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Association of microRNA polymorphisms 
with the risk of head and neck squamous  
cell carcinoma in a Chinese population:  
a case–control study
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Abstract 

Background:  MicroRNA (miRNA) polymorphisms may alter miRNA-related processes, and they likely contribute to 
cancer susceptibility. Various studies have investigated the associations between genetic variants in several key miR-
NAs and the risk of human cancers; however, few studies have focused on head and neck squamous cell carcinoma 
(HNSCC) risk. This study aimed to evaluate the associations between several key miRNA polymorphisms and HNSCC 
risk in a Chinese population.

Methods:  In this study, we genotyped five common single-nucleotide polymorphisms (SNPs) in several key miRNAs 
(miR-149 rs2292832, miR-146a rs2910164, miR-605 rs2043556, miR-608 rs4919510, and miR-196a2 rs11614913) and 
evaluated the associations between these SNPs and HNSCC risk according to cancer site with a case–control study 
including 576 cases and 1552 controls, which were matched by age and sex in a Chinese population.

Results:  The results revealed that miR-605 rs2043556 [dominant model: adjusted odds ratio (OR) 0.71, 95% confi-
dence interval (CI) 0.58–0.88; additive model: adjusted OR 0.74, 95% CI 0.62–0.89] and miR-196a2 rs11614913 (domi-
nant model: adjusted OR 1.36, 95% CI 1.08–1.72; additive model: adjusted OR 1.28, 95% CI 1.10–1.48) were significantly 
associated with the risk of oral squamous cell carcinoma (OSCC). Furthermore, when these two loci were evaluated 
together based on the number of putative risk alleles (rs2043556 A and rs11614913 G), a significant locus-dosage 
effect was noted on the risk of OSCC (Ptrend < 0.001). However, no significant association was detected between the 
other three SNPs (miR-149 rs2292832, miR-146a rs2910164, and miR-608 rs4919510) and HNSCC risk.

Conclusion:  Our study provided the evidence that miR-605 rs2043556 and miR-196a2 rs11614913 may have an 
impact on genetic susceptibility to OSCC in Chinese population.
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Background
Head and neck cancer, predominantly head and neck 
squamous cell carcinoma (HNSCC), represents a com-
mon cancer worldwide and has been considered a serious 
and growing public health problem in many countries [1, 

2]. It was estimated that 45,780 new patients would be 
diagnosed with cancer of the oral cavity and the pharynx, 
and 8650 deaths from these diseases occurred in 2015 in 
the United States alone [3]. Environmental carcinogens 
and carcinogenic viruses have been identified as the main 
etiologic factors for HNSCC [4]. Furthermore, genetic 
variants play a risk-modulating role in the etiology of 
HNSCC [5].

MicroRNAs (miRNAs) are 20–24 nt single-stranded 
RNA molecules that repress the expression of specific 
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target genes by binding to the 3′-untranslated regions 
(UTRs) of messenger RNA (mRNA) [6]. A single miRNA 
may regulate the expression of many genes, and it has 
been proposed that more than one-third of all protein-
coding genes are under translational control by miRNAs 
[7]. Numerous studies have demonstrated that aberrant 
expression of miRNAs is closely associated with the 
cell proliferation, invasion, metastasis, and prognosis of 
various cancers [8, 9]. Given that small variations in the 
expression of a specific miRNA may affect thousands of 
target mRNAs and result in diverse functional conse-
quences [10], miRNAs have been considered ideal candi-
date genes for cancer predisposition.

Studies have demonstrated that potentially functional 
single nucleotide polymorphisms (SNPs) located in sev-
eral key miRNAs may influence the function of mature 
miRNAs and then affect the process of carcinogen-
esis [11–13]. For example, rs2292832 in miR-149 and 
rs2043556 in miR-605 were associated with the modified 
expression level of these two miRNAs [14]. rs2910164 in 
miR-146a altered the mature miR-146a expression level 
that was involved in the regulation of cell differentiation 
and cancer formation [15, 16]. rs4919510 in miR-608 
has been predicted by in silico algorithms to exhibit dif-
ferential capacities to bind to the potential target genes 
of miR-608, such as the insulin receptor (IR) and tumor 
protein 53 (TP53) [17]. Furthermore, rs11614913 in miR-
196a2 affects the expression of miR-196a, and aberrant 
regulation of miR-196a is involved in the development 
and progression of several cancers, including oral cancer 
[18]. To date, some population studies and meta-analy-
ses have been performed to investigate the associations 
between polymorphisms of the above important miR-
NAs and the risk of multiple types of malignant tumors 
[19, 20]. However, the results were inconsistent, and few 
studies focused on the associations of these SNPs with 
HNSCC risk in Chinese population.

Thus, we performed a case-control study on associa-
tions of five common SNPs in key miRNAs (rs2292832 in 
miR-149, rs2910164 in miR-146a, rs2043556 in miR-605, 
rs4919510 in miR-608, and rs11614913 in miR-196a2) 
with HNSCC risk in China.

Methods
Study subjects
This study is a hospital-based case–control study. All 
newly diagnosed HNSCC patients historically confirmed 
by two pathologists were consecutively recruited from 
Jiangsu Stomatological Hospital and the First Affiliated 
Hospital of Nanjing Medical University, Nanjing, China 
between January 2009 and May 2013. Exclusion criteria 

included secondary HNSCC or metastasized cancer from 
other organs. None of the patients received neoadjuvant 
chemotherapy or radiotherapy before surgery. Cancer-
free controls matched to the cases by age (±5  years) 
and sex were randomly selected from a cohort of more 
than 30,000 participants in a community-based screen-
ing program for non-infectious diseases in the Jiangsu 
Province, China. All participants were genetically unre-
lated and of the ethnic Han Chinese population. Each 
participant was scheduled for a face-to-face interview to 
answer a structured questionnaire that elicited informa-
tion on demographic characteristics and environmental 
exposure history, such as age, sex, smoking status, and 
drinking status. Written informed consent was obtained 
from each participant, and the study was approved by the 
Institutional Review Boards of all relevant institutes.

SNP selection and genotyping
Based on previous reports about miRNA polymorphisms 
and cancer risk [14–18], we chose five most investigated 
and potentially functional SNPs (rs2292832 in miR-
149, rs2910164 in miR-146a, rs2043556 in miR-605, 
rs4919510 in miR-608, and rs11614913 in miR-196a2) for 
genotyping. Venous blood was collected from all subjects 
and centrifuged at a speed of 4000 round/min for 10 min. 
The centrifuged blood was stored at −40  °C for use. 
Genomic DNA was isolated from leukocyte pellets of 
venous blood by proteinase K digestion, and this process 
was followed by phenol chloroform extraction. All DNA 
samples were assessed for quality and quantity using 
Nanodrop (Thermo Scientific, Waltham, MA, USA) and 
DNA electrophoresis (agarose gel imaging system, aga-
rose gel electronic balance, and electronic tank supplied 
by Oxoid company, Basingstoke, England; micropipette, 
microwave oven, and electrophoresis apparatus supplied 
by Gilson company, Madison, WI, USA) before genotyp-
ing. SNPs were genotyped by using Illumina Infinium1 
Human Exome BeadChip (Illumina Inc., San Diego, CA, 
USA), and genotype calling was performed using the 
GenTrain version 1.0 clustering algorithm in Genom-
eStudio V2011.1 (Illumina). The overall call rate was 
99.77%–99.91% for all SNPs.

Statistical analysis
The Hardy–Weinberg equilibrium was tested by a 
goodness-of-fit χ2 test to compare the observed geno-
type frequencies with the expected ones among the 
control subjects. Distributions of selected demographic 
variables, risk factors, and frequencies of variant geno-
types between the cases and controls were evaluated by 
using the Pearson’s Chi squared test (uncorrected). The 
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associations of variant genotypes with HNSCC risk were 
estimated by computing odds ratios (ORs) and 95% con-
fidence intervals (CIs) from both univariate and multi-
variate logistic regression analyses according to cancer 
site. The heterogeneity between subgroups was assessed 
with the Chi square-based Q test. All statistical analyses 
were performed with Statistical Analysis System software 
(v.9.1 SAS Institute, Cary, NC, USA). P < 0.05 was con-
sidered as the level of statistical significance.

Additionally, we used another data-mining tool, the 
non-parametric multifactor dimensionality reduction 
(MDR) software (version 2.0 beta 8.4, Norris-Cotton 
Cancer Center, Geisel School of Medicine, Dartmouth 
College, Hanover, NH, USA) to identify the potential 
locus–locus and gene-environment interactions with tri-
chotomies genotypes, age (dichotomized into ≥60 years 
and <60 years), sex, smoking status, and drinking status. 
The fitness of the MDR model was assessed by estimating 
the testing accuracy and the cross-validation consistency 
(CVC). Models that were true positive would have esti-
mating the testing accuracy of >0.5. The best model with 
the highest CVC and the highest testing accuracy was 
selected [21].

Results
Selected characteristics of studied subjects
A total of 576 HNSCC patients and 1552 cancer-free 
controls were included in the study. Distributions of 
physiological characteristics in the case and control 
groups are presented in Table 1. No significant difference 
in the distributions of age, sex, and smoking status were 

noted between the case and control groups. Expectedly, 
more drinkers were found in the case group than in the 
control group (44.3 vs. 32.8%, P < 0.001). Further, logis-
tic regression suggested that drinking status was associ-
ated with an increased HNSCC risk (β = 0.493, OR 1.64, 
95% CI 1.35–1.99, P < 0.001). Although the proportion of 
smokers was a bit higher in the case group (45.3%) than 
in the control group (42.6%), the association between 
smoking and HNSCC risk was not significant (β = 0.111, 
OR 1.12, 95% CI 0.92–1.35, P = 0.260). In the 576 cases, 
462 (80.2%) had oral squamous cell carcinoma (OSCC), 
and 114 (19.8%) had HNSCC at other sites [9 (1.6%) had 
oropharyngeal tumor, 102 (17.7%) had laryngeal tumor, 1 
had nasal sinus cancer, 1 had parotid carcinoma, and 1 
had salivary gland carcinoma].

Primary information of selected SNPs
The position, minor allele frequencies (MAFs), and 
other primary information of five selected SNPs are 
presented in Table  2. The Hardy–Weinberg equilib-
rium was not severely violated judging from the good-
ness-of-fit χ2 test (all P  >  0.05). Among the five loci, 
the genotype distributions of two SNPs were signifi-
cantly different between the case and control groups 
(P =  0.004 for miR-605 rs2043556 and P =  0.019 for 
miR-196a2 rs11614913).

Associations between selected SNPs and HNSCC risk
Logistic regression analyses revealed that variant geno-
types of miR-605 rs2043556 significantly decreased the 
risk of OSCC (AG vs. AA: adjusted OR 0.74, 95% CI 0.59–
0.93; GG vs. AA: adjusted OR 0.56, 95% CI 0.35–0.89; 
dominant model: adjusted OR 0.71, 95% CI 0.58–0.88; 
recessive model: adjusted OR 0.63, 95% CI 0.40–1.00; 
additive model: adjusted OR 0.74, 95% CI 0.62–0.89), 
whereas variant genotypes of rs11614913 in miR-196a2 
significantly increased the risk of OSCC (GG vs. AA: 
adjusted OR 1.64, 95% CI 1.22–2.21; dominant model: 
adjusted OR 1.36, 95% CI 1.08–1.72; recessive model: 
adjusted OR 1.42, 95% CI 1.11–1.83; additive model: 
adjusted OR 1.28, 95% CI 1.10–1.48) (Table 3). After false 
discovery rate (FDR) adjustment, the above associations 
remained significant for rs2043556 in miR-605 (AG vs. 
AA: P = 0.045; GG vs AA: P = 0.038; dominant model: 
P =  0.010; additive model: P =  0.005) and rs11614913 
in miR-196a2 (GG vs. AA: P = 0.005; dominant model: 
P =  0.025; recessive model: P =  0.030; additive model: 
P = 0.003). We also performed logistic regression analy-
sis conditioning on all selected miRNAs and SNPs, and 
the results indicated that the effects of rs2043556 in miR-
605 and rs11614913 in miR-196a2 on OSCC risk were 
independent (P = 0.001 for both miR-605 rs2043556 and 
miR-196a2 rs11614913 in additive model).

Table 1  Selected characteristics of  head and  neck squa-
mous cell carcinoma (HNSCC) patients and  cancer-free 
controls

Italic value indicate significance of p value (p < 0.05)
a  Two-sided Chi squared test

Variable Patients [cases (%)] Controls [cases (%)] Pa

Total 576 1552

Age (years)

 <60 265 (46.0) 719 (46.3) 0.895

 ≥60 311 (54.0) 833 (53.7)

Gender 0.750

 Female 214 (37.2) 565 (36.4)

 Male 362 (62.8) 987 (63.6)

Smoking status 0.260

 No 315 (54.7) 891 (57.4)

 Yes 261 (45.3) 661 (42.6)

Drinking status <0.001

 No 321 (55.7) 1043 (67.2)

 Yes 255 (44.3) 509 (32.8)
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Combined effects of the two significant SNPs on OSCC risk
When these two loci were evaluated together by the 
number (0–4) of putative risk alleles (miR-605 rs2043556 
A, A and miR-196a2 rs11614913 G, G), a signifi-
cant locus-dosage effect was detected on HNSCC risk 
between the groups with 0–2 risk alleles and 3–4 risk 
alleles (Ptrend  <  0.001). Compared with the group with 
0–1 risk allele, the groups with 3 and 4 risk alleles had 
significantly increased risk of OSCC with adjusted ORs 
of 1.51 (95% CI 1.10–2.09) and 2.23 (95% CI 1.51–3.29) 
(Table 4). Compared with the risk in the groups with 0–2 
risk alleles, the increase in OSCC risk remained signifi-
cant for the group with 3–4 risk alleles (adjusted OR 1.48, 
95% CI 1.20–1.83). Logistic regression analyses identified 
no association between the other three SNPs and OSCC 
risk (data not shown).

Stratification analysis for association between variant 
genotypes and OSCC risk
We further conducted a stratification analysis by age, 
sex, smoking status, drinking status, and tumor site on 
the associations between rs2043556 in miR-605 and 
rs11614913 in miR-196a2 and OSCC risk. As presented 
in Table  5, the association of decreased OSCC risk 
with miR-605 rs2043556 was more notable in males, 
whereas the association of increased risk with miR-196a2 
rs11614913 was more pronounced in females, non-smok-
ers, and non-drinkers than in their counterparts. The 
combined effect of rs2043556 in miR-605 and rs11614913 
in miR-196a2 on OSCC risk was stronger in patients of 
≥60 years old than in those of <60 years old.

MDR analysis for OSCC risk predication
In addition, the MDR method was used to assess poten-
tial locus–locus and gene-environment interactions with 
five SNPs and age, sex, smoking status, and drinking sta-
tus. As shown in Table 6, age was the strongest factor for 
predicting HNSCC risk with the highest CVC (100%) and 
testing accuracy (55.70%). We also observed that the four-
factor model, which included age, miR-146a rs2910164, 

miR-608 rs4919510, and miR-196a2 rs11614913, was the 
most accurate model with a testing accuracy of 54.91% 
and a perfect CVC of 10. However, the two-factor and 
three-factor models had decreased CVCs, suggesting the 
models were not very accurate.

Discussion
In this case–control study, we examined associations 
between five common SNPs in miRNAs (miR-149 
rs2292832, miR-146a rs2910164, miR-605 rs2043556, 
miR-608 rs4919510, and miR-196a2 rs11614913) and 
HNSCC risk. The results revealed that rs2043556 in miR-
605 and rs11614913 in miR-196a2 were significantly 
associated with OSCC risk in a Chinese population. 
However, no notable association was detected between 
other selected SNPs and HNSCC risk.

Once activated, the tumor suppressor p53 selectively 
modulates the expression of target genes involved in cell 
cycle arrest, apoptosis, and DNA repair [22]. A recent 
study indicated that miR-605 was a new component in 
the p53 gene network [23]. This network is transcription-
ally activated by p53 and post-transcriptionally repressed 
by murine double minute 2 (Mdm2), which inhibits the 
function of p53. Thus, a positive feedback loop is cre-
ated that aids in the rapid accumulation of p53 to facili-
tate its function in response to stress [23]. Id Said et al. 
[24] reported that high expression of miR-605 could 
result in a significant reduction in cell viability, clono-
genicity, and cell migration in TP53-mutant cell types 
and that rs2043556-variant G allele could significantly 
result in a decreased expression of miR-605. Several stud-
ies have investigated the associations between miR-605 
rs2043556 and cancer risk, and a recent meta-analysis 
concluded that miR-605 rs2043556 was associated with 
a significant overall risk of human cancer [25]. In this 
study, we first examined the effect of miR-605 rs2043556 
on the risk of HNSCC and identified a significant linkage 
between this SNP and the decreased risk of OSCC in a 
Chinese population. Thus, we hypothesize that miR-605 
rs2043556 may affect the expression of miR-605 and the 

Table 2  Primary information and minor allele frequencies (MAFs) of selected single-nuclide polymorphisms (SNPs)

Italic value indicate significance of p value (p < 0.05)

HWE Hardy–Weinberg equilibrium, MAF minor allele frequency
a  Two-sided Chi squared test for the comparison of the allele frequency between HNSCC patients and cancer-free controls
b  P values adjusted by false discovery rate (FDR) method

Gene Chromosome SNP Base change Call rates (%) HWE MAF in controls Pa Pb

Has-miR-149 2q37.3 rs2292832 A>G 99.77 0.092 0.322 0.349 0.436

Pre-miR-146a 5q34 rs2910164 G>C 99.81 0.468 0.429 0.558 0.558

Has-miR-605 10q21.1 rs2043556 A>G 99.77 0.753 0.281 0.004 0.020

Has-miR-608 10q25.1 rs4919510 G>C 99.85 0.835 0.425 0.245 0.408

Pre-miR-196a 12q13.13 rs11614913 A>G 99.91 0.796 0.432 0.019 0.048
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risk of OSCC, which may provide a visual cue regarding 
the role of this SNP in the development of OSCC.

Rs11614913, which is located at miR-196a2, impacts 
the expression of miR-196a2 and is involved in the 
carcinogenesis of different types of cancer [17, 26, 27]. 
For example, Tian et  al. [28] reported that miR-196a2 

rs11614913 was associated with the increased risk of 
non-small cell lung cancer and poor patient survival, and 
Hu et al. [29] reported its association with the increased 
risk of breast cancer. It was also reported that miR-
196a2 rs11614913 influenced mature miR-196a expres-
sion (but not the pre-miR-196a2 level) and affected the 

Table 3  Logistic regression analysis for associations between selected SNPs and HNSCC risk

Italic value indicate significance of p value (p < 0.05)

NA not available
a  miR-605 rs2043556 was genotyped in 575 cases and 1548 controls; miR-196a2 was genotyped in 576 cases and 1550 controls; miR-149 rs2292832 was genotyped 
in 575 cases and 1548 controls; miR-146a rs2910164 was genotyped in 576 cases and 1548 controls; and miR-608 rs4919510 was genotyped in 576 cases and 1549 
controls
b  Adjusted by age, sex, smoking status, and drinking status
c  P values of multiple comparisons for false discovery rate using the FDR method (n = 5, refer to the number of SNPs)

SNP Genotypea Controls [num-
ber (%)]

Oral cancer 
patients  
[number (%)]

Adjusted OR 
(95% CI)b

Pb Pc Non-oral cancer 
patients  
[number (%)]

Adjusted OR 
(95% CI)b

Pb

miR-605 
rs2043556

AA 798 (51.6) 278 (60.3) 1.00 55 (48.2) 1.00

AG 631 (40.8) 160 (34.7) 0.74 (0.59–0.93) 0.009 0.045 52 (45.6) 1.19 (0.80–1.78) 0.396

GG 119 (7.7) 23 (5.0) 0.56 (0.35–0.89) 0.015 0.038 7 (6.1) 0.85 (0.38–1.94) 0.708

Dominant 
model

NA NA 0.71 (0.58–0.88) 0.002 0.010 NA 1.14 (0.77–1.67) 0.518

Recessive model NA NA 0.63 (0.40–1.00) 0.050 0.125 NA 0.79 (0.36–1.75) 0.561

Additive model NA NA 0.74 (0.62–0.89) 0.001 0.005 NA 1.04 (0.77–1.42) 0.787

miR-196a2 
rs11614913

AA 503 (32.5) 122 (26.4) 1.00 40 (35.1) 1.00

AG 755 (48.7) 228 (49.4) 1.25 (0.98–1.61) 0.075 0.188 56 (49.1) 0.93 (0.61–1.43) 0.736

GG 292 (18.8) 112 (24.2) 1.64 (1.22–2.21) 0.001 0.005 18 (15.8) 0.76 (0.43–1.37) 0.366

Dominant 
model

NA NA 1.36 (1.08–1.72) 0.010 0.025 NA 0.88 (0.59–1.33) 0.547

Recessive model NA NA 1.42 (1.11–1.83) 0.006 0.030 NA 0.80 (0.47–1.35) 0.402

Additive model NA NA 1.28 (1.10–1.48) 0.001 0.003 NA 0.88 (0.67–1.17) 0.386

miR-149 
rs2292832

AA 726 226 1.00 57 1.00

AG 647 193 0.96 (0.77–1.19) 0.696 0.696 38 0.76 (0.49–1.17) 0.206

GG 175 42 0.76 (0.52–1.10) 0.141 0.235 19 1.37 (0.79–2.39) 0.268

Dominant 
model

NA NA 0.91 (0.74–1.13) 0.399 0.499 NA 0.89 (0.60–1.31) 0.556

Recessive model NA NA 0.77 (0.54–1.10) 0.156 0.260 NA 1.55 (0.91–2.62) 0.107

Additive model NA NA 0.90 (0.77–1.06) 0.198 0.248 NA 1.05 (0.79–1.39) 0.735

miR-146a 
rs2910164

GG 497 154 1.00 40

GC 773 228 0.95 (0.75–1.21) 0.685 0.861 53 0.82 (0.53–1.27) 0.376

CC 278 80 0.93 (0.68–1.27) 0.656 0.656 21 0.90 (0.51–1.57) 0.702

Dominant 
model

NA NA 0.95 (0.76–1.18) 0.633 0.633 NA 0.84 (0.56–1.27) 0.407

Recessive model NA NA 0.96 (0.73–1.27) 0.771 0.771 NA 1.01 (0.61–1.66) 0.975

Additive model NA NA 0.96 (0.83–1.12) 0.629 0.629 NA 0.93 (0.70–1.23) 0.589

miR-608 
rs4919510

AA 509 137 1.00 40

AG 762 232 1.14 (0.90–1.45) 0.283 0.472 53 0.85 (0.55–1.31) 0.464

GG 278 93 1.23 (0.91–1.67) 0.179 0.224 21 0.97 (0.56–1.70) 0.927

Dominant 
model

NA NA 1.17 (0.93–1.46) 0.187 0.312 NA 0.88 (0.59–1.32) 0.546

Recessive model NA NA 1.14 (0.87–1.48) 0.345 0.431 NA 1.07 (0.65–1.77) 0.787

Additive model NA NA 1.11 (0.96–1.29) 0.160 0.267 NA 0.96 (0.73–1.28) 0.794
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binding ability of miR-196a-3p to its targets [27]. Addi-
tionally, Hoffman et  al. [30] demonstrated that mature 
miR-196a2 level was increased 9.3-fold in breast cancer 
cells transfected with pre-miR-196a2-C (rs11614913), 
but the levels were only increased 4.4-fold in cells trans-
fected with pre-miR-196a2-T. Such associations were 
then further supported by studies on other types of 

cancers. A recent meta-analysis revealed that miR-196a2 
rs11614913 was associated with cancer risk, especially 
risks of lung, colorectal, and breast cancers among Asian 
populations [31]. Specially, a few studies have investi-
gated the association of rs11614913 in miR-196a2 with 
HNSCC risk in Caucasian populations, but the results 
were inconclusive. Liu et  al. [32] found no association 

Table 4  Combined effects of miR-605 rs2043556 and miR-196a2 rs11614913 on oral squamous cell carcinoma (OSCC) risk

Italic value indicate significance of p value (p < 0.05)
a  The miR-605 rs2043556 A and miR-196a2 rs11614913 G allele were assumed as risk alleles based on the main effect of the individual locus and were genotyped in 
the 461 OSCC cases and 1546 controls
b  Adjusted by age, sex, smoking status, and drinking status

Number of risk allelesa Patients [number (%)] Controls [number (%)] Adjust OR (95% CI)b Pb

0–1 66 (14.3) 303 (19.6) 1.00

2 153 (33.2) 575 (37.2) 1.20 (0.87–1.66) 0.262

3 168 (36.4) 517 (33.4) 1.51 (1.10–2.09) 0.011

4 74 (16.1) 151 (9.8) 2.23 (1.51–3.29) <0.001

Trend NA NA 1.21 (1.10–1.32) <0.001

Binary classification <0.001

 0–2 219 (47.5) 878 (56.8) 1.00

 3–4 242 (52.5) 668 (43.2) 1.48 (1.20–1.83)

Table 5  Stratification analysis for association between variant genotypes and OSCC risk

Italic value indicate significance of p value (p < 0.05)
a  These data are presented as the numbers of cases with genotypes GG, AG, or AA
b  Adjusted by age, sex, smoking status, and drinking status
c  These data are presented as the numbers of cases with 0–2 or 3–4 risk alleles

Variable miR-605 rs2043556 
genotype (GG/AG/AA)a

Adjusted 
OR (95% 
CI)b

Pb miR-196a2 rs11614913 
genotype (GG/AG/AA)a

Adjusted 
OR (95% 
CI)b

Pb Combined effect 
(0-2/3-4 risk alleles)c

Adjusted 
OR (95% 
CI)b

Pb

Cancer 
patients 
(number)

Controls 
(number)

Cancer 
patients 
(number)

Controls 
(number)

Cancer 
patients 
(number)

Controls 
(number)

Age (years)

 <60 10/75/125 55/296/366 0.76 
(0.59–1.00)

0.042 56/98/57 135/352/230 1.33 
(1.07–1.66)

0.011 102/105 398/317 1.32 (0.97–
1.81)

0.081

 ≥60 13/85/153 64/335/432 0.73 (0.58–
0.93)

0.011 56/130/65 157/403/273 1.24 (1.01–
1.52)

0.038 117/137 480/351 1.62 (1.22–
2.16)

0.001

Sex

 Female 12/68/124 41/227/296 0.78 (0.60–
1.02)

0.068 59/99/46 93/275/197 1.64 (1.30–
2.07)

<0.001 97/107 331/233 1.54 (1.11–
2.12)

0.010

 Male 11/92/154 78/404/502 0.72 (0.57–
0.91)

0.005 53/129/76 199/480/306 1.08 (0.89–
1.32)

0.434 122/135 547/435 1.47 (1.11–
1.94)

0.008

Smoking

 Never 15/99/160 70/363/456 0.79 (0.63–
0.99)

0.037 74/129/72 172/430/288 1.32 (1.09–
1.60)

0.004 135/139 503/385 1.36 (1.03–
1.79)

0.028

 Ever 8/61/118 49/268/342 0.66 (0.50–
0.89)

0.006 38/99/50 120/325/215 1.25 (0.97–
1.59)

0.081 84/103 375/283 1.72 (1.22–
2.42)

0.002

Drinking

 Never 14/97/161 78/427/534 0.76 (0.60–
0.95)

0.016 72/134/67 202/505/335 1.38 (1.14–
1.67)

0.001 130/142 582/456 1.46 (1.11–
1.92)

0.006

 Ever 9/63/117 41/204/264 0.70 (0.53–
0.93)

0.014 40/94/55 90/250/168 1.18 (0.93–
1.51)

0.175 89/100 296/212 1.58 (1.12–
2.22)

0.009
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between miR-196a2 rs11614913 and risk of HNSCC, 
whereas Christensen et  al. [33] reported that the miR-
196a2 rs11614913 CC genotype was related with an 
increased HNSCC risk. Another study identified a sig-
nificant association between rs11614913 and miR-196a2 
expression levels in tumor tissues from OSCC patients, 
but no association of miR-196a2 rs11614913 with OSCC 
risk was noted [17]. In this study, we demonstrated that 
the miR-196a2 rs11614913 G allele was significantly 
associated with an increased OSCC risk, which is con-
sistent with the study by Christensen et al. [33]. The dif-
ference between our study and the other two studies [32, 
33] may due to different ethnic backgrounds and differ-
ent composition of cases. The MAF in our controls was 
0.432, whereas it was either 0.420 [32] or not obtained 
[33] in the literature. Furthermore, the proportion of 
oral cancer was much higher in our study (80.2%) than 
that in the other two studies (29.4% and 55.6%, respec-
tively). Larger studies with different ethnic backgrounds 
and functional investigation are needed to validate these 
findings.

Studies on associations between the other three SNPs 
(rs2292832 in miR-149, rs2910164 in miR-146a, and 
rs4919510 in miR-608) and cancer risk were inconsist-
ent [34–38]. A recent meta-analysis of 12 studies, includ-
ing 5937 cases and 6081 controls, revealed that miR-149 
rs2292832 was not associated with cancer risk [39]. 
Additionally, only two studies investigated the effect of 
miR-149 rs2292832 on HNSCC risk, and neither pro-
duced significant results [32, 40]. A meta-analysis of 66 
case–control studies reported that miR-146a rs2910164 
was a risk factor for HNSCC, which included four stud-
ies from a Caucasian population and one study from a 
Chinese population [41]. However, the results from the 
Chinese population indicated that miR-146a rs2910164 
was not significantly associated with oral cancer risk [40]. 
To date, two studies have focused on the associations 
of miR-608 rs4919510 and cancer risk: one on colorec-
tal cancer [38] and another on breast cancer [37], and 
their results were inconsistent. In our study, the results 
demonstrated that none of these three SNPs (rs2292832 
in miR-149, rs2910164 in miR-146a, and rs4919510 in 
miR-608) contributed to the risk of HNSCC in a Chinese 

population. Given heterogeneous genetic backgrounds in 
different populations, these findings must be validated in 
further larger studies.

Several potential limitations of the present study war-
rant consideration. First, a relatively small sample size 
may limit the statistical power of our study, especially 
in the stratification analysis. We made multiple test-
ing adjustments using the FDR method, and the results 
indicate that the associations between SNPs and OSCC 
risk remained significant. However, the effect of miR-605 
rs2043556 on HNSCC risk was borderline significant 
after the FDR correction. Thus, our results must be con-
firmed in further studies. Second, our study is a hospital-
based, case–control study, and inherent selection bias 
cannot be completely excluded. Third, the functional 
significance of rs2043556 in miR-605 and rs11614913 
in miR-196a2 for the development of HNSCC remains 
largely unknown.

In summary, we identified that miR-605 rs2043556 and 
miR-196a2 rs11614913 were associated with OSCC risk 
in a Chinese population. Further replication studies with 
diverse ethnic groups and functional characterization are 
warranted to validate our findings.
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Table 6  Multifactor dimensionality reduction (MDR) analysis for OSCC risk predication

Training bal. acc. training balanced accuracy, Testing bal. acc. testing balanced accuracy, CVC cross-validation consistency
a  P values for testing balanced accuracy

Best model Training bal. acc. Testing bal. acc. Pa CVC

One-factor (age) 0.6063 0.5570 0.1602 10/10

Two-factor (age and miR-605 rs2043556) 0.6575 0.5590 0.1511 5/10

Three-factor (age, miR-146a rs2910164, and miR-196a2 rs11614913) 0.7276 0.5314 0.4463 6/10

Four-factor (age, miR-146a rs2910164, miR-608 rs4919510, and miR-196a2 rs11614913) 0.8221 0.5491 0.2411 10/10
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