy to infer that P(Death from other cancers(t) = yes | Other cancers(t-1) = no) = 0 
and that P(Death from other cancers(t) = yes | Death from other cancers(t-1) = yes) = 1. To estimate P(Death from other 
cancers(t) = yes | Other cancers(t-1) = yes, Death from other cancers(t-1) = no) we use information from several clinical 
reports indicating that other cancer is the cause of death in 30% of all patients with CLL within 25 years from 
diagnosis. Then, we used Eq. (3) to calculate probability of this event in each 6-month period48.

where k is a unit time period (i.e. 6 months), m is the time interval for which the probability of X is known.
Using Eq. (3) for the Death from other cancers node we have: k = 6 months, m = 25 × 6 months = 150 months, 

Pm(X) = P150(Death from other cancers = yes) = 0.3 and P6(Death from other cancers = yes) = 0.007. Consequently, 
P(Death from other cancers(t) = no | Other cancers(t-1) = yes, Death from other cancers(t-1) = no) = 0.993. In nodes with 
more predecessors, where the available domain literature data is not detailed enough, probabilities were estimated 
based on expert’s answers to questions concerning particular nodes, e.g. how many times more often Infections 
occurs in patients with Autoimmune complications or how many times Autoimmune complications reduce prob-
ability of curing Infections in 6 month period, etc. Finally, each node is present in the network because we are 
interested in its value and/or, according to the literature or experts, its value influences values of other nodes and/
or it is relevant for survival of patients with CLL. For example, Sex node was included in HSN network because 
of a few reasons. Firstly, because incidence of CLL is different in males and females. Secondly, because the patient 
can die due to a few causes represented by a few nodes in the network. One of these nodes is Death from other 
causes. Because the life expectancy is different in female than in male, it is necessary to include the Sex node in 
the network to capture this relationship and differentiate conditional probabilities in the Death from other causes 
between two sexes. Similar reasoning justifies all other nodes in both networks presented in the “Results” section.

Data availability
Data will be made available from the corresponding author under reasonable request.
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