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Abstract 13 

Measuring animal behavior over long timescales has been traditionally limited to behaviors that are 14 

easily measurable with real-time sensors. More complex behaviors have been measured over time, but these 15 

approaches are considerably more challenging due to the intensive manual effort required for scoring behaviors. 16 

Recent advances in machine learning have introduced automated behavior analysis methods, but these often 17 

overlook long-term behavioral patterns and struggle with classification in varying environmental conditions. To 18 

address this, we developed a pipeline that enables continuous, parallel recording and acquisition of animal 19 

behavior for an indefinite duration. As part of this pipeline, we applied a recent breakthrough self-supervised 20 

computer vision model to reduce training bias and overfitting and to ensure classification robustness. Our 21 

system automatically classifies animal behaviors with a performance approaching that of expert-level human 22 

labelers. Critically, classification occurs continuously, across multiple animals, and in real time. As a proof-of-23 

concept, we used our system to record behavior from 97 mice over two weeks to test the hypothesis that sex and 24 

estrogen influence circadian rhythms in nine distinct home cage behaviors. We discovered novel sex- and 25 

estrogen-dependent differences in circadian properties of several behaviors including digging and nesting 26 
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rhythms. We present a generalized version of our pipeline and novel classification model, the “circadian 27 

behavioral analysis suite,” (CBAS) as a user-friendly, open-source software package that allows researchers to 28 

automatically acquire and analyze behavioral rhythms with a throughput that rivals sensor-based methods, 29 

allowing for the temporal and circadian analysis of behaviors that were previously difficult or impossible to 30 

observe.  31 
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Introduction 32 

 Understanding the genetic, neural, and ethological mechanisms that temporally organize behavior is a 33 

fundamental goal of fields including circadian biology, neuroscience, and ecology. However, the temporal 34 

analysis of behavior has been largely limited to behaviors that can be accurately measured with low latency and 35 

at high throughput. For instance, optical and electrical sensors enable such analysis of eating, drinking, and 36 

locomotor behaviors. These behaviors have been widely studied (although usually independently) at high 37 

temporal resolution for experimental durations of weeks, months, or even years (Schwartz and Zimmerman, 38 

1990; Jud et al., 2005; Pendergast et al., 2013; Yamanaka et al., 2013; Metzger et al., 2020). Other more 39 

complex behaviors such as rearing, nesting, and grooming can often be measured simultaneously using video 40 

recording and manual behavior scoring by trained human observers (van der Veen et al., 2008; Gaskill et al., 41 

2009; van Oosterhout et al., 2012; Fujita et al., 2017; Robinson-Junker et al., 2018; Shuboni-Mulligan et al., 42 

2021). Over long timescales, however, this method becomes impractical because video acquisition inevitably 43 

outpaces human labeling, leading to an ever-increasing latency between data acquisition and data analysis. For 44 

example, it may take an observer less than a minute to label behaviors in a minute long video recording but, due 45 

to the tedium of the task and the limits of the human attention span, it would take that observer much longer 46 

than a week to classify behaviors in a week-long video recording (Segalin et al., 2020; Muller et al., 2021). 47 

Consequently, these behaviors have been studied infrequently at low temporal resolution for limited 48 

experimental durations, such as hourly over the course of a single day. To better understand how animal 49 

behavior changes over time, ethologically relevant behaviors (regardless of “measurability”) must be measured 50 

in individual animals simultaneously, automatically, and, critically, in real time over multiple days and 51 

conditions at high temporal resolution (Peters et al., 2015; Grieco et al., 2021; Kahnau et al., 2023). 52 

 53 

Over the last two decades, methods have been developed to classify animal behavior from video 54 

recordings, ranging from computer vision algorithms, such as centroid tracking, to machine learning-based 55 

approaches that use markerless pose estimation (e.g., DeepLabCut or DLC) or raw pixel values (e.g., 56 

DeepEthogram or DEG) to quantify behavior (Mathis et al., 2018; Pereira et al., 2020; Zhang et al., 2020; 57 
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Bohnslav et al., 2021). While previous studies have used machine learning to analyze temporal variation in 58 

more naturalistic “home cage” behaviors, these methods have faced several challenges (Steele et al., 2007; 59 

Goulding et al., 2008; Jhuang et al., 2010; Adamah-Biassi et al., 2014; Salem et al., 2015). For instance, 60 

existing methods tend to disregard long-range temporal information by simplifying analysis to frame-wise 61 

positional and motion values. A more holistic approach is needed to capture the temporal dynamics of both the 62 

recorded animal and potentially changing in-scene objects on both short and long time scales (Xie et al., 2017). 63 

Additionally, existing methods are often constrained by specific environmental conditions, such as video 64 

perspective, lighting condition, or subject coloration, which greatly limits their applicability. The development 65 

of an adaptable, condition-agnostic system is therefore essential for robust temporal analysis. Perhaps most 66 

importantly, existing methods have not been typically used for real-time behavior analysis and have not been 67 

used to analyze behavior on a “circadian” timescale of days to weeks or longer. Together, these challenges have 68 

prevented the widespread adoption of machine learning classification to the long-term or circadian analysis of 69 

behavior. This is likely exacerbated by the lack of user-friendly tools that facilitate acquisition, training, 70 

validation, and analysis of key behavioral metrics. To solve this problem, we developed a streamlined approach 71 

that allows users to extend modern deep learning methods to emulate the functionality of traditional sensor-72 

based analyses of behavior. 73 

 74 

Here, we introduce a versatile, high-throughput, real-time behavior acquisition and analysis pipeline for 75 

the temporal analysis of behavior. To do this, we created the software infrastructure to automatically acquire 76 

behavior data from video recording streams in real time, in parallel (here, from 24 mice simultaneously) for an 77 

essentially unlimited experimental duration (here, for up to two weeks continuously at 10 frames per second). 78 

Next, we developed a joint long short-term memory and linear layer model to integrate the visual and motion 79 

features output by DINOv2, a state-of-the-art self-supervised computer vision feature extractor. Finally, we 80 

combined this model with our recording pipeline to facilitate indefinite recording and behavioral analysis. As a 81 

proof-of-concept, we trained our classification model to identify nine home cage behaviors (eating, drinking, 82 

rearing, climbing, digging, nesting, resting, grooming, and locomotion; (Garner, 2017)) in male and female 83 
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mice to test the hypothesis that sex and estrogen influence circadian rhythms in home cage behaviors. Previous 84 

studies have identified subtle sex differences in wheel-running activity rhythms (Krizo and Mintz, 2014; Joye 85 

and Evans, 2022). However, despite the global regulation of behavior by the circadian system, sex differences 86 

in other behavioral rhythms have not yet been identified due to technological limitations. Our automatic 87 

inference system allowed us to discover novel sex- and estrogen-dependent differences in the phase and 88 

amplitude of several behaviors, including, notably, digging and nesting rhythms.  Finally, we developed our 89 

DINOv2 model and automatic inference software into a user-friendly, open-source Python package called 90 

CBAS, the “circadian behavioral analysis suite.” CBAS allows researchers to automatically acquire and analyze 91 

behavioral rhythms with a throughput that greatly exceeds manual video labeling and rivals sensor-based 92 

methods. 93 

 94 

Results 95 

Machine learning classification of behaviors approaches human level performance 96 

 97 

We first recorded continuous videos of individually-housed mice for >24 h at 10 fps in both a 12 h:12 h 98 

light:dark (LD, where dark is defined as dim 850 nm infrared light) cycle and in constant darkness (DD) (Fig. 99 

1a). From these videos, we used strict criteria (Supplementary Table 1) to define and manually label nine 100 

ethologically-relevant behaviors that encompass the majority of an individual singly-housed mouse’s daily 101 

behavioral repertoire, including maintenance, exploratory, and inactive behaviors: eating, drinking, rearing, 102 

climbing, grooming, exploring, digging, nesting, and resting (Fig. 1b) (Garner, 2017). For each behavior, we 103 

identified the average length of time for a “bout,” or behavioral instance (Fig. 1c). This allowed us to generate 104 

balanced training and test sets from segments of videos sampled from 30 mice that contained a balanced 105 

number of unique instances of each behavior (Fig. 1d). To control for lighting conditions, we sampled video 106 

segments such that there was a balanced representation of each behavior during both the animal’s active and 107 

inactive phases. 108 

 109 
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We next used these training and test sets to train a previously published deep learning behavior 110 

classification model, DeepEthogram (DEG) (Bohnslav et al., 2021), and our own DINOv2+ model (Fig. 2a). 111 

We constructed DINOv2+ using the state-of-the-art DINOv2 vision transformer model (Oquab et al., 2023) as a 112 

“frozen,” or immutable, feature extractor ‘backbone’ with a trainable joint long short-term memory and linear 113 

layer classification network ‘head.’ DEG and DINOv2+ are each capable of producing behavior classifications 114 

from a video frame’s raw pixel values as binary output matrices (“ethograms”) that indicate if a behavior is 115 

present or absent in a given frame. This temporally sequenced ethogram output is ideal for quantifying 116 

behavioral rhythms because it is readily analyzed using field-standard circadian analysis methods that are 117 

optimized for time series data. However, while DEG is trained using a supervised learning scheme, the 118 

backbone feature extractor of our DINOv2+ model is pretrained using a self-supervised approach that has been 119 

shown to be more generalizable (Tendle and Hasan, 2021). Thus, training and testing both models allows us to 120 

directly compare the performance of these two different underlying learning schemes on visual feature 121 

extraction. 122 

 123 

If we wanted to use our models to automatically infer days of video – millions or potentially billions of 124 

frames that would never be seen by a human – it was critical that our models were extensively validated. Model 125 

performances quantified across all measured behaviors of existing commercial (e.g., HomeCageScan) and non-126 

commercial methods used for the temporal analysis of home cage behaviors are either unreported or, typically, 127 

mediocre. Thus, after training our models, we performed rigorous validation of the model’s predictions on our 128 

labeled test sets with stringent model performance thresholds. Importantly, we did not adjust model 129 

hyperparameters based on our model’s test set performance. We compared the performance of our DEG and 130 

DINOv2+ models with that of a trained human classifier. Each of these groups were given a 15-31 frame (1.5-131 

3.1 s) window to predict behaviors from our test set. 132 

 133 

First, because most machine learning performance metrics require us to define a specific threshold value 134 

at which behavior probabilities are converted into a binary prediction, we generated precision-recall curves 135 
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across different probability thresholds for our DEG and DINOv2+ models (Fig. 2b). We did not generate 136 

human classifier precision-recall curves because in our training set human labels are inherently binary, not 137 

probabilistic. We found that the areas under the precision-recall curves (AUPRC, a summarization of model 138 

performance as a function of probability cut-off threshold) for our DINOv2+ model greatly outperformed DEG 139 

on rearing and exploring behaviors and slightly, but significantly, outperformed DEG on climbing and resting 140 

behaviors. DEG slightly, but significantly, outperformed DINOv2+ on digging behavior classification. 141 

 142 

Next, we used multiple demanding metrics (F1 score, balanced accuracy, and normalized Matthews 143 

correlation coefficient; (Brzezinski et al., 2020; Chicco and Jurman, 2020; Grandini et al., 2020)) to test the 144 

performance of each of our models (Fig. 2c). Our predetermined criteria for a “successful” model was a score of 145 

at least 0.80 for each behavior on each metric. A successful model would also ideally meet or exceed the 146 

performance of a trained human classifier labeling the same test set. Our DINOv2+ model met or exceeded our 147 

predefined threshold on all performance metrics, whereas our DEG model failed to meet this F1 and nMCC 148 

score threshold for rearing and exploring behaviors. Notably, DINOv2+ exhibited greater performance than 149 

DEG even on behaviors that had F1, balanced accuracy, or nMCC scores of >0.80, such as grooming and 150 

resting. DINOv2+ also met or exceeded human classifier performance on metrics for most behaviors, including 151 

eating, drinking, climbing, grooming, exploring, digging, and resting, while DEG only met or exceeded human 152 

classifier performance on eating, drinking, climbing, and digging behaviors. Together, these results demonstrate 153 

that our DINOv2+ model’s performance on our test set approaches that of expert-level human classifiers. These 154 

performance results confidently indicate a high level of reliability of our model, which would allow us to 155 

perform behavior inference on a circadian timescale of days to weeks. 156 

 157 

Finally, to assess the differences between supervised and self-supervised learning approaches in DEG 158 

and DINOv2, we trained two additional linear probe heads on top of the frozen outputs of a pretrained DEG 159 

model and the DINOv2 model. First, we trained a linear probe to classify our nine mouse behaviors using a 160 

training and test set comprising mouse behavior frames that were simply rotated 90 degrees from the original 161 
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orientation of each frame used to pretrain the DEG model (Fig. 2d). We found that rotation had a negligible 162 

impact on the DINOv2 model’s performance. However, surprisingly, our DEG model’s performance dropped 163 

nearly 20% after a single rotation, even though DEG uses rotation as part of its image augmentation process 164 

(Bohnslav et al., 2021). Next, we trained a linear probe on a completely novel task in which both models must 165 

count the number of mice in a given frame using a training and test set comprising video frames containing 166 

zero, one, or two mice in their home cage with and without the presence of a running wheel (Fig. 2e). 167 

Unsurprisingly, because DINOv2 is a foundational model that can be adapted to a wide range of classification 168 

tasks, DINOv2 greatly outperformed DEG on this counting task. These results demonstrate the difference in 169 

visual feature robustness between supervised and self-supervised learning schemes and strongly suggest that the 170 

DINOv2 model can serve as a powerful pretrained backbone for a wide variety of classification tasks. 171 

 172 

Behavior classification occurs in real time 173 

 174 

 Regardless of our DINOv2+ model’s exceptional performance, the complexity of machine learning 175 

models often translates into poor usage speeds and low throughput in practice. Using DINOv2+ as an 176 

enhancement to (or replacement for) traditional sensor-based behavior analysis requires us to use it to infer 177 

videos in real time. That is, a video clip of n second duration must be recorded, processed, and automatically 178 

inferred by DINOv2+ before n seconds have elapsed and the next video segment is ready to be processed and 179 

inferred. To match the high throughput of sensor-based analysis (e.g., many running wheels can be recorded in 180 

parallel), we also need to be able to record, process, and automatically infer behaviors from videos recorded 181 

from multiple mice simultaneously. To solve this problem, we developed a hardware and software pipeline that 182 

allowed us to automatically and continuously record and infer behaviors in real time from up to 24 mice in 183 

parallel (Fig. 3a). Our system comprises power over ethernet (PoE) IP cameras connected in parallel to Gigabit 184 

switches. These switches stream video data that is binned into constant length time segments onto dedicated 185 

machine learning computers for inference and network-attached storage devices for backup.  186 

 187 
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Before using our system, we needed to identify the video segment length (in minutes) such that video 188 

data from x cameras can be inferred within that temporal window. To do this, we first calculated the single 189 

camera inference times for several potential models including DEG, DINOv2+, and, for comparison, a skeletal 190 

pose estimation model without behavior classification (DLC) (Fig. 3b) (Mathis et al., 2018). We found that 191 

while all models were able to infer video data from a single camera within each of the temporal windows tested, 192 

DINOv2+ was significantly faster at video inference than either DEG or DLC. 193 

 194 

Next, to apply real-time inference to multiple animals in parallel, we first needed to identify the 195 

maximum number of cameras that could infer behaviors simultaneously within a reasonable video segment 196 

length. We again used DEG, DINOv2+, and DLC to calculate behavior inference times for various 197 

combinations of time segment lengths (5 min, 10 min, or 30 min) and numbers of cameras used to 198 

simultaneously stream video segments (10 or 20; Fig. 3c). We found that all models were able to infer video 199 

data from 10 cameras simultaneously regardless of video segment length. However, when our DEG model was 200 

used to infer video data from 20 cameras simultaneously, inference time exceeded the length of the video 201 

segment regardless of video segment length. This indicated a failure of real-time inference. In addition, our 202 

DINOv2+ model was significantly faster at video inference than either DEG or DLC at all time segment length 203 

and camera number combinations tested. Based on these results (and our experimental setup in which our 204 

behavior cabinets can hold a maximum of 12 mouse cages each), we chose to proceed with using our DINOv2+ 205 

model to infer videos with a video segment length of 30 min on a system comprising two sets of 12 cameras 206 

networked to individual machine learning computers (Fig. 3a). To test the efficacy of our system, we recorded 207 

videos from 24 mice simultaneously over 48 h in a 12h:12h LD cycle (Fig. 3e, Supplementary Video 1). Our 208 

system was able to successfully process video clips, infer behaviors, and plot time series activity profiles for 209 

each behavior over the duration of the recordings, “filling in” over time similarly to how wheel-running activity 210 

profiles are plotted by commercial circadian activity monitoring software. Together, these results demonstrate 211 

that our model can be used to automatically and continuously classify behaviors from multiple animals for an 212 

essentially unlimited experimental duration. 213 
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 214 

Sex influences circadian rhythms in home cage behaviors  215 

 216 

 Next, we applied our DINOv2+ model and automatic inference system to a fundamental question in 217 

circadian biology: how do sex and estrogen influence circadian rhythms in behavior? Subtle sex differences in 218 

wheel-running activity rhythms have been previously identified (Lee et al., 2004; Kuljis et al., 2013, 2016; 219 

Krizo and Mintz, 2014; Joye and Evans, 2022; Anderson et al., 2023). However, because of technological 220 

constraints, whether (and how) males and females differ in other behavioral rhythms is unknown. To address 221 

this problem, we continuously recorded videos, inferred behaviors, and generated actograms (a field-standard 222 

method of plotting activity profiles over multiple days) from male (n = 24) and female (n = 27) mice over 5 d in 223 

LD and over 5 to 9 d in DD (Figs. 4a, b). Female mice underwent estrous staging prior to beginning recording, 224 

allowing us to sort them into groups adjusted such that their actograms were aligned by their first day of 225 

proestrus. We used these actograms to determine key circadian properties of each behavioral rhythm including 226 

phase, amplitude, and period. 227 

 228 

To quantify phase, we measured the acrophase (peak time of activity) for each behavior on each day in 229 

LD and in DD (Fig. 4c; Supplementary Figs. 1a, 2a). We averaged these acrophases in LD and in DD to more 230 

readily compare phase across behaviors and groups. For male mice, we averaged acrophases across each day. 231 

We divided female mice into two groups based on their estrous cycle. For “proestrus/estrus” (P/E) female mice, 232 

which have relatively high levels of endogenous estrogen, we averaged acrophases over each of the projected 233 

days of proestrus based on pre-recording estrous staging. For “metestrus/diestrus” (M/D) female mice, which 234 

have relatively low levels of endogenous estrogen, we averaged acrophases over all other days of recording. 235 

 236 

Our first goal was to determine if any specific behaviors peaked at distinct times from other behaviors 237 

and, if so, whether this pattern was observed in both males and females. To do this, we compared phase markers 238 

for all nine behaviors separately within male and female groups (Supplementary Fig. 2a). In LD, we found that 239 
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for all groups of mice, all behaviors except resting and grooming peaked around the same time in the middle of 240 

the night (ZT or zeitgeber time 18, where ZT 0 is defined as lights on). As expected for nocturnal animals, 241 

resting peaked around the middle of the day, ZT 6. Curiously, grooming behavior in LD in male and P/E (but 242 

not M/D) female mice peaked about 30 min and 1.5 h earlier, respectively, than other non-resting behaviors. In 243 

DD, for M/D and P/E female mice, all behaviors except resting peaked around the same time, approximately 15 244 

to 30 min earlier than their peak time in LD, as expected for “free-running” nocturnal animals with a shortened 245 

period of activity in DD. Surprisingly, for male mice, digging and nesting behaviors were greatly phase delayed 246 

in DD. Compared to all other non-resting behaviors, digging and nesting peaked about 30 min and 1 h later, 247 

respectively. 248 

 249 

Next, to determine if individual behaviors peaked at distinct times in male and female mice, we 250 

compared phase markers for each behavior separately across male and female groups. In LD, we found that 251 

most behaviors in P/E female mice were phase delayed: eating, drinking, climbing, exploring, and resting 252 

behaviors peaked between 30 min to 1 h later compared to these behaviors in M/D females (Supplementary 253 

Fig. 1a). We also found that in male mice, some behaviors (drinking, grooming, and resting) peaked at similar 254 

times to those behaviors in M/D females. However, intriguingly, all other behaviors in male mice (eating, 255 

rearing, climbing, exploring, digging, and nesting) peaked at times in between the times those behaviors peaked 256 

in M/D and P/E females. In DD, we again found that most behaviors in P/E female mice were phase delayed: 257 

drinking, climbing, exploring, digging, nesting, and resting peaked between 30 min to 1 h later compared to 258 

these behaviors in M/D females (Fig. 4c). Most behaviors in male mice (eating, drinking, rearing, climbing, 259 

grooming, exploring, and resting) peaked at similar times to those behaviors in M/D female mice. However, 260 

digging and nesting behaviors in male mice instead peaked at similar times to those behaviors in P/E female 261 

mice because digging and nesting were phase delayed compared to all other behaviors in male mice in DD. 262 

Together, these results demonstrate that behavior rhythms in male and female mice exhibit distinct phase 263 

profiles. Specifically, we found that estrous state fundamentally alters behavior phase in female mice and that, 264 

in DD, nesting and digging behaviors are significantly delayed in male mice.  265 
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 266 

We next measured the amplitudes of each behavior rhythm in male, M/D female, and P/E female mice 267 

by fitting a cosine wave to their averaged activity profiles in both LD and DD (Fig. 4d; Supplementary Figs. 268 

1b, 3a). We found that the amplitudes of all behavior rhythms in male and female mice were dampened in DD 269 

compared to LD, consistent with prior reports describing how light cycle influences wheel-running activity 270 

amplitude (Li et al., 2006; Pasquali et al., 2010). We also observed that the amplitudes for most behavior 271 

rhythms (rearing, climbing, exploring, digging, nesting, and resting) were significantly greater in P/E mice 272 

compared to those behaviors in male mice in DD, but not in LD. We found that the amplitudes of some 273 

behavior rhythms (climbing, exploring, nesting) were also greater in M/D mice compared to male mice in DD. 274 

Finally, we calculated the periods of each behavior rhythm in males and females across all days in both LD and 275 

DD (Supplementary Fig. 4a). We found that, as expected for nocturnal rodents, the free-running periods in DD 276 

for all behavior rhythms in both male and female mice were shorter than the entrained periods in LD (averaged 277 

across all behaviors: males LD 24.02 ± 0.03 h; males DD 23.73 ± 0.04 h; females LD 24.04 ± 0.03 h; females 278 

DD 23.82 ± 0.03 h). Surprisingly, sex had little effect on period. Digging in females exhibited a slightly 279 

lengthened period in DD, but no other behaviors showed significant period differences. Together, these results 280 

demonstrate that biological sex has a profound effect on the amplitude of most behavioral rhythms but has little 281 

to no effect on periodicity. 282 

 283 

Estrogen replacement phenocopies multiple behavior rhythm changes seen in proestrus female mice. 284 

 285 

To determine whether these observed sex differences in circadian behavior could be explained by 286 

differences in endogenous estrogen levels, we again continuously recorded videos, inferred behaviors, and 287 

generated actograms from ovariectomized (OVX; n = 24) and ovariectomized, estradiol-supplemented (OVXE; 288 

n = 22) female mice over 5 d in LD and over 5 d in DD (Figs. 5a, b) (Ström et al., 2012). OVX mice have 289 

chronically low levels of estrogen similar to the levels found in male mice or during metestrus/diestrus in intact 290 

females, and OVXE mice have chronically elevated levels of estrogen similar to the levels found during 291 
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proestrus in intact females. We used these actograms to again determine key circadian properties of each 292 

rhythm including phase, amplitude, and period. 293 

 294 

To quantify phase, we again measured the acrophase (peak time of activity) for each behavior on each 295 

day in OVX and OVXE mice in LD and in DD (Fig. 5c; Supplementary Figs. 1c, 2b). We averaged these 296 

acrophases in LD and in DD to more readily compare phase across behaviors and groups. First, to determine if 297 

any specific behaviors peaked at distinct times from other behaviors in OVX and OVXE mice, we compared 298 

phase markers for all nine behaviors separately within estrogen replacement groups (Supplementary Fig. 2b). 299 

In LD, we found that for both OVX and OVXE mice, all behaviors except resting peaked around the same time 300 

in the middle of the night (ZT 18); resting peaked around the middle of the day, ZT 6. In DD, for both OVX and 301 

OVXE mice, most non-resting behaviors peaked around the same time, about 30 min earlier than their peak 302 

time in LD as expected for nocturnal rodents.  However, grooming in OVX mice peaked about 30 min later, and 303 

nesting and resting in OVXE mice peaked about 30 min and 1 h later, respectively, compared to all other non-304 

resting behaviors. 305 

 306 

 Next, to determine if individual behaviors peaked at distinct times in OVX and OVXE mice, we 307 

compared phase markers for each behavior separately across estrogen replacement groups. In LD, we found no 308 

difference between OVX and OVXE mice in the peak times of any behavior (Supplementary Fig. 1c). In DD, 309 

similar to what we observed with intact P/E female mice, most behaviors (rearing, climbing, exploring, digging, 310 

nesting, and resting) in OVXE mice were phase delayed, peaking between 30 min and 1 h later compared to 311 

these behaviors in OVX mice (Fig. 5c).  However, surprisingly, eating, drinking, and grooming behaviors in 312 

OVXE mice peaked at the same time as those behaviors in OVX mice.  Together, these results demonstrate that 313 

behavior rhythms in OVX and OVXE mice exhibit distinct phase profiles. Specifically, we found that estrogen 314 

replacement significantly phase delays most, but, importantly, not all behaviors in DD, but not in LD. 315 

 316 
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We next measured the amplitudes of each behavior rhythm in OVX and OVXE mice by fitting a cosine 317 

wave to their averaged activity profiles in both LD and DD (Fig. 5d; Supplementary Figs. 1d, 3b). We found 318 

that the amplitudes of all behavior rhythms except eating and nesting in OVX and OVXE mice were dampened 319 

in DD compared to LD. We also observed that the amplitudes for some, but not all, behavior rhythms (drinking, 320 

rearing, climbing, and exploring) were significantly greater in OVXE mice compared to those behaviors in 321 

OVX mice in DD, but not in LD. Finally, we calculated the periods of each behavior rhythm in OVX and 322 

OVXE mice across all days in both LD and DD (Supplementary Fig. 4b). We found that, as expected, the free-323 

running periods in DD for all behavior rhythms but nesting in both OVX and OVXE mice were shorter than the 324 

entrained periods in LD (averaged across all behaviors: OVX LD 24.07 ± 0.02 h; OVX DD 23.70 ± 0.06 h; 325 

OVXE LD 24.04 ± 0.04 h; OVXE DD 23.66 ± 0.06 h). Estrogen replacement had little effect on period: only 326 

drinking and grooming behaviors in OVXE mice had slightly different periods (longer and shorter, respectively) 327 

than in OVX mice. Together, these results demonstrate that estrogen replacement greatly influences both the 328 

phase and amplitude of multiple behavior rhythms. Specifically, estrogen replacement increases behavior 329 

rhythm amplitudes and mimics the phase delays we observed in intact female mice during proestrus. 330 

 331 

A generalizable circadian behavioral analysis suite 332 

 333 

 Our DINOv2+ model and automatic inference system allowed us to thoroughly investigate how 334 

circadian behaviors are influenced by sex and estrogen levels at an unprecedented throughput and acquisition 335 

rate. We realized that introducing our software infrastructure to the broader scientific community could be 336 

revolutionary to fields seeking to understand the temporal characteristics of animal behavior, including, 337 

particularly, circadian biology. We therefore developed a “circadian behavioral analysis suite” (CBAS), a 338 

Python package aimed at generalizing the software and DINOv2+ model used in our experiments (Fig. 6a). 339 

CBAS is equipped to handle automated, continuous video acquisition, automated inference using the DINOv2 340 

feature extractor and joint long short-term memory (LSTM) and linear layer models, and visualization of 341 

behavior actograms in real time (Fig. 6b). Briefly, CBAS is divided into three modules: an acquisition module, 342 
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a classification and visualization module, and an optional training module. The acquisition module is capable of 343 

batch processing streaming video data from any number of network-configured real-time streaming protocol 344 

(RTSP) IP cameras. The classification and visualization module enables real-time inference on streaming video 345 

and displays acquired behavior time series data in real time as actograms that can be readily exported for offline 346 

analysis in a file format compatible with ClockLab Analysis, a widely-used circadian analysis software. Users 347 

wanting to fully replicate our recording setup (see the Jones Lab Github for a full parts list and assembly 348 

instructions) and nine behaviors of interest can immediately begin classification using our DINOv2+ joint 349 

LSTM and linear layer model that is included in the Python package. Importantly, because the DINOv2 visual 350 

backbone is kept static in our training model, users can also quickly and easily adapt CBAS to accommodate a 351 

diverse array of classification tasks, animal species, and video environments. The training module allows the 352 

user to create balanced training sets of behaviors of interest, train joint LSTM and linear layer model heads, and 353 

validate model performance on a naive test set of behavior instances. Importantly, CBAS’s acquisition module 354 

is essentially machine learning model agnostic, allowing for future models to be easily incorporated into the 355 

CBAS pipeline. Together, these modules present an intuitive, accessible software interface that will allow for 356 

the rapid adoption of CBAS by end users with any level of programming ability. 357 

 358 

Discussion 359 

 360 

Here, we developed and validated a novel system for transforming existing machine learning classifiers 361 

into real-time sensors capable of phenotyping circadian rhythms in complex behaviors for an indefinite length 362 

of time. We used this pipeline to thoroughly characterize the effects of biological sex and estrogen levels on 363 

circadian behavior across 97 individual mouse recordings with a minimum duration of 10 d per recording at 10 364 

frames per second. We then developed this toolkit into an open-source, user-friendly Python package – CBAS – 365 

for use by the broader circadian biology community and beyond. CBAS has the potential to reveal temporal 366 

variations in behavior that have previously gone undetected in a diverse range of animal models. In addition, 367 
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CBAS provides scientists with the tools needed to build, adequately validate, and automate highly reliable 368 

machine learning classifiers for any complex behavior(s) of interest. 369 

 370 

 CBAS’s extensive model validation, classification power, and customizable, open-source nature set it 371 

apart from previous commercial (e.g., HomeCageScan, (Adamah-Biassi et al., 2013, 2014)) and non-372 

commercial (e.g., (Steele et al., 2007; Goulding et al., 2008; Jhuang et al., 2010; Salem et al., 2015)) home cage 373 

behavior acquisition tools. For instance, (Jhuang et al., 2010) uses background masking and motion features to 374 

classify behaviors with a Hidden Markov Model Support Vector Machine, an outdated, but theoretically 375 

capable, architecture. While the authors point to a high classification accuracy, there is little to no information 376 

provided regarding more standard machine learning classification metrics such as precision, recall, F1 score, 377 

etc. With some assumptions, some of these values can be calculated from the provided confusion matrices, but 378 

for most behaviors they fail to meet our strict model performance threshold. Critically, the class balance of the 379 

training and test sets used for their model verification is unreported, and neither set remains available to the 380 

public. Similarly, (Goulding et al., 2008) fails to perform model performance validation for their supervised 381 

learning technique, although they do show that their system is capable of recording behaviors on a circadian 382 

timescale. However, because their model only identifies active and inactive behavior states, it is incapable of 383 

automatically identifying complex behaviors or animal-environment interactions. Adequate performance 384 

metrics, training sets, and testing sets of the HomeCageScan system are likewise scarce, a problem that is 385 

exacerbated by its closed-source nature. Importantly, none of these systems has user-friendly customizability to 386 

extend classification to other animal models, environments, and novel behaviors. Our goal with CBAS is to 387 

allow users with any level of programming ability to integrate completely customizable machine learning 388 

models, extensively validate model performance, and record behaviors in real time, indefinitely. 389 

 390 

Although there have been several recent advances in supervised and even unsupervised pose-based 391 

behavior classification (e.g., SimBA, B-SOiD, A-SOiD, (Nilsson et al., 2020; Hsu and Yttri, 2021; Tillmann et 392 

al., 2024)), pose-based classifiers sacrifice critical learnable information with their sweeping dimensional 393 
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reduction to pose dynamics. For example, the subtle home cage environment differences that characterize 394 

digging versus nesting behavior in our recording setup would be completely lost in a reduction to pose time 395 

series. Furthermore, labeling pose data is significantly more difficult than labeling classification data, especially 396 

in dynamic video environments or with moving subjects. In contrast, DeepEthogram (DEG) models and our 397 

proposed DINOv2+ model have the capacity to learn specific high-dimensional features from spatial and 398 

temporal dynamics derived from raw pixel values (Bohnslav et al., 2021). Importantly, DEG models and 399 

DINOv2 are fundamentally different in how they are trained. DEG, which we previously used to analyze 400 

circadian behavior in a proof-of-concept study (Wahba et al., 2022), uses a feature extractor that is trained in a 401 

supervised manner where the model receives direct classification feedback from labeled data throughout 402 

training. In contrast, the DINOv2 feature extractor is pretrained in a self-supervised manner where the model is 403 

encouraged to produce a rich, often clustered, visual feature space that can then be used as a frozen basis for 404 

subsequent small supervised classification models. The DINOv2 backbone model has several benefits because 405 

of its self-supervised learning strategy. Most notably, this strategy generalizes the model’s feature space to data 406 

and tasks which it has never been trained to recognize or accomplish. For example, DINOv2 is broadly capable 407 

of semantic segmentation, depth estimation, image/video classification, or object tracking/recognition with the 408 

minor addition of a trainable linear network layer (Oquab et al., 2023). Reducing bias is closely linked to 409 

enhancing feature generalizability. While supervised learning often optimizes for unstable visual heuristics, 410 

self-supervised training disregards these heuristics in favor of robust visual characteristics (Caron et al., 2021; 411 

Shwartz-Ziv and LeCun, 2023). Finally, self-supervised models help bridge the growing gap in access to 412 

computing resources and data science expertise needed to fully train and optimize high-performing vision 413 

models. 414 

  415 

 In addition to using our DINOv2+ model for inference, CBAS also leverages our standardized video 416 

recording pipeline to allow for real-time behavior classification that can rival the throughput of sensor-based 417 

recording systems (Siepka and Takahashi, 2005; Verwey et al., 2013). CBAS is also incredibly cost effective. 418 

The total cost of the hardware we used in this study, including our custom-built mouse cages and circadian 419 
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behavior cabinets, is only two-thirds the estimated cost of standard commercial systems. Moreover, our setup 420 

can be used to record and infer any number of behaviors in parallel, whereas standard circadian acquisition 421 

hardware is only capable of recording locomotor behavior by measuring wheel-running activity or infrared 422 

beam breaks. Another major advantage of CBAS is its accessibility, presenting a low barrier to entry for the 423 

broader circadian research community, including those with limited programming skills. Additionally, CBAS 424 

mirrors the functionality of field-standard circadian analysis systems by plotting behavior data as actograms in 425 

real time, providing immediate feedback about the state of ongoing experiments. CBAS also outputs these 426 

behavior actograms in formats compatible with Actimetrics’ ClockLab Analysis software, which ensures that 427 

researchers can adapt familiar analyses to CBAS-generated behavior data. The open-source nature of CBAS 428 

essentially democratizes the circadian analysis of complex behaviors, allowing a greater number of researchers 429 

to investigate long-term behavior dynamics. 430 

 431 

Previous studies have identified numerous sex differences in the temporal patterning of physiology. For 432 

example, male and female mice exhibit distinct circadian rhythms in glucocorticoid production, cardiovascular 433 

function, body temperature, and immune function (Griffin and Whitacre, 1991; Atkinson and Waddell, 1997; 434 

Sanchez-Alavez et al., 2011; Barsha et al., 2016; Walton et al., 2022). However, the question of whether there 435 

are pronounced sex differences in the temporal patterning of behavior has, to date, been mostly unanswered. 436 

Subtle sex differences have been observed in wheel-running activity rhythms (Lee et al., 2004; Kuljis et al., 437 

2016; Anderson et al., 2023). For instance, male mice show a greater precision of wheel-running activity onsets 438 

in LD and female mice show a longer wheel-running activity duration on the day of proestrus in DD (Albers et 439 

al., 1981; Kuljis et al., 2013). However, given the presumed global regulation by the circadian system of 440 

multiple brain circuits that control distinct behaviors, more work is needed to reveal and understand sex 441 

differences in other behavioral rhythms (Starnes and Jones, 2023). We used CBAS to address this by testing the 442 

hypothesis that circadian rhythms in behavior differ between males and females. We identified differences in 443 

behavioral rhythms including, notably, that nesting and digging rhythms exhibit a distinct phase delay in male, 444 

but not female, mice during constant darkness that had not been previously reported. We also observed that 445 
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most behavioral rhythms in female mice had higher peak-to-trough amplitudes, which is suggestive of more 446 

robust circadian organization. This is consistent with previous work showing that the amplitude of wheel-447 

running activity rhythms is greater in female mice compared to male mice (Anderson et al., 2023). Previous 448 

studies have also identified that the duration of wheel-running activity is extended (that is, it ends later) on the 449 

day of proestrus (Albers et al., 1981). We confirm this finding and extend it to demonstrate that the temporal 450 

organization of nearly all behaviors changes across the estrous cycle. Our findings reveal critical unseen sex 451 

differences in many, but, importantly, not all behavioral rhythms, which emphasizes the importance of 452 

measuring circadian rhythms in behaviors other than locomotor activity. 453 

 454 

The limited number of previously identified sex differences in circadian behavior have been speculated 455 

to be due to differences in levels of circulating sex hormones and/or sex hormone receptor expression (Walton 456 

et al., 2022). Our experiments were designed to allow us to distinguish between differences in behavioral 457 

rhythms that are due to biological sex and those that are due to the presence or absence of estrogen. We found 458 

that estrogen replacement recapitulates most, but not all, of our observed sex differences in behavioral rhythms. 459 

For instance, we found that P/E females exhibit higher amplitude circadian rhythms in most behaviors 460 

compared to males and M/D females. Similarly, many behavioral rhythms in OVXE females are more robust 461 

than in OVX females. We also found that the peak time of most behaviors in “high estrogen” P/E and OVXE 462 

females was delayed compared to “low estrogen” M/D and OVX females. One possible explanation for this is 463 

the relative distribution of estrogen receptors in brain circuits that regulate different behaviors. Exogenous 464 

estrogen has been shown to increase the amplitude of wheel-running activity rhythms through the activation of 465 

estrogen receptor (ER)α but to delay the phase of wheel-running activity rhythms through the activation of ERβ 466 

(Royston et al., 2014). Indeed, a recent study determined that the lateral hypothalamus (LH), which has 467 

subpopulations of both ERα-positive and ERβ-positive neurons, regulates nest-building behavior 468 

(Merchenthaler et al., 2004; Sotelo et al., 2022). If these ERβ-expressing LH neurons are preferentially 469 

activated during nesting behavior, this could explain why estradiol delays nesting rhythms in OVXE and P/E 470 

mice. However, this does not explain why male mice, which have low levels of endogenous estrogen, exhibit 471 
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delayed digging and nesting rhythms that peak at similar times to those rhythms in OVXE and P/E mice, which 472 

have high levels of endogenous estrogen.  Further studies will need to determine whether this finding is due to 473 

sex differences in developmental circuit wiring, differences in estrogen receptor distribution and/or expression 474 

levels, or other factors. 475 

 476 

 In this study, we used our circadian behavioral analysis suite (CBAS) to automatically quantify 477 

differences in the circadian regulation of behavior between male and female, and OVX and OVXE female, 478 

mice. This approach can be readily expanded to address other critical questions in circadian biology, 479 

neuroscience, and ecology, including the ethological investigation of other behavioral rhythms in videos of mice 480 

recorded in the laboratory and, potentially, in the wild. Notably, CBAS can also be used for the rapid circadian 481 

phenotyping of mice with different genotypes or disorders (Richardson, 2015). Current approaches almost 482 

universally measure changes to wheel-running activity rhythms as evidence that a mutation, gene, or drug 483 

influences circadian behavior. Here, we found that some, but, critically, not all, behavioral rhythms differ by 484 

biological sex and by estrogen levels. It is therefore highly likely that any given experimental treatment could 485 

cause circadian alterations in behaviors other than, or in addition to, wheel-running activity. CBAS aims to 486 

extend the modern toolkit of machine learning classification into any and all long-term behavior assays, greatly 487 

expanding the scope of potential hypotheses and impact of future studies. 488 

 489 

Materials and methods 490 

Animals 491 

Prior to recording, we group-housed male (n = 24) and female (n = 51; 24 of which were subsequently 492 

ovariectomized, see next section) wild-type mice in their home cages in a 12h:12h light:dark cycle (LD, where 493 

lights on is defined as zeitgeber time (ZT) 0; light intensity ~2 x 1014 photons/cm2/s) at constant temperature 494 

(~23°C) and humidity (~40%) with food and water provided ad libitum. All mice were between 6 and 12 weeks 495 

old at the time of the recording. To determine the estrous stage of female mice, we performed vaginal lavage for 496 
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four consecutive days prior to beginning long-term recording (Byers et al., 2012). All experiments were 497 

approved by and performed in accordance with the guidelines of Texas A&M University’s Institutional Animal 498 

Care and Use Committee. 499 

Ovariectomy and estradiol capsule implantation 500 

We ovariectomized a cohort of female mice (OVX, n = 24) using standard methods (Ström et al., 2012). 501 

Briefly, we made a sterile ~2 cm bilateral incision through the skin and peritoneum immediately dorsal to the 502 

ovaries. After ligating and removing each ovary, we sutured the peritoneum and skin incisions. We provided the 503 

mice with buprenorphine-SR (1 mg/kg; subcutaneous) and enrofloxacin (0.25 mg/ml; ad libitum in their 504 

drinking water) and allowed them to recover in their home cages for at least 1 week prior to beginning long-505 

term recording. After recording OVX mice, we implanted them with a sterile 2 cm silastic capsule containing 506 

17-β-estradiol (36 μg/ml in sesame oil) subcutaneously between the shoulder blades (OVXE; n = 22) (Ström et 507 

al., 2012). We excluded two OVX mice from capsule implantation because they had excessive barbering around 508 

their ovariectomy incision site. We allowed OVXE mice to recover in their recording cages for 1 d prior to 509 

beginning long-term recording. 510 

Experimental housing 511 

 We transferred individual mice from their home cages to custom-built recording cages inside custom-512 

built light-tight, temperature-and humidity controlled circadian cabinets for the duration of our experiments. We 513 

built the cages (external dimensions, length x width x height: 22.9 cm x 20.3 cm x 21.6 cm; internal 514 

dimensions: 20.3 cm x 17.8 cm x 20.3 cm) out of transparent and opaque acrylic panels (thickness, walls and 515 

floor: 6.4 mm; lid, 3.2 mm) and T-slot aluminum extrusions (25.4 mm2) (Fig. 1a). We 3D printed custom water 516 

bottle holders and food hoppers out of PLA filament, coated them in food safe clear-cast epoxy resin 517 

(Alumilite), and affixed them to the acrylic walls. To continue our recordings throughout the dark phase, and to 518 

prevent potential glare and shadows from ceiling-mounted lights, we affixed dim infrared (850 nm) light strips 519 

to the cage lid using a custom 3D printed cage topper. Prior to recording, we added ~7 mm wood chip bedding 520 
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and a 25 mm by 50 mm square of cotton nestlet to the cage bottom, added food pellets to the food hopper, and 521 

attached a standard water bottle filled with water to the water bottle holder such that its metal spout protruded 522 

about 1.5 cm into the cage. Our circadian cabinets were built to hold twelve of our custom-built mouse cages 523 

across three vertical shelves, with four cages per shelf. We controlled the ceiling-mounted lights in the cabinets 524 

(broad-spectrum white light, ~6 x 1013 photons/cm2/s measured at the cage floor) using ClockLab Data 525 

Collection hardware and software (Actimetrics) that communicated via a 5V transistor-transistor logic signal 526 

with a high-power power relay (Digital Loggers). We performed daily animal welfare checks using dim red 527 

light (650 nm). 528 

Automated video recording 529 

 We positioned power-over-internet (PoE) IP cameras without infrared filters (I706-POE, Revotech) 530 

equipped with 6 mm lenses (Xenocam) 47.5 cm above the recording cages such that all four corners of the cage, 531 

the food hopper, and the water spout were each visible in the recorded video and the mouse and nesting material 532 

were in focus. We recorded all videos at 10 frames per second (fps) with in-camera image settings set to a 533 

contrast of 130/255, brightness of 140/255, saturation of 0/255, and sharpness of 128/255. We streamed videos 534 

at a main stream bitrate of 2048 kilobits per second (kb/s) and a secondary stream bitrate of 256 kb/s. We 535 

disabled audio streams to reduce bandwidth. We recorded our mice in cohorts of 8 to 12 mice split between two 536 

circadian cabinets. We paused our recordings briefly between light settings (LD and DD) to allow for cage 537 

changes, if necessary. 538 

 We used FFmpeg, a standard open-source video processing tool, to develop a custom video acquisition 539 

system capable of streaming live video and storing successively binned segments of video for each network 540 

camera simultaneously. During a recording, FFmpeg automatically handles cropping the video to a region of 541 

interest and scaling the video to a desired size (here to a scale of 256x256 pixels). To do this, we connected our 542 

cameras in parallel via 10 gigabits per second (Gbps) Cat6 ethernet cables to a Gigabit PoE switch (Aruba 543 

JL684A#ABB). We then connected our switches via 40 Gbps Cat8 ethernet cables to our custom machine-544 

learning computers (12-core AMD Ryzen 9 5900X CPU, 32 GB RAM, NVIDIA GeForce RTX 3090 with 24 545 
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GB VRAM) (Fig. 3a). During a recording, our software creates two threads to monitor the creation of streamed 546 

video segments and orchestrate the inference of incoming data (the “storage” and “inference” threads). The 547 

storage thread records information about each video segment (creation time, segment length, camera-specific 548 

settings), moves the video segments to the corresponding camera directories on the computers, and notifies the 549 

inference thread that new videos are available for inference (see below). 550 

Behavior definitions 551 

We defined a list of nine home cage behaviors (eating, drinking, rearing, climbing, grooming, exploring, 552 

digging, nesting, and resting, (Garner, 2017)) with the goal of identifying the visual and motion characteristics 553 

of each behavior that our DINOv2+ model would be capable of learning (Supplementary Table 1). As such, 554 

our definitions do not aim to ascribe intent to a behavior (as humans are often inclined to do), but rather contain 555 

references to particular features that strictly define behavioral classes. These include spatial features that are 556 

necessary constraints on a behavior and temporal features that are split into two groups indicative of the start 557 

and stop of a behavior sequence. To further enforce these rigorous criteria defining behaviors, our entire set of 558 

training instances were generated by a single labeler. 559 

Model training and inference 560 

 To train our baseline DeepEthogram (DEG) classifier, we needed to individually train three components, 561 

a “flow generator” that estimates optic flow across video frames, a “feature extractor” that determines the 562 

probability of a behavior being present on a given frame based on a low-dimensional set of temporal and spatial 563 

features, and a “sequence model” that further refines model predictions using a temporal gaussian mixture 564 

(TGM) model with a larger temporal receptive field. We trained our flow generator on a set of videos consisting 565 

of approximately 500,000 frames of videos from 8 mice recorded at 10 fps. We then trained our feature 566 

extractor using the medium model size preset (deg_m, (Bohnslav et al., 2021)) and our TGM sequence model 567 

using a temporal window of 15 frames. We trained both the feature extractor and TGM sequence models on an 568 

identical balanced training set used for subsequent training of our DINOv2+ model (see below). Importantly, 569 
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we include our model configuration files for all DEG models, our DINOv2+ model, and all trained model 570 

weights at the Jones lab Google Drive repository (see Data Availability section below). 571 

 Our DINOv2+ model architecture was designed to take as input sequenced outputs from the DINOv2 572 

feature extractor and produce a robust, frame-to-frame stable, and accurate classification time series (Fig. 2a). 573 

The DINOv2 feature extractor model outputs one 768 length vector for each given video frame encoding the 574 

relevant visual information about the image scene. Our joint long short-term memory (LSTM) and linear layer 575 

classification head integrates visual and motion information from a sequence of vectors (here 31 frames) 576 

centered at the frame of interest into a behavioral classification. During a forward pass of our classification 577 

head, noise is randomly injected into a normalized version of the sequence of DINOv2 outputs, transformed 578 

through a single linear layer into the output size, and then averaged over an 11 frame, centered sub-window. 579 

Simultaneously, the mean of the original input sequence is subtracted from the input sequence, compressed by a 580 

linear layer to a latent dimension, and then passed through a single layer bidirectional LSTM network. The 581 

logits of the LSTM layer are condensed to the output size and added to the outputs of the linear layer. A 582 

softmax of the summed output results in the model’s behavior classification confidence for each frame. The 583 

softmax function is defined as 584 

𝑠(𝑦𝑜𝑗) =  
𝑒𝑦𝑜𝑗

∑ 𝑒𝑦𝑜𝑘𝑛
𝑘=1

 585 

where 𝑛 is vector length (here, 9), 𝑦𝑜𝑗is the output vector at position 𝑗, and 𝑦𝑖𝑗 is the input vector at position 𝑗. 586 

We next trained DINOv2+ classification head on a balanced set of behavior instances sampled across 587 

the light and dark phases from 30 unique mice and cages. For this task, we trained our model using a cross 588 

entropy loss function, defined as: 589 

𝐿𝐶𝐸 =  − ∑ 𝑦𝑖𝑗𝑙𝑜𝑔(𝑠(𝑦𝑜𝑗))

𝑛

𝑗=1

 590 
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where, again,  𝑛 is vector length (here, 9), 𝑦𝑜𝑗is the output vector at position 𝑗, and 𝑦𝑖𝑗 is the input vector at 591 

position 𝑗 (Ciampiconi et al., 2023). Additionally, we added a covariance loss to discourage covariance of our 592 

LSTM output features. Our covariance loss was defined as the off-diagonal sum of the absolute covariance 593 

matrix constructed using the raw latent dimensional outputs of the LSTM layer divided by our latent dimension 594 

size. This approach was inspired by the elegant loss function employed in the VICReg learning scheme, and it 595 

consistently improved our classification performance (Bardes et al. 2021). We identified optimal 596 

hyperparameters that minimized the total loss to be a latent dimension of 256, an LSTM latent dimension of 64, 597 

and a linearly decreased learning rate of 5e-4 to 1e-5 over 10 epochs of training. During classification training, 598 

model states are selectively saved by maximizing for the weighted average F1 score of model performance on a 599 

test set. 600 

Model validation 601 

 To validate the performance of our behavior classifier, we used a naive, balanced test set of behavior 602 

sequences. Prior to model training, we randomly selected each unique behavior sequence (or “instance”) from 603 

our annotated dataset while preserving class balance. Importantly, to prevent misleading or skewed model 604 

performance results, we did not use the instances in this test set during any form of model training or 605 

adjustment.  606 

 From this balanced test set, we randomly sampled 1,000 sequences with a maximum length of 31 607 

frames. After we used our model to infer all sampled sequences, we calculated precision, recall, F1 score, 608 

specificity, and balanced accuracy using the sklearn.metrics library in Python. We also calculated the 609 

normalized Matthews correlation coefficient (nMCC) using a custom Python implementation (Chicco and 610 

Jurman, 2020). We repeated this random sampling for a total of ten iterations before calculating the mean and 611 

standard deviations of each metric. 612 

To cross validate our DINOv2+ model with the DEG TGM sequence model and human annotators, we 613 

first trained a TGM sequence model with a temporal window of 15 frames on the equivalent training set to that 614 
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of our DINOv2+ model. We then repeated the sampling and metric calculation detailed above to determine 615 

means and standard deviations for the TGM model metrics. Using both models’ output prediction probabilities, 616 

we calculated the precision-recall curves for each classifier. To determine if the change between the area under 617 

the precision-recall curves (AUPRC) was significant, we used a Python version of a bootstrapping method 618 

originally implemented in R to create a normal distribution of area differences between random subsamples of 619 

the two curves with 10,000 sampling iterations (Zobolas, n.d.). We then compared the area difference of the two 620 

total precision-recall curves to the mean and standard deviation of this distribution to determine significance. 621 

Finally, we designed a custom GUI in Python that allows human annotators to classify 10,000 randomly 622 

sampled 15 frame sequences of video frames from our test set by replaying the sequence until it is classified as 623 

a behavior. Importantly, the GUI does not give the human annotator performance feedback over the course of 624 

the annotation so (much like our machine learning models) they are unable to learn as they annotate. Using 625 

these annotations, we repeated the sampling and metric calculations to determine means and standard deviations 626 

for human labeler metrics. 627 

Automated inference 628 

At the beginning of a recording, our software automatically bins the video stream into segments of time. 629 

In these experiments, we chose to record in thirty minute intervals. For each new video bin, a subprocess infers 630 

the video using the frozen DINOv2 feature extractor model. In this manner, CBAS continuously automates 631 

model inference until the recording is terminated by the user. Users can also add pre-recorded videos to the 632 

project directory to begin the DINOv2 inference of these videos. If a joint LSTM and linear layer model is 633 

trained and ready for use in inference (as in our experiments), CBAS also coordinates the automated inference 634 

of the DINOv2 features into sequenced behavior classes. 635 

Analysis 636 

 We produced behavior actograms by binning the number of frames predicted as a given behavior over a 637 

30 min period. To account for differing estrous states in female mice, we shifted their behavior actograms such 638 
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that their projected day of proestrus (as determined by estrous scoring) was aligned for each mouse that we 639 

recorded. In LD, adjustments and group ns were: 0 d (n = 8 mice), -1 d (n = 5 mice) , -2 d (n = 7 mice), and -3 d 640 

(n = 7 mice). In DD, adjustments and group ns were: 0 d (n = 5 mice), -1 d (n = 4 mice), -2 d (n = 6 mice), -3 d 641 

(n = 13 mice). 642 

 To calculate circadian parameters (phase, period, and amplitude), we used CBAS to export each 643 

actogram as an .awd file, a file format compatible with ClockLab Analysis (Actimetrics), a widely-used 644 

circadian analysis software. To calculate phase, we identified acrophases by calculating the midpoint between 645 

onset and offset times determined by a standard template matching algorithm that searches for a 12 h period of 646 

inactivity (or activity) followed by a 12 h period of activity (or inactivity). For analysis, acrophases for male, 647 

OVX, and OVXE mice were averaged across each day in LD and DD. Acrophases for proestrus/estrus (P/E) 648 

female mice were averaged on the projected days of proestrus: days 1 and 5 in LD and days 1, 5, and 9 in DD. 649 

Acrophases for metestrus/diestrus (M/D) female mice were averaged on all other days (days 2-4 in LD and days 650 

2-4 and 6-8 in DD). To calculate period, we used a Lomb-Scargle periodogram with a range of 20 to 28 hours 651 

and a significance level of 0.001. To calculate amplitude, we measured the peak-to-peak amplitude of a sine 652 

wave fitted to the average activity profile calculated across all days in LD or all days in DD.  653 

 We performed the following statistical tests in Prism 10.0 (Graphpad): one-way ANOVA, unpaired t-654 

test, two-way ANOVA, Tukey’s multiple comparisons test, Dunnett’s multiple comparisons test. We performed 655 

a bootstrapping test in Python (Zobolas, n.d.). Because no phase markers occurred at or near the 24 h modulus, 656 

we performed statistical comparisons without using circular statistics. We used Shapiro-Wilk and Brown-657 

Forsythe tests to test for normality and equal variance, defined α as 0.05, and presented all data as mean ± SEM. 658 

Data availability 659 

All data generated in this study that support our findings are presented within this paper or its Supplementary 660 

Materials or at the Jones lab Google Drive repository at http://tinyurl.com/jones-lab-tamu. CBAS is also 661 

available to the public at the Jones lab Github page at https://github.com/jones-lab-tamu. 662 
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Figures 667 

668 

Figure 1. Recording and classification standardization of nine home cage behaviors. a) Schematic of the 669 

home cage recording setup. b) Representative examples of individual frames depicting each of nine behaviors 670 

(eating, orange; drinking, yellow; rearing, blue; climbing, red; grooming, green; exploring, brown; digging, 671 

magenta; nesting, purple; resting, gray). First frame depicts the behavior occurring in the full field of view, 672 

subsequent frames are zoomed in to better illustrate behaviors. c) Bout length (duration of a behavioral 673 

instance) for each behavior within a maximum window size of 360 s. n  ≥ 38 bouts from 29 to 30 mice per 674 

behavior. Box and whiskers depict median and interquartile range. d) Number of unique instances of each 675 

behavior in the 8.1 h human-labeled dataset broken down by training and test sets.  676 
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 677 

Figure 2. DINOv2+ approaches expert-level performance on behavior classification. a) Schematic of 678 

performance and generalization tests. Features from a frozen pretrained DeepEthogram (DEG) model and a 679 

frozen pretrained DINOv2 model were used to evaluate the ability of each visual feature extractor to 680 

successfully classify mouse behavior using our DINOv2+ joint LSTM and linear layer model head 681 

(performance; Figs. 2b,c), classify mouse behavior on behavior frames rotated 90° using a single layer linear 682 

network head (generalization; Fig. 2d), and count the number of mice in a cage using a single layer linear 683 

network head (generalization; Fig. 2e). b) Precision-recall curves for each behavior calculated for the DINOv2+ 684 

(colored lines) and DEG (dashed lines) models by varying the decision threshold of each binary classifier. 685 

Shading depicts the area under the precision-recall curve (AUPRC) for each behavior for each model. Bootstrap 686 

test; **, p < 0.01; ***, p < 0.001. c) Performance metrics for each behavior calculated for a trained human 687 

classifier (green), the DEG model (blue), and the DINOv2+ model (red). n = 10 sets of 1,000 randomly sampled 688 
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test set frames per behavior. Dashed line depicts a predefined performance threshold of 0.80. Lines and error 689 

bars depict mean ± SEM. F1, F1 score; nMCC, normalized Matthews correlation coefficient. d) Relative 690 

performance for the DEG (blue) and DINOv2 (red) pretrained models when tested on a rotated version of a 691 

baseline behavior sequence test set using a single layer linear network head on top of the baseline models. e) F1 692 

score calculated for both DEG and DINOv2 on a classification task involving counting the number of mice in a 693 

cage using a single layer linear network head on top of the baseline models.  694 
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 695 

Figure 3. DINOv2+ allows for real-time behavior classification. a) Schematic of the real-time video 696 

recording, processing, and inferring system comprising two sets of 12 PoE (power over ethernet) IP cameras 697 

networked to a switch that passes streaming video data to a machine learning computer for video inference and 698 

a network-attached storage device for video backup. b) Single-video inference times for video segments of 699 

various lengths calculated for a skeletal pose estimation model without behavior classification (green, DLC), 700 

DEG (blue), and DINOv2+ (red). n = 3 replicates per model. Two-way ANOVA with post-hoc Tukey’s 701 

multiple comparison’s test; *, p < 0.05; ***, p < 0.001. c) Inference times for combinations of video segment 702 

length and number of cameras used to simultaneously stream video segments calculated for each model. Dashed 703 

lines depict the times at which inference time equals the length of the video segment. Failure of real-time 704 

inference for a particular combination of segment length, camera number, and inference model is represented by 705 

a black X above the bar. d) Representative activity profiles for each behavior from an individual mouse 706 

recorded in a 12 h:12 h light:dark (LD) cycle for 48 h. 30 min segments of continuously recorded video were 707 

automatically processed, inferred, and plotted over the duration of the recording, “filling in” over time. For 708 

visualization, plots shown here are only updated every 6 h. ZT, zeitgeber time.  709 
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 710 

Figure 4. Male and female mice exhibit distinct circadian rhythms in home cage behaviors. a,b) 711 

Representative double-plotted actograms depicting behaviors (colored lines on each row) averaged across eight 712 

male mice or eight female mice that started the experiment in the same estrous state recorded over 5 d in a 713 

12h:12h light:dark (LD) cycle (gray and yellow shading) and 9 d in constant darkness (DD; gray and light gray 714 

shading). c) Behavior phase comparison plots depicting the acrophases (peak times in circadian time, where CT 715 

18 is subjective midnight and CT 6 is subjective noon) for male (teal, n = 24), metestrus/diestrus (M/D; pink), 716 

and proestrus/estrus (P/E; purple) female (n = 27) mice recorded in DD. Lines and error bars depict mean ± 717 

SEM. Asterisks indicate behaviors with significant differences in acrophase across groups. One-way ANOVA 718 

with post-hoc Tukey’s multiple comparisons test; *, p < 0.05; **, p < 0.01. d) Normalized amplitude for each 719 

behavior rhythm for male (teal), M/D (pink), and P/E (purple) female mice measured in DD. Two-way ANOVA 720 

with post-hoc Tukey’s multiple comparisons test; *, p < 0.05; **, p < 0.01; ***, p < 0.001. 721 
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722 

Figure 5. Ovariectomized and ovariectomized, estradiol-supplemented female mice exhibit distinct 723 

circadian rhythms in home cage behaviors. a,b) Representative double-plotted actograms depicting behaviors 724 

(colored lines on each row) averaged across eight ovariectomized (OVX) female mice or eight ovariectomized, 725 

estradiol-supplemented (OVXE) female mice recorded over 5 d in a 12h:12h light:dark (LD) cycle (gray and 726 

yellow shading) and 5 d in constant darkness (DD; gray and light gray shading). c) Behavior phase comparison 727 

plots depicting the acrophases (peak times in circadian time, where CT 18 is subjective midnight and CT 6 is 728 

subjective noon) for OVX (pink, n = 24) and OVXE (purple; n = 22) female mice recorded in DD. Lines and 729 

error bars depict mean ± SEM. Asterisks indicate behaviors with significant differences in acrophase across 730 

groups. One-way ANOVA with post-hoc Tukey’s multiple comparisons test; *, p < 0.05; **, p < 0.01. d) 731 

Normalized amplitude for each behavior rhythm for OVX (pink) and OVXE (purple) female mice measured in 732 

DD. Two-way ANOVA with post-hoc Tukey’s multiple comparisons test; **, p < 0.01.   733 
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 734 

Figure 6. CBAS: a circadian behavioral analysis suite. a) CBAS is a user-friendly GUI-enabled Python 735 

package that allows for the automated acquisition, classification, and visualization of behaviors over time. b)  736 

Schematic of the CBAS pipeline. Red; acquisition module; blue, training module; green, classification and 737 

visualization classification module.  738 
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