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Abstract

Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression,
which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance
mechanisms, induced by rapid, context-specific signaling network rewiring, continue to
challenge therapeutic efficacy. By leveraging progress in proteomic technologies and
network-based methodologies, over the past decade, we developed VESPA—an
algorithm designed to elucidate mechanisms of cell response and adaptation to drug
perturbations—and used it to analyze 7-point phosphoproteomic time series from
colorectal cancer cells treated with clinically-relevant inhibitors and control media.
Interrogation of tumor-specific enzyme/substrate interactions accurately inferred kinase
and phosphatase activity, based on their inferred substrate phosphorylation state,
effectively accounting for signal cross-talk and sparse phosphoproteome coverage. The
analysis elucidated time-dependent signaling pathway response to each drug
perturbation and, more importantly, cell adaptive response and rewiring that was
experimentally confirmed by CRISPRko assays, suggesting broad applicability to cancer
and other diseases.
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Introduction

Cells receive and propagate exogenous signals via receptor-mediated signaling cascades,
eventually resulting in the coordinated activation and inactivation of the transcriptional
programs necessary to modulate cell state in response to environmental conditions. In
multicellular organisms, for instance, this allows individual cells to orchestrate the gene
regulatory programs necessary to progress through lineage differentiation trajectories [1]
or to respond to changes in nutrient conditions [2]. Signals originating from the
interaction of secreted (autocrine), microenvironment (paracrine), and distal (endocrine)
ligands, and their cognate receptors, are transmitted via complex signal transduction
cascades, whose tissue specificity depends on the availability of individual protein
isoforms and on their ability to form functional complexes [3].

Dysregulation of these processes plays a critical role in human disease, especially in
cancer, where signaling pathway mutations represent a hallmark of tumor initiation and
progression [4]. This is exemplified by colorectal cancer (CRC), where progression from
normal cells in the intestinal crypt to adenocarcinoma is determined by progressive
accrual of genetic and epigenetic alterations in key signaling pathways, ultimately
resulting in transformation [5]. Critically, despite similar histological presentation, we
and others have shown that different CRC subtypes exist, due to signaling
pathway-mediated integration of heterogeneous mutational landscapes [5], resulting in
aberrant activation/inactivation of small Master Regulator protein modules [6]. Yet, the
specific signaling mechanisms leading to concerted, aberrant activity of these regulatory
modules and causally responsible for their time-dependent response and adaptation to
drug perturbations are still largely elusive.

While their elucidation may provide more universal insights into tumor dependencies
and response to treatment [6], systematic, proteome-wide elucidation of tissue-specific
signaling networks has trailed the study of regulatory interactions and still represents
one of the hallmark challenges in systems biology, with potential applications to both
basic and translational research.

Signal transduction is mediated by reversible post-translational modifications
(PTMs), often responsible for a rapid on/off switch in protein activity or
ubiquitin-mediated proteasomal degradation. Among these, phosphorylation represents
the most frequently studied event, due to its profound impact on protein conformation
and function. In human cells, protein phosphorylation and de-phosphorylation is
mediated by > 500 kinases [7] and > 200 phosphatases [8], respectively (KP-enzymes in
the following). Although these enzymes have substrate specificity, determined by low to
medium-affinity peptide-binding domains (PBDs), many substrates can be processed by
multiple, sometimes closely related enzymes, resulting in considerable cross-talk.
Auto-regulatory feedback loops, sub-cellular localization mechanisms, and
context-specific availability of the cognate binding partners necessary for formation of
active complexes further increase the complexity of these biological processes.

Enzyme-Substrate (ES) interactions have been broadly studied, including via
low-throughput biochemical assays and structure determination [9], as well as by
high-throughput methods using array-based [10], affinity purification coupled to mass
spectrometry (AP-MS) [11,12], and computational biology approaches [13,14]. As a
result, established repositories of ES interactions have been assembled, such as
PhosphoSitePlus [15] and Pathway Commons [16], among others. However, none of
these repositories addresses the context specific nature of ES interactions and only
comprise a small fraction of the total number of such molecular interactions.
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Furthermore, these have been studied at steady state, thus potentially failing to provide
critical insight into the time-dependent signaling processes that underlie cell adaptation
to endogenous and exogeneous perturbations.

A handful of reverse engineering methods for the mechanism-based interrogation of
signaling pathways have been proposed, such as pARACNe (phospho-ARACNe) [17],
KSEA (Kinase Substrate Enrichment Analysis) [18], INKA (Inference of Kinase
Activity) [19], or PHONEMeS (PHOsphorylation NEtworks for Mass
Spectrometry) [20]. However, in terms of accuracy and sensitivity, they still significantly
trail behind equivalent methods for the dissection of regulatory networks [21].

To address these challenges, we developed VESPA (Virtual Enrichment-based
Signaling Protein-activity Analysis)—a novel phosphoproteomic-based machine learning
methodology for the dissection of ES interactions and for measuring signaling protein
activity—and have applied it to study post-translational cell adaptation mechanisms
that mediate CRC’s resistance or lack of sensitivity (i.e., insensitivity) to
clinically-relevant targeted drugs. Our proposed methodology provides four critical
elements of novelty, including: (i) the ability to reconstruct and interrogate disease
context-specific signaling networks de novo, based on phosphoproteomic profiles, such as
those made available by the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) [22], (ii) the ability to measure the activity of signaling enzymes, including
those that are poorly characterized in the phosphoproteomic profiles, based on the
phosphorylation state of their substrates, (iii) the ability to deconvolute the
time-dependent response of cancer tissues to inhibitors targeting signaling enzymes, a
challenging task since the phosphostate of their high affinity targets is not generally
affected by treatment, and (iv) the ability to identify potential mechanisms presiding
over drug resistance and cell adaptation. Systematic benchmarking, based on ES
reference databases, assessing differential KP-enzyme activity of primary drug targets in
cell lines with experimentally validated sensitivity to > 200 targeted inhibitors, showed
that VESPA substantially outperforms established approaches.

In a proof-of-concept application, we designed a large-scale drug perturbation
experiment and used VESPA to elucidate the molecular mechanisms of CRC adaptation
to drug treatment that mediate resistance or insensitivity in a highly context-specific
fashion. For this purpose, we analyzed a recent CPTAC CRC-specific proteogenomic
dataset to yield a comprehensive CRC context-specific signaling network for 371
kinases/phosphatases. SigNet interrogation further effectively assessed
kinase/phosphatase activity across the CPTAC-CRC cohort, resulting in identification
of clinical subtypes associated with aberrant enzyme activity, which allowed us to select
a representative cell line panel as experimental model system. Using a highly scalable
Data-independent Acquisition (DIA) [23] proteomic workflow [24–26], we then acquired
336 profiles from these six subtype-matched CRC cell lines perturbed with seven
clinically-relevant drugs, at seven time points, ranging from 5min to 96h, providing the
data foundation for our study.

VESPA analysis provided novel insight into the ability of CRC cell lines to adapt
and “rewire” their signaling networks following drug perturbation. Critically, this
revealed how specific cells implement similar drug responses yet over highly different
timeframes, while others present highly idiosyncratic response mechanisms. Moreover,
for drug resistant cells, this allowed us to identify signaling proteins responsible for the
progression from initial drug perturbation to development of resistance. To assess its
predictive nature, we experimentally validated VESPA’s ability to identify candidate,
cell line-specific, resistance mechanisms by performing CRISPR-knock-out experiments,
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targeting all human phospho-enzymes in drug treated cell lines. Our analysis shows that
VESPA’s predictions are indeed enriched in proteins that synergize with drug treatment
in resistant cell lines, thus suggesting potential value towards identification of potential
combination therapy opportunities.

Results

Conceptual Workflow

VESPA comprises two-steps. First, a dissection step (dVESPA) reconstructs
context-specific signaling networks, de novo, from phosphoproteomic and
whole-proteome profiles of large-scale tumor cohorts (Fig. 1a). Such datasets—often
comprising > 100 samples—are now broadly available, having been generated for many
cancer subtypes by initiatives such as CPTAC. VESPA-inferred Signal Transduction
Networks (SigNets) are unique in that they fully recapitulate the tumor context-specific
nature of ES interactions, as well as their directionality and statistical confidence.

In a second step (mVESPA), SigNets are used to measure differential KP-enzyme
activity in individual samples, based on differential substrate phosphorylation (signalon)
compared to a reference sample (Fig. 1b). For instance, when assessing the activity of
signaling proteins following drug treatment, the reference sample would be the same
tissue treated with vehicle control media. To infer enzyme activity, mVESPA leverages
a probabilistic framework that integrates the differential phosphorylation state of its
substrates, while accounting for potential confounding effects by other enzymes with
which it may share some substrates (cross-talk). To improve performance for
serine/threonine kinases (ST-Ks)—especially from low phosphoproteomic profile
coverage—and to improve substrate coverage of tyrosine kinases (TKs), without
requiring immunoprecipitation (IP) based enrichment methods, VESPA leverages a
two-step hierarchical approach. Activity profiles are first generated in coarse fashion,
based on the phosphorylation state of KP-enzyme’s substrates, and are then used to
refine the original activity estimates.

Despite a superficial similarity of these steps to algorithms designed for the study of
transcriptional networks, such as ARACNe [27,28] and VIPER [29], there are critical
differences that were necessary to account for the unique structure and sparseness of
phosphoproteomic profiles. These are summarized in the following.

Substrate inference: To measure the likelihood of an enzyme/substrate interaction,
dVESPA extends the ARACNe algorithm [27,28] to phosphoproteomic data (see
Methods). dVESPA is designed to leverage continuous peptide intensities, as obtained
from quantitative proteomic workflows [30], using a novel hybrid partitioning approach
to compute mutual information (hpMI). This effectively addresses challenges associated
with missing values due to censoring [31,32], a critical issue in bottom-up
phosphoproteomic analyses (Supplemental Fig. 1a, Methods). Second, to eliminate
indirect ES interactions, dVESPA implements a signal transduction-specific version of
the Data Processing Inequality (stDPI) theorem, which accounts for the full topology of
three-way signaling interactions, as determined by the enzymatic properties of kinases
and phosphatases (Supplemental Fig. 1b, Methods). When phosphoproteomic profile
coverage is insufficient to reconstruct KP-enzyme substrate relationships, dVESPA can
also incorporate priors from reference databases—such as Pathway Commons [16],
LinkPhinder [14] or the Hierarchical Statistical Mechanistic model (HSM) [13]—to
generate hybrid signalons that incorporate both context-free and context-specific
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information. Critically, each inferred interaction has an associated statistical confidence
(p-value) and directionality, as determined by the enzymatic function of the signaling
protein, which are also inferred by dVESPA (Methods).

Cross-talk correction: mVESPA leverages the Rank-based Enrichment Analysis
(aREA)-framework [29]—a probabilistic implementation of gene set enrichment
analysis [33]—to address potential confounding effects arising from enzymes sharing
common substrates. This allows incorporating the shadow analysis [34] and pleiotropy
correction [29] methods that were originally designed to address this issue in gene
regulatory networks (see Methods).
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Figure 1. Methodological overview of VESPA. a) VESPA infers protein signaling activity for kinases and
phosphatases on substrate-level (blue box, left panel) and activity-level (pink box, right panel). A quantitative matrix of
phosphopeptide or phosphosite abundance across samples or conditions including missing values (black) represents the
main input for VESPA. The signaling network reconstruction module uses this matrix together with optional priors from
reference networks to assess regulatory relationships by computing the mutual information between enzymatic regulator
and target phosphopeptides or phosphosites and the signal transduction Data Processing Inequality (stDPI) to generate
signalons for each regulator consisting of interaction probabilistic weight and mode of regulation (kinase activation:
red, phosphatase deactivation: blue) with substrate targets. VESPA then uses the substrate-level signalons to infer
substrate-level kinase/phosphatase activity (blue box). This quantitative matrix represents the input for activity-level
signaling network reconstruction, which uses the Data Processing Inequality (DPI) to generate more abstract and
generalized signalons, which are then in turn used to infer protein signaling activity on activity-level (pink box). b)
Methodological differences between substrate- and activity-level signaling networks. On substrate-level, ST-Ks (e.g.
GSK3A, green) are primarily associated with direct phosphorylation targets, whereas TKs (e.g. ERBB2, orange) can
frequently not be directly associated with (unenriched) tyrosine-phosphorylated sites. On activity-level, more abstract
“activation/deactivation” events can better associate targets for both ST-Ks and TKs.
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Site-specific activity inference: Kinase and phosphatase activity can then be
measured by assessing the phospho-state of their substrates, either at the whole-protein
level—i.e., by integrating the state of all phosphosites—or at the phosphosite-specific
level (Methods). The latter can help elucidate specific phosphosites that critically
contribute to a protein’s enzymatic activity. Indeed, proteins generally comprise
multiple phosphosites with diverse and potentially opposite contributions to their
enzymatic and regulatory activity—ranging from modulating enzyme abundance via
ubiquitylation pathways to mediating dimerization or conformational changes necessary
to support enzymatic activity—as well as sites providing no measurable contribution.
To address this issue, mVESPA infers both phosphosite-specific and whole-protein
signalons (Methods).

Hierarchical activity and model inference: Some KP-enzymes substrates, including
TK substrates, are only sparsely represented within phosphoproteomic profiles. As a
result, unless they are enriched—e.g., by pull-down with phosphosite-specific
antibodies—they cannot be effectively identified as substrates, resulting in low-quality
signalon generation and TK activity prediction. To address this challenge, mVESPA
implements a two-step, hierarchical activity inference approach (Fig. 1, Supplemental
Fig. 1c-d, Methods). In the first step (substrate-level SL-analysis) coarse-level
KP-enzyme activities are assessed from phospho-state of dVESPA-inferred substrates
(Fig. 1a). Both substrate identification and KP-activity are then refined in a second
step (activity-level AL-analysis) by leveraging the coarse-level activity of candidate
substrates, rather than their phospho-state (Methods). The rationale is that many TK
substrates are themselves ST-Ks, whose activity can be inferred quite accurately by
substrate-level analysis. Consistently, we show that this two-step approach also improves
KP-enzyme signalon and activity reproducibility, when using phosphoproteomic profiles
with increasingly lower depth, because lower depth decreases substrate coverage (Fig.
1b). Results from the two-step analysis are then integrated, for both ST-Ks and TKs,
using Stouffer’s method, since candidate substrate’s activity and phosphostate are
assessed from independent data and are thus statistically independent (Methods).

Signalon optimization: If multiple signalons for the same KP-enzyme were generated
from independent datasets, mVESPA selects the one that is most informative, based on
the overall significance of differentially active KP-enzymes, as implemented by the
metaVIPER algorithm [35] (Methods).

Generating a CRC context-specific SigNet

Kinase inhibitors and other drugs inhibit the activity of their targets without affecting
their phospho-state but rather by binding to the protein’s active site. As a result, drug
target identification from phosphoproteomic profiles is challenging. However, availability
of accurate and comprehensive SigNets allows direct assessment of target activity,
independent of their phosphorylation state. To study signal transduction in CRC, we
availed ourselves of proteomic and phosphoproteomic profiles from three datasets. The
first comprises 97 CRC samples from the Clinical Proteomic Tumor Analysis
Consortium (NCI/NIH), here referred to as CPTAC-S045 [36]. As second dataset, we
normalized the CPTAC-S045 phosphosite abundances by the corresponding whole
protein abundances, which would allow to identify confounded KP→S relationships, as
suggested previously [37] (CPTAC-S045N). In addition, we generated a third dataset,
comprising phosphoproteomic profiles from six CRC cell lines (HCT-15, HT115, LS1034,
MDST8, NCI-H508 and SNU-61) at three time points (1h, 24h, 96h), following
perturbation with a collection of seven clinically relevant drugs and vehicle control
media (144 samples, here referred to as U54-NET dataset, see below).
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We used dVESPA to dissect independent SigNets from these datasets, using the
stDPI/DPI method to select the most direct interactions (Supplemental Data 1,
Methods). For each kinase and phosphatase, one to three site-specific signalons were
generated, depending on whether the phosphosite (or protein) was measured and
significant interactions were identified in each dataset. Site-specific signalons were then
aggregated for each dataset separately to a protein-level representation, and the most
representative of the three possible signalons was selected, generating the best response
for a set of target phosphoproteome profiles (Methods). Overall, consistent with the
KP-enzyme fraction expected to be expressed in any specific cellular context, signalons
comprising ≥ 5 candidate substrates could be reliably inferred for 51.0% of human
KP-enzymes, from at least one of the datasets. The first step (SL-analysis) produced an
initial SigNet comprising 163,313 interactions, representing the activity of 283 kinases
and 88 phosphatases on 7,727 candidate substrates. The second step (AL-analysis)
improved the model by identifying 16,309 additional interactions, representing the
activity of 187 kinases and 37 phosphatases on 371 candidate substrates. To support
more mechanistic studies, we also generated a phosphosite-level network comprising
interactions representing 1,649 individual phosphosites, whose differential
phosphorylation could be assessed from available datasets. By collapsing phosphosites
in the same peptide-binding domain, which are frequently correlated in both
phospho-state and functional role—a refined set of 918 non-redundant phosphosites was
generated and used for this analysis (Methods). Each KP-enzyme/substrate interaction
was characterized in terms of both mode of regulation (i.e., substrate activation or
deactivation by kinases and phosphatases, respectively) and likelihood.

The CPTAC datasets provided a more comprehensive phosphosite representation
than those from cell line perturbations—i.e., 31,339 phosphosites from CPTAC-S045 vs.
13,529 from U54-NET, respectively—as expected due to the lower genetic background
variability in the handful of selected cell lines and the different analytical depth of the
proteomic data acquisition methods (DDA-TMT vs. DIA-LFQ). However, U54-NET
interactions were often selected as more informative by signalon optimization analysis
(Methods). Indeed, at the substrate-level, 47.2%, 43.4% and 9.4% of the optimized
signalons were derived from CPTAC-S045, U54-NET and CPTAC-S045N dataset,
respectively. Dataset specificity was even more skewed at the activity-level analysis,
where U54-NET accounted for 46.4% of the optimized signalons, with CPTAC-S045 and
CPTAC-S045N accounting for 38.4% and 15.2% of them, respectively.

A key advantage of the proposed methodology is that, once a SigNet is available,
activity can be measured even for KP-enzymes whose phospho-state is undetected in a
specific dataset. Indeed, VESPA could measure enzymatic activity for 158 of 371
(42.6%) of all KP-enzymes in the CRC SigNet that completely lacked phospho-state
information thus almost doubling the amount of critical available information.
Furthermore, multiple dataset integration can effectively combine DIA’s high
throughput with the more comprehensive nature of the fractionated CPTAC profiling.
Overall, despite the well-known sparseness of peptides and phosphopeptides detected by
proteomic assays, mVESPA quantitatively assessed the activity of 371
KP-enzymes—i.e., around half of all known human KP-enzymes and, likely, an almost
complete subset of the KP-enzymes expressed in CRC cells.

Benchmarking the MI estimator

With up to 20-80% missing values in typical phosphoproteomic profiles,
phosphopeptide-based MI estimation is challenging. We thus benchmarked the
performance of the novel hybrid-partitioning mutual information metric (hpMI) using
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the U54-NET dataset and compared it to either removing proteins with missing data or
imputing (random low intensity noise) profiles. Specifically, we generated sparser
instances of the quantitative matrix by removing up to 80% of the data, in 20%
increments (see Methods) and assessed the impact on MI estimation—including
depleted MI (dMI), imputed MI (iMI) and hpMI estimators (Fig. 2a). This was
accomplished by computing the recovery of the highest-likelihood interactions, as
predicted by the Hierarchical Statistical Mechanics (HSM) [13] algorithm (Methods).
As previously described [27], MI estimates were statistically validated using a
bootstrapped null model and filtered at 5% FDR. Although for some well-sampled,
highly correlated KP→S pairs, both dMI and iMI measured a statistically significant
MI, hpMI inferred 102.4% more correct ES interactions than dMI, and 31.3% more
correct ES interactions than iMI from sparsely covered interactions (>20% complete),
particularly in case of lower (ρ < 0.5) KP→S correlation (Fig. 2a).

Benchmarking indirect interaction removal

To eliminate indirect interactions (i.e., those due to a cascade of distinct direct
interactions, KP→KP’→S), dVESPA uses a signal transduction-adapted version of the
Data Processing Inequality (stDPI/DPI) originally proposed in [27,28] (Supplemental
Fig. 1b, Methods). The DPI states that, in any system where information is not
perfectly transferred (lossy)—thus including virtually all molecular networks—direct
information transfer (i.e., KP→S) is always greater than indirect information transfer
(KP→KP’→S), thus allowing effective removal of indirect interactions.

To benchmark whether the stDPI improves removal of indirect interactions,
including compared to the original DPI formulation, we first generated a gold-standard
dataset for ST-K proteins using the Hierarchical Statistical Mechanics (HSM) [13]
algorithm (Methods). Specifically, ground truth interactions were selected based on
HSM analysis of domains identified as primary determinants of ST-K→phosphopeptide
specificity, including PDZ, SH3, WH1, and WW domains. As a negative gold standard,
we used HSM predicted TK→S interactions, based on PTB, PTP and SH2 domains,
since the dataset used for this benchmark (U54-NET) is not enriched for
phosphotyrosine peptides and should thus not support their identification.

We then analyzed the U54-NET dataset using dVESPA to produce an
SL-analysis-based SigNet with each of the three DPI options—i.e., no DPI, regular DPI
and stDPI—and compared the inferred interactions with the gold standard datasets
(Methods). Receiver operating characteristics (ROC) curves show that stDPI
significantly outperforms the other two options (stDPI vs. no DPI: p-value < 2.2e-16,
stDPI vs. DPI: p-value < 2.2e-16; area under the curve (AUC): noDPI = 0.626
DPI = 0.640, stDPI = 0.693) (Fig. 2b, Methods).

Taken together, these data show that hpMI and stDPI—two novel
phosphoproteomic-specific component of dVESPA—significantly improve KP→S
inference.
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Figure 2. Benchmark and validation of dVESPA and mVESPA. a) Comparison of different mutual information
(MI) estimation strategies based on imputation (iMI), depletion (dMI) and hybrid partitioning (hpMI) and the MI
– Spearman correlation relationship using the CPTAC-S45 dataset. b) Receiver operating characteristic of (signal
transduction) Data Processing Inequality (stDPI/DPI) and unprocessed (noDPI) signaling dependencies as evaluated
using a ground truth dataset. c) Baseline profiles of six diverse CRC cell lines were acquired and used with the GDSC
reference database to identify sensitive and resistant or insensitive cell lines for each covered drug compound. Using
mVESPA and CRC-specific signalons, differential comparisons were conducted for each drug compound to identify the
top differentially active regulators. d) VESPA (red), consisting of mVESPA and dVESPA, performs substantially better
than mVESPA using context unspecific Pathway Commons (blue) SigNets.
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mVESPA Benchmarking and validation

To benchmark mVESPA predictions, we extended a strategy previously used to infer
kinase activity in cell lines [19]. The Genomics of Drug Sensitivity in Cancer project
(GDSC) has assessed sensitivity of >1,000 human cancer cell lines to hundreds of small
molecule compounds, including high-affinity kinase inhibitors [38]. When combined with
a curated list [19] of the primary (i.e., high-affinity) targets of each inhibitor, this
resource can be used to effectively assess relative kinase activities because—within a
specific tumor type and barring adaptive resistance mechanisms—higher activity of the
drug target should correlate, on average, with increased sensitivity to its high-affinity
inhibitor(s). Thus, the statistical significance of the correlation between predicted
differential kinase activity and cognate inhibitor sensitivity, across multiple cell lines,
provides an effective benchmark to assess relative predictive power between different
protein activity prediction algorithms [19].

For the benchmark, we used the mVESPA-predicted activity of protein kinases
representing high-affinity targets of GDSC-tested kinases, as assessed from baseline (i.e.,
not perturbed) phosphoprofiles of six CRC cell lines, in triplicate (U54-BL, Methods).
To support comparative analysis, we modified the benchmark [19] to use pairwise
differential rather than absolute target protein activity ranks, in sensitive vs. resistant
cell lines, and the analysis was performed independently for each cell line (Fig. 2c).
Indeed, for each drug, GDSC previously identified sensitive (low z-score) and resistant
(high z-score) cell lines, based on the compound’s log(IC50) as measured across 1,000
cell lines. For this benchmark, we thus selected the compounds eliciting the greatest
differential sensitivity (sensitive cell line z-score < -1.0, resistant cell line z-score > 0.0)
across the pairwise combinations of the six CRC cell lines for which phosphoproteomic
profiles were available (Figure 2d, Methods). For each selected drug, differential target
kinase activity was measured by mVESPA in sensitive vs. resistant cells, using the CRC
SigNets (Fig. 2c, Methods). Finally, we assessed the method’s sensitivity using a score
represented by the inferred differential activity of the i-th protein (DP i) weighted by
the cell line sensitivity to the associated inhibitor (wi) and integrated over the top n
most differentially active proteins (S(n) =

∑
wiDP i) (Methods).

First, we assessed the differences in mVESPA performance when using signalons
from either dVESPA analysis (i.e., context-specific) or from other sources, including
generalized and contextualized reference databases, by plotting S(n) as a function of n,
normalized to the total number of covered proteins, resulting in pseudo-ROC curves
(Methods). For this comparison, either only the overlapping (intersection) or complete
(full) sets of kinases were compared (Methods), where the intersections provide a
measure of accuracy of predictions and the full sets provide a measure of network
coverage. The analysis shows that dVESPA significantly outperformed the generalized
reference database Pathway Commons, for both ST-Ks and TKs activity inference
(intersection: p-value < 0.001, full set: p-value < 0.023) (Fig. 2d, Supplemental Fig.
2a-3a, Supplemental Tables 1-2, Methods). Furthermore, the benchmark shows that
stDPI/DPI-based removal of indirect interactions in dVESPA generally provided equal
or slightly higher accuracy but better comprehensiveness compared to using
contextualized LinkPhinder (LP) [14] (intersection: p-value < 0.156, full set: p-value <
1.9e-6) or Hierarchical Statistical Mechanistic model (HSM) [13] (intersection: p-value
< 0.003, full set: p-value < 4.4e-4) reference networks. Assessing the performance for
TK activity inference, stDPI/DPI only improved in terms of comprehensiveness over LP
(intersection: p-value < 0.580, full set: p-value < 4.7e-4) but not HSM (intersection:
p-value < 0.766, full set: p-value < 0.947) (Methods, Supplemental. Fig. 2b-3b,
Supplemental Tables 1-2).
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We then benchmarked performance differences associated with each mVESPA
component, including (a) signalon integration and optimization across multiple dataset
(Supplemental Fig. 2c-3c, Supplemental Tables 1-2), (b) differences between
substrate-level, activity-level and integrated analysis (Supplemental Fig. 2d-3d,
Supplemental Tables 1-2), and (c) the effects of cross-talk correction (Supplemental Fig.
2e-3e, Supplemental Tables 1-2).

These analyses show the effect of both each individual improvement of mVESPA as
well as their cumulative effect, the latter resulting in the best overall performance and a
significant improvement over the current state-of-the-art (Fig. 2d). Based on these
results, we selected the stDPI for SL and regular DPI for AL signalon inference,
respectively, followed by integration using Stouffer’s method, for all subsequent studies
(Methods).

CRC cell line selection and representation

To study CRC-specific drug mechanisms using phosphoproteomic profiles, we proceeded
to identify cell lines representing high-fidelity models of established CRC subtypes for
pharmacological perturbation. Since comprehensive phosphoproteomic data for all
CCLE cell lines was not available, CRC subtype selection was based on a recent analysis
of the TCGA CRC cohort, stratifying transcriptional state and genetic alterations into
8 distinct clusters [39]. We thus identified cell lines from the Cancer Cell Line
Encyclopedia (CCLE) [40] representing high-fidelity surrogates of each subtype based
on the overlap of the most differentially active proteins in patient derived samples and
cell lines (OncoMatch algorithm [41,42], p ≤ 10-5, Methods), as assessed by VIPER
analysis. We use the term “high-fidelity” surrogate because we have shown that
OncoMatch can identify cancer models, including cell lines and mouse models, that
recapitulate patient-relevant drug response [42]. Considering also criteria related to
optimal growth in culture and use in a high-throughput microfluidic setting, the
analysis identified six high-fidelity models, including HCT-15, HT115, LS1034, MDST8,
NCI-H508 and SNU-61, representing 5 out of 8 previously identified CRC clusters with
at least one top-5 ranking cell line for each cluster, based on OncoMatch, and all 8 cell
lines with at least one top-10 ranking cell line (Supplemental Fig. 4).

Given this initial selection, we then proceeded to assess whether the selected cell lines
were also representative of subtypes identified by phosphoproteomic cluster analysis by
comparing their KP-enzyme differential activity profiles to those of subtypes identified
by cluster analysis of the 97 clinically annotated CRC samples in the CPTAC-S045
cohort [36]. For this purpose, we acquired baseline phosphoproteomic profiles of each
cell line in triplicate by label-free DIA. At 1% peptidoform and protein FDR, the
analysis identified and quantified the state of 9,813 phosphosites on 18,012 unique
peptide precursors from 3,320 proteins (Methods). We refer to this dataset as “U54-BL”.
At the peptide precursor-level, the dataset/matrix completeness—i.e., the fraction of
runs where peptide precursors were confidently detected and quantified—ranged from
77.3% to 83.1% per cell line, while the average completeness over all cell lines and
replicates was 54.2%. Since CPTAC samples are profiled via a tandem mass tag
(TMT)-based workflow, they present deeper coverage, with 31,339 phosphosites from
6,383 proteins, and a matrix completeness of 40.2%. However, they appeared to harbor
considerable batch effects, due to the employed data-dependent acquisition (DDA) and
TMT-labelling. To allow unbiased comparative analysis of the two datasets, we thus
identified a shared subset comprising 8,617 phosphosites, with equivalent completeness
(Methods). We then used mVESPA to measure protein activities using the
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dVESPA-inferred SigNet, as described above (Fig. 3, Methods), yielding an activity
matrix for 381 KP-enzymes (Supplemental Fig. 5 – 7, Supplemental Table 3).

K-medoids clustering [39] identified three main KP-enzyme activity-based clusters
(VC1 – VC3) in the CPTAC dataset (Methods), while Random Forest recursive feature
elimination identified the KP-enzymes with the greatest independent contribution to
subtype classification (Fig. 3, Supplemental Table 4-5, Methods). KP-enzyme-based
OncoMatch analysis confirmed that most of the cell lines recapitulated differential
enzyme activity across the three subtypes. Specifically, HCT-15 and HT115 matched
VC1, NCI-H508, LS1034 and SNU-61 matched VC2 and MDST8 matched VC3.
Notably, one replicate of HT115 was assigned to VC2 instead of VC1.

Finally, we assessed the ability of the six cell lines to recapitulate the four subtypes
(CMS1 – CMS4) identified by consensus transcriptomic cluster analysis in the
Consensus Molecular Subtype (CMS) classification system [43], by the Colorectal
Cancer Subtyping Consortium (CRCSC) (Methods).

Considering samples classified by both VESPA and CMS (CMS probability > 0.5),
there was broad consistency between CMS and VESPA subtypes (Fig. 3a, colored,
non-white labels). Specifically, VC1 was significantly enriched in CMS1, VC2 in CMS2
samples, and VC3 in CMS4 samples. Due to the smaller number of VESPA-subtypes,
however, CMS3 samples were split between VC1 and VC2, likely reflecting finer-grain
stratification at the transcriptional regulation level, likely due to epigenetics differences
across tissues that would not directly affect signaling. Based on CMS classification,
OncoMatch analysis identified the NCI-H508 and LS1034 cell lines as high-fidelity
models for CMS2 samples, SNU-61 for CMS3, and MDST8 for CMS4, confirming that
the selected cell line panel is broadly representative of patient-derived subtypes (Fig.
3a-b). HCT-15, HT115 could not be confidently classified by CMS to one of the
subgroups. A recent study [44] observed similar results when matching cancer cell lines
to CMS, obtaining good matches for MDST8, NCI-H508, LS1034 and SNU-61, and
ambiguous matching for HT115 (HCT-15 was not reported).

Gene set enrichment analysis [33] (GSEA) using the Reactome database [45]
supports these assignments since it identified several enriched signaling pathways in the
three VESPA clusters (p < 0.05, Benjamini-Hochberg (BH)-corrected, see Methods)
(Fig. 3c, Supplemental Table 6). For instance, we identified enrichment of
VEGFA-VEGFR2 Pathway in VC3, a hallmark of the CMS4 subtype [43], which was
further supported by the activation of RHO GTPases involved in WAVE complex
regulation, a key regulator of actin-remodelling, invasiveness and EMT-like
processes [46] (Fig. 3c). This was recapitulated by the MDST8 cell line in our panel,
representing an established EMT model [47].

In summary, except CMS1, for which no representative cell lines could be identified,
the six cell lines selected for our study effectively represent the major CRC subtypes
inferred by either transcriptional or phosphoproteomic analysis.
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Figure 3. Representation of CRC subtypes by cell line models and activity-level VESPA. a) UMAP
embedding of KP-enzyme activities and coloration according to different classification systems (phosphoproteome-based
VESPA; VC and the CRC Consensus Moleular Signature; CMS). b) The most informative proteins and their VESPA
inferred normalized enrichment scores (NES) have been selected for visualization (full datasets: Supplemental Fig. 5-7).
CPTAC clinical profiles and cell lines were grouped according to the Consensus Molecular Classifier (CMS) and VESPA
clusters (VC). The samples are grouped according to VC. c) Gene Set Enrichment Analysis (GSEA) using a signaling
subset of the Reactome database. Only terms significant in at least one sample (BH-adj. p-value < 0.05) are shown. The
colors represent GSEA NES and are linked to the legend in b).
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Drug Perturbation Profiles

To assess drug mechanism of action (MoA), CRC cell adaptive mechanisms leading to
drug resistance, and potential treatment-mediated rewiring of signaling pathways, we
designed a comprehensive longitudinal drug perturbation experiment (Methods). We
focused specifically on seven compounds, based on their ability to target a diverse and
complementary set of pathways relevant to CRC tumorigenesis. With the exception of
WIKI4 (a TNKS & TNKS2 inhibitor), these represent FDA-approved drugs for the
treatment of CRC and related cancer types, including alpelisib (PIK3CA), imatinib
(ABL1/3 & c-Kit [48]), linsitinib (IGF1R [49]), osimertinib (EGFR-T790M), ralimetinib
(p38 MAPK), and trametinib (MEK1 & MEK2). Although some of these drug
compounds were originally found to target genes with specific or activating mutations
(osimertinib [50] and alpelisib [51], respectively), we set up our experimental design and
analysis strategy to disregard genetic dependencies since targeted drug compounds
frequently also inhibit wild-type genes [51] or can have off-target effects on related
proteins [52]. In the case of alpelisib, the cell line panel represents both mutated
(HCT-15, HT115, NCI-H508) and wild-type (LS1034, MDST8, SNU-61) PIK3CA genes,
whereas no cell lines of our panel (or any other CRC cell lines covered by CCLE)
harbored a primary EGFR-T790M mutation targeted by osimertinib. Indeed, response
to osimertinib was also reported for patients that lack the hallmark T790M
mutation [53].

Assessing drug MoA requires careful selection of an optimal, physiologically
achievable concentration in vivo, at which the MoA is manifested with the least
contribution by confounding factors. For instance, selecting an exceedingly high
concentration may induce confounding effects from both lower-affinity targets
(off-target effects) and mechanisms associated with activation of cell stress and death
pathways. Consistent with our prior studies [54,55], we thus selected drug
concentrations representing the lowest of the reported Cmax (maximum tolerated serum
concentration in vivo) and the 48h IC20 in the most sensitive cell line from our panel, as
experimentally determined by dose response curves (Methods). Concentrations were
also capped at ≤ 0.5µM, consistent with maximum levels achievable in tissues. Based
on this rationale, imatinib, osimertinib, ralimetinib and WIKI4 were titrated at 0.5µM,
while alpesilib, linsitinib and trametinib were titrated at 0.12µM (IC20), 0.14µM (IC20),
and 0.036µM (CMax), respectively (Methods). Differentiating between sensitive and
resistant cell lines is non-trivial [56]. For example, the frequently applied threshold of
1.0µM (IC50), would define 23 out of 27 of our investigated cell line and drug
perturbation combinations with available GDSC reference data as non-sensitive or
resistant (Supplemental Fig. 8a) [56]. For this reason, we transformed log(IC50) values
to z -scores, computing relative metrics for all cell lines, aggregated per drug compound
and GDSC dataset. To differentiate between more sensitive and more resistant
combinations, we selected sensitive combinations as one datapoint reaching z-score <
-1.0, with resistant combinations having z-score > 1.0 (Supplemental Fig. 8b). This
identified trametinib-treated MDST8, LS1034, and NCI-H508, and linsitinib-treated
LS1034, NCI-H508, as well as alpelisib-treated HCT-15 cells as most sensitive according
to GDSC. Conversely, linsitinib-treated SNU-61, HCT-15, and HT115, as well as
trametinib-treated NCI-H508 were identified as most resistant. Notably,
trametinib-treated NCI-H508 was identified as both sensitive (GDSC2) and resistant
(GDSC1) in different datasets.
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Figure 4. Targeted drug perturbations of CRC cell lines. a) A global overview of VESPA inferred normalized
enrichment scores (NES) across the full drug perturbation dataset (336 samples), covering six CRC cell lines, 7 drug
perturbations and DMSO control across 7 time points. b) Gene Set Enrichment Analysis (GSEA) using a signaling subset
of the Reactome database. Only terms significant in at least one sample (BH-adj. p-value < 0.05) are shown. The colors
represent GSEA NES and are linked to the legend in a).

15/72

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.528736doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528736
http://creativecommons.org/licenses/by-nc-nd/4.0/


We generated phosphoproteomic profiles from each cell line, by DIA-based
proteomics (Methods), at seven time points following perturbation with each of the
seven inhibitors and vehicle control (DMSO). This allowed assessing quantitative effects
of KP-enzyme activity following short (5min, 15min), intermediate (1h, 6h) and
long-term (24h, 48h, 96h) treatment. Cumulatively 336 phosphoproteomic profiles were
acquired by label-free DIA, for quantification and statistical validation at
peptidoform-level [25] (Methods). We refer to this dataset as “U54-DP”. To minimize
cross-sample statistical dependencies that would affect the mutual information
estimator in dVESPA for SigNet inference, we generated a reduced “U54-NET” dataset
comprising only sufficiently spaced time points, i.e., 1h, 24h and 96h, respectively.

In total, 27,813 peptidoform precursors, 14,376 phosphosites and 3,786
phosphoproteins were identified and quantified at 1% global-context peptidoform and
protein FDR [57] (Supplemental Data 2). Across all perturbations and time points, our
workflow achieved high consistency on peptidoform-precursor level, on a cell line by cell
line basis (48.7-55.6%), whereas the global completeness across all 336 runs of 36.6%
indicates considerable biological inter-cell-line heterogeneity and different response to
drug perturbations.

After data preprocessing—including normalization and missing value imputation
(Methods)—we used VESPA to assess KP-enzyme differential activity in each cell line,
at each time point following treatment with each drug vs. vehicle control, using the
integrated substrate and activity level analysis. The resulting matrix represents the
differential activity of 381 KP-enzymes across 336 sample conditions, with positive and
negative NES values indicating either increased or decreased enzymatic activity (Fig.
4a, Supplemental Fig. 9-12, Supplemental Tables 7-9). Expectedly, this analysis showed
that cell line identity dominated unsupervised hierarchical clustering when activity was
computed only at the substrate-level (Supplemental Fig. 9-10, Supplemental Table 8),
suggesting that drug response depends on cellular state. However, activity level-based
analysis grouped cell line perturbations according to different signaling network states
(Supplemental Fig. 11-12, Supplemental Table 9), as assessed by Reactome signaling
pathways enrichment analysis (Fig. 4b, Supplemental Table 10).

As a first high-level validation, a focused analysis of primary (i.e., high
affinity-binding) targets could be insightful, even though the applied drug concentrations
should only result in perturbation and not full knock-down of their primary targets. We
thus investigated the time-dependent effect of each drug on its established primary
targets, as reported in DrugBank [58] and ProteomicsDB [59] (Fig. 5, Methods). For
drugs with > 5 primary targets, we selected the five with highest average inhibition
across all cell lines. This analysis shows that primary targets were effectively inhibited
in responsive cell lines, yet with highly variable temporal effects, requiring from 5min to
96h before maximum inhibition was achieved. In addition, significant time-dependent
variability was observed, likely due to cell homeostatic mechanisms driven by temporal
responses to the low perturbational concentrations of the drugs.
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Figure 5. Temporal VESPA perturbation profiles of known primary drug compound targets. The VESPA
normalized enrichment scores corresponding to Fig. 4 are extracted and visualized for the top 5 downregulated known
primary targets, grouped according to drug perturbations and cell lines.
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Further supporting the cell-line-specific effect of each drug, primary target inhibition
across cell lines was highly variable even for the same drug. For instance, following
ralimetinib treatment, MAPK13 (specifically targeted by ralimetinib) and MAPK14
activity was inversely correlated in LS1034, MDST8 and SNU-61 cells yet positively
correlated in other cell lines (Fig. 5). Comparative analysis shows that raw
phosphopeptide abundance of primary targets was often less informative than
VESPA-measured KP-enzyme activity, frequently because active sites were not directly
or only inconsistently measured (Supplemental Fig. 13). In addition, VESPA-based
activity provided critical clues for the discovery of the enzymatically active sites using
the signalons resolved to individual phosphosites. Since the profiled drug perturbations
inhibited enzyme function in a targeted fashion, we found that the VESPA activities
were frequently modulated for the active, but not all other phosphosites of the same
kinase (Supplemental Fig. 14, Supplemental Table 11). For example, MAP2K2:S222
phosphorylation was previously associated with induced kinase activity [15]. Consistent
with the literature, our data shows that trametinib-mediated MAP2K2 inhibition often
results in consistently lower S222-specific, time-dependent, VESPA-inferred activity,
whereas the time series profile of MAP2K2:S23 correlated only across some of the cell
lines (Supplemental Fig. 14). Interestingly activity of MAP2K1:S298—a distinct,
previously reported active site [15]—was anti-correlated with that of MAP2K2:S222,
following trametinib treatment of HCT-15, HT115 and NCI-H508 cells, suggesting a
compensatory mechanism. A similar pattern could also be observed for the correlation
between MAPK14:Y182 activity and the activity of both MAPK13:S350 and
MAPK13:T265, following ralimetinib treatment of HCT-15, HT115 and LS1034 cells
(Supplemental Fig. 14). Additional established active sites targeted by specific drugs
include EGFR:S991, EGFR:S1071 and EGFR:Y1092 (osimertinib), MAP2K1:S298
MAP2K2:S222, RIPK3:S227 (linsitinib) and INPPL1:S132 (imatinib) [15]. Taken
together, these data show that VESPA analysis of data generated by drug perturbation
assays can help elucidate subtype-specific drug MoA and cell adaptation mechanisms.

Context-specific Signaling Network Adaptation and Rewiring

A primary goal of our experimental design was to study potential context-specific,
drug-mediated signaling network buffering/rewiring to elucidate mechanisms of cell
adaptive drug response. For this purpose, we analyzed KP-enzyme activity inferred by
VESPA analysis, with the DeMAND algorithm [55] to identify sub-networks
dysregulated by each drug (Methods). DeMAND assesses dysregulation of individual
PPIs using the Kullback-Leibler divergence, by computing changes in mutual
information across drug perturbations at different time points or concentrations vs.
vehicle controls [55]. Enrichment of dysregulated PPIs (edges) emanating from each
protein (node) in the network can then be used to identify those most affected by a drug.

The DeMAND analysis integrated two different network levels: First, dysregulation
of the activity-level CRC-specific SigNet—comprising 14,390 high-confidence
interactions between 329 proteins—was assessed based on time-dependent KP-enzyme
activity (Methods). Additionally, we probed 915 high-likelihood (LR ≥ 0.5),
non-phosphorylation-related interactions between 198 proteins from the STRING
database [60] (Methods). Indeed, since phospho-state may affect protein conformation
and thus the ability to form complexes, integration of protein-protein interactions is
expected to further improve the DeMAND analysis [61,62]. Results from the two
analyses were then integrated (Methods, Supplemental Tables 12-13).

To assess both global (i.e., most conserved across all cell lines) and cell-line-specific
drug MoA, two analyses were performed: For the former, we used data from all cell lines
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and time points vs. vehicle control samples. For the latter, the analysis was performed
in cell line-specific fashion. In the global analysis, 62 significantly dysregulated proteins
were identified (p < 0.05, BH-corrected) with an average of 12 to 21 proteins per drug.
Hierarchical clustering of DeMAND-inferred MoA profiles identified cell lines presenting
either congruent or divergent MoA for the same drug (Fig. 6a). Interestingly, some
proteins were highly dysregulated by virtually all treatments, across most cell lines,
including established colorectal cancer risk factors, such as PRKCZ [63], BMP2K [64]
and MAPK14 [65]. This suggests that the signaling logic of the cell plays a critical role
in canalizing the effect of drug perturbations into common dysregulation patterns.

To assess the early vs. late effects of drug perturbations on these proteins, we
plotted the VESPA-inferred activity of the proteins identified as most dysregulated by
DeMAND for each drug, using either the early (5min, 15min, 1h) (Fig. 6b) or the late
(24h, 48h, 96h) (Fig. 6c) time point measurements (Methods). As shown, for each drug,
responses clustered into 1 to 3 sub-signatures (with most showing 2) indicating that
drug response is mediated by distinct CRC-specific signaling networks. For instance, at
the early time points, NCI-H508 and LS1034, both classified as high-fidelity CMS2
models, behaved similarly in 3 of the 7 treatments (imatinib, linsitinib, and ralimetinib)
but not in the other 4.

As an illustrative example, two main clusters were identified in the early time points
for osimertinib, including either NCI-H508, HCT-15, and HT115 (cluster 1) and
MDST8, LS1034, and SNU-61 (cluster 2) (Fig. 6b). To illustrate how network wiring
affects drug MoA, we thus visualized the propagation of signaling activity dysregulation
over time on the most drug-dysregulated sub-networks of HCT-15 and HT115, as
representative of the two clusters (Fig. 6d). While the activities of key dysregulated
proteins—BUB1, ERBB2, LYN, PRKCZ—are very similar in the early (Fig. 6b), they
are clearly different between HCT-15 and HT115 in the late time points (Fig. 6c).
Visualization of the signaling activity time course profiles for the two cell lines shows
that activity of the primary drug target (EGFR) was not significantly affected, likely
because it is not highly activated at baseline (Fig. 6a). However, for HT115, the known
off-target [59] BTK was dysregulated, especially based on its interaction with ERBB2.
ERBB2—a lower-affinity target of Osimertinib [52]—is deactivated at early time points
for both cell lines, but activated at the 48h and 96h time points for HCT-15. The
mitotic checkpoint serine/threonine kinase BUB1—which interacts with EGFR, BTK,
ERBB2, LYN and PTK6—was strongly activated in HCT-15 up until the 24h time
point, suggesting that tumor cell proliferation in this CRC cell line could be attributed,
to some extent, to increased signaling activity of this protein [66]. Together with the
late time point activation of LYN and PRKCZ (Fig. 6d), these alterations represent the
main differences between the two cell lines. Interestingly, LYN has already been
reported as a key mediator of resistance to EGFR inhibitors, due to its involvement in
nuclear translocation of EGFR [67], while PRKCZ is mainly associated with the cancer
cell response to nutrient deprivation in intestinal tumorigenesis [68], suggesting that
HCT-15 underwent metabolic adaptations that mediate insensitivity mechanisms.
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Figure 6. Context-specific wiring of signaling pathways. a) Analysis of the VESPA-inferred activities by the
DeMAND algorithm identifies regulators with context-specific dysregulated interactions. The heatmap depicts significance
of dysregulation (-log10(BH-adj. p-value). Only known drug targets (bold) and proteins with significant score (black:
BH-adj. p-value < 0.05) in the unspecific DeMAND analysis are visualized. b) Grouping of the dysregulated proteins
according to drug perturbations and overlay with VESPA-inferred activities of the aggregated early time points. c)
Grouping of the dysregulated proteins according to drug perturbations and overlay with VESPA-inferred activities of the
aggregated late time points. d) Visualization of network dysregulation and drug compound mechanism of action (MoA)
for osimertinib. Nodes indicate the most affected regulators with the inner circos colors indicating cell line type and the
outer circos color and node size indicating VESPA activity. The edges indicate dysregulated, undirected interactions
between the regulators (Methods). Line thickness indicates significance of dysregulation. Proteins highlighted in green
indicate known primary and secondary targets.

Similarly, at the early time points, ralimetinib also shows a comparable response
across all cell lines, however at the later time points, a divergent response in two cell
line clusters—i.e., NCI-H508, HT115, LS1034 and SNU-61, HCT-15, MDST8,
respectively, was found by the analysis. Across these clusters and two representative cell
lines, HT115 and SNU-61, the primary ralimetinib targets (MAPK13 and MAPK14)
show inverse temporal perturbation profiles (Supplemental Fig. 15). However, while
MAPK14 inhibition in HT115 induced consistent inactivation of downstream MAPK
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targets, MAPK13 inhibition in SNU-61 resulted in alternating activation and
inactivation of downstream targets, potentially due to a negative feedback loop.

In summary, DeMAND analysis shows that many of the dysregulated sub-network
are subtype-specific and have distinct temporal patterns, which can also be explored in
a visual graph representation (Supplemental Data 3). Moreover, the VESPA-measured
time-dependent protein activity profiles, following drug perturbation, can be used to
investigate differential mechanisms of action and cell adaptation associated with
context-specific rewiring of signaling interactions. In addition, these results show that
drug MoA is much more complex and cell context-specific than originally thought.

Cell Adaptation-mediated Drug Resistance

Cancer resistance mechanisms are among the most critical issues preventing long-term
efficacy of targeted drug compounds. While so far the focus has been on the discovery
of genetic events leading to selection of drug resistant clones, elucidation of dynamic
network-based adaptation without clonal selection is increasingly emerging as a
promising avenue to improve therapeutic efficacy [69].

Using VESPA and our drug perturbation time series data, we investigated the
adaptive response of kinases and phosphatases by comparing the late drug-perturbed
time points (24h, 48h, 96h) against the corresponding DMSO controls. Specifically, our
goal was to identify the KP-enzymes most likely to have induced the measured
phospho-state signature of resistant cells, following drug treatment. For this purpose,
we assessed the effect of drug perturbation vs. control in late time points for each cell
line and drug perturbation separately using a time-point-paired t-test for differential
testing of the VESPA inferred protein signaling activities (Methods, Supplemental Table
14). The p-values of all conditions were then integrated by Stouffer’s method to select
significant, increased activity of candidate resistance factors across all conditions
(q-value < 0.05, mean(t-statistic) > 0) (Fig. 7a, Methods, Supplemental Table 15).

As in the network dysregulation analysis, the late-time-points-based clustering was
dominated by cell line-specific effects. All drug perturbations for MDST8 and LS1034,
except osimertinib and ralimetinib treated LS1034, resulted in increased signaling
activity of a cluster of KP-enzymes including SRPK2 [70], PTPRE [71], RIOK1 [72],
CTDSP1 [73], NEK4 [74], CDC42BPG [75], ERBB2 [76], NEK3 [77] and RIPK3 [78], all
of which have been previously been associated with colorectal cancer tumorigenesis or
drug resistance and insensitivity. The association of several of these KP-enzymes with
the MAPK/ERK or STAT3 signaling pathways and their lower activity in osimertinib
(targeting EGFR-T790M) and ralimetinib (targeting p38 MAPK) treated LS1034 cells,
suggests that this pathway could be a key mediator of drug insensitivity in these two
cell lines.

A similarly distinct cell-line-specific clustering profile could also be observed for
HT115 cells perturbed with all drug compounds, except trametinib and WIKI4,
resulting in increased signaling activities of KP-enzymes CAMKK1, DAPK1 [79,80],
ALPL [81], MAP2K3 [82], MAPK14 [82], MYLK, VRK1 [83], ZAP70 [84], TP53RK [85],
EPHB3 [86], PTPN11 [87], PRKCA [88], and RPS6KC1, of which the majority has
previously been associated with resistance or insensitivity mechanisms or tumor
suppression in colorectal cancer. Although the tumor suppressor role of DAPK1, ALPL,
EPHB3 and PTPN11 seems to conflict with VESPA’s association to drug insensitivity,
these highly connected KP-enzymes frequently have very different, sometimes
contradicting effects on tumorigenesis depending on cellular context. For example,
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DAPK1, as an autophagy inducer, has a tumor suppressor effect at early stages of
cancer progression, limiting genomic instability in response to metabolic and oxidative
stress [79]. However, at later stages, autophagy contributes to the resistance of tumor
cells to chemotherapy treatment by blocking apoptosis [79]. PTPN11, has similarly
been associated with tumor suppression in genomic screens [89], however, mechanistic
studies have also identified its potential as central target in intrinsic and acquired
targeted drug resistance [87].

The other three cell lines HCT-15, NCI-H508 and SNU-61 also primarily exhibited
cell-line-specific responses to drug perturbations, albeit with less distinct signatures. To
validate the candidate resistance factors identified by VESPA and to systematically
assess whether targeting of the predicted resistance factors would increase
chemosensitivity of insensitive cells in a cell-line-specific matter, we conducted a
large-scale, pooled CRISPR knock-out (CRISPRko) screen experiment, targeting all
annotated human kinases, phosphatases and E3 ligases of our cell line and drug
perturbation panel with four different guides per target (Methods, Supplemental Table
16). We selected resistant drug perturbation and cell line combinations according to the
GDSC-based classification system described above (Supplemental Fig. 8b, Methods):
For linsitinib, we selected HCT-15 (z-score = 1.12), but not SNU-61 (z-score = 1.55),
due to its relative complex culturing conditions. For trametinib, we selected HCT-15
(z-score = 0.89) and NCI-H508 (z-score = 1.13), even though the combination of
NCI-H508 and trametinib resulted in discrepant sensitive (GDSC2) and resistant
(GDSC1) responses within the two datasets and HCT-15 did not reach the strict
threshold for our classification as resistant.

To validate these predictions, we performed CRISPRko screens in HCT-15 cells
treated with linsitinib for 10 population doublings (C1: 1.0 µM, C2: 4.0 µM) and
trametinib (C1: 0.1 µM, C2: 0.7 µM), as well as in trametinib treated NCI-H508 cells
(C1: 0.005 µM, C2: 0.01 µM). DMSO was used as vehicle control. The initial (drug /
DMSO-free) time point-samples (T0) for these screens were collected approximately 5-7
days after the sgRNA lentiviral transductions and puromycin selection. To pick the
correct drug concentrations for the pooled CRISPRko screens, we performed a long
term (10 population doublings) growth test for each cell line and their corresponding
drug(s) with multiple different drug concentrations (Methods). For the CRISPRko
screens, we picked two drug concentrations for each cell line, which appeared to only
have a perturbation, but not a full inhibition effect, analogously to the
phosphoproteomic perturbations (Methods). The only exception was the cell line
NCI-H508, where we had to use a lower drug concentration for the long term pooled
CRISPRko screening, due to drug toxicity manifesting after 96h time point (last time
point of the short-term assay). Differential sgRNA abundance analysis was performed
using DESeq2 (Methods, Supplemental Table 17). Sequencing quality was found to be
excellent, with an average alignment ratio of 90.98% (Supplemental Fig. 16).
Differential expression analysis of DMSO vs. T0 samples identified known essential
genes for CRC with an area-under-the-curve (AUC) of 0.96 for both NCI-H508 and
HCT-15 (Supplemental Fig. 17, Methods).
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Figure 7. Context-specific adaptive stress resistance mechanisms. a) The effect of drug perturbation vs. control
in late time points is visualized for each cell line and drug perturbation separately using the differential VESPA paired
t-test t-statistic between late-time-point (24h, 48h, 96h) drug perturbation vs. DMSO control samples. The depicted
KP-enzymes were selected by selecting those found to be significant (q-value < 0.05, avg(t-statistic) > 0) after integrating
all p-values across all comparisons by Stouffer’s method (Methods). b) Receiver operating characteristics (ROC) with
area under the curve (AUC) and statistical significance (Mann-Whitney-U test) are depicted for the CRISPRko validation
experiment covering HCT-15 linsitinib (LI; C2: 4.0 µM) vs. DMSO and trametinib (TR; C2: 0.7 µM) vs. DMSO, as well
as NCI-H508 trametinib (TR; C2: 0.01 µM) vs. DMSO perturbation.
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For tumor suppressors that can also act as resistance or insensitivity factors, such as
DAPK1 or PTPN11, the nature of perturbation or knock-out will substantially bias
their activity and function [90]. It was recently suggested that tumor suppressor genes,
or genes whose knock-out imparts a growth advantage on cells, could cause recurrent
drug suppressor hits in drug-gene interaction CRISPRko screens, and thus a source of a
systematic bias and false positives in drug-perturbed CRISPRko screens [90]. There is
thus a potential discrepancy in the experimental design of the VESPA predictions and
the CRSIPRko experiment, where VESPA predicts KP-enzyme late-timepoint activity
and potential involvement in resistance or insensitivity mechanisms, whereas the
CRISPRko experiment assesses their gene essentiality starting from timepoint 0 in
combination with drug perturbations for altogether 10 population doublings. For this
reason, we excluded knock-outs of known tumor suppressors [91] from the analysis
(Supplemental Fig. 18-19, Methods).

To compare candidate resistance factors predicted by VESPA with the ground truth
from CRISPRko assays, we conducted separate analyses for each cell line and drug
perturbation to assess receiver operating characteristics (ROC) (Methods). Gene
essentiality (log-fold-change perturbation vs. control, including negative (i.e., essential)
and positive (i.e., non-essential) values), is expected to be inversely correlated to
VESPA-assessed activity (t-statistic perturbation vs. control; positive: increased
activity, negative: decreased activity).

The analysis strongly supports the relevance of VESPA’s predicted resistance factors
in combination with the drug perturbations (Fig. 7b). ROC was found to be
particularly significant for HCT-15 perturbed by linsitinib and trametinib (AUC = 0.81,
p-value = 9e-04; AUC = 0.74, p-value = 0.0078, respectively), with only slightly lower
performance for NCI-H508 perturbed by trametinib (AUC = 0.67; p-value = 0.0962).
Correlation analysis further shows that VESPA can identify high numbers of true
positive candidates with only few false positives (Supplemental Fig. 19), an essential
requirement for diverse applications.

In summary, VESPA in combination with the time-series drug perturbation
phosphoproteomic profiles allows to identify candidate resistance factors that could be
exploited for combination therapies. The CRISPRko validation experiment
demonstrated VESPA’s excellent predictive performance to identify candidates for
linsitinib and trametinib treated cells.

Discussion

The central importance of kinases and phosphatases as key regulators of signaling
pathways has driven the development of targeted drug compounds, particularly to treat
diseases where sustained proliferative signaling is a hallmark [4]. Although the
phosphoproteome has been identified and quantified by mass spectrometry-based
bottom proteomics since decades [92], enormous efforts are still required to
systematically characterize diseases with comprehensive coverage of the
phosphoproteome while simultaneously representing the diversity of observed clinical
subtypes. For different cancer types, including CRC [36] and more than ten others,
CPTAC initiatives have achieved or are working towards comprehensive proteogenomic
characterization of dozens to hundreds of tumors, representing the disease landscape [22].
These datasets, whose acquisition frequently require the collaborative efforts of several
research groups, provide invaluable resources for integrative or follow-up studies.
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In this study, our goal was to identify context-specific wiring of signaling pathways
and adaptive stress resistance mechanisms of CRC subtypes in response to targeted
drug perturbations. For this purpose, we designed a comprehensive experiment,
measuring the phosphoproteomic profiles of six representative CRC cell lines, perturbed
by seven targeted drug compounds and controls across seven time points. Including the
baseline profiles, we acquired 354 phosphoproteomic profiles, which, to our knowledge,
resulted in one of the largest context-specific targeted drug perturbation
phosphoproteomic datasets. The measurement of this large sample cohort required a
flexible and scalable approach. The recent development of new data-independent
acquisition (DIA) strategies [23,24] and corresponding computational analysis
methods [25,93,94], provided an opportunity for the comprehensive and consistent
quantification of the phosphoproteomic profiles within less than 3 weeks of instrument
time for the full dataset. Although our unfractionated, label-free approach provided
substantially lower coverage of the phosphoproteomes than the fractionated, label-based
CPTAC studies, we speculated that quantitative consistency within the sample cohort
might be more important than the depth of proteome coverage for our research
questions. Further, we hoped that an ideal analysis strategy could allow to transfer
knowledge and hypotheses from the comprehensive CPTAC to our focused drug
perturbation profiles. For this purpose, we developed VESPA.

Identically to previous approaches [18,19,61,62,95,96], VESPA is based on the
concept that the activity of kinases and phosphatases can be inferred from their
substrate abundances. However, instead of relying on generalized KP→S interaction
databases, a key feature of VESPA is the generation of context-specific signaling
networks from comprehensive phosphoproteomic profiles, such as the CPTAC studies.
This has several advantages, but most importantly, the extensive space of chemically
possible KP→S interactions is reduced to those are active within a specific disease
context, dramatically improving the specificity of the inferred protein signaling
activities. Further, in comparison to pathway databases, our approach provides many
more KP→S interactions per regulator (Pathway Commons: ˜70; VESPA: ˜500, with
mode of regulation and probabilistic weight) and covers more kinases and phosphatases
(Pathway Commons: 211; VESPA: 371) when considering the coverage of the measured
substrate proteins. In addition to the improved sensitivity of VESPA, the inferred
protein activities can optionally be assessed in a site-specific manner and corrected for
signaling cross-talk. Cross-talk represents a critical property of cellular signaling, which
can only be addressed with the context-specific, comprehensive signaling networks
generated by VESPA and its analytical framework based on the original VIPER
algorithm [29]. Finally, VESPA introduces a hierarchical approach to activity inference:
Although affinity chromatography enrichment methods are robust and generic, they
introduce different biases within the measured phosphoproteomes. First, the current
methods are limited in substantially enriching phosphorylated tyrosine residues of the
frequently disease-relevant tyrosine kinases. Second, the coverage of enriched serine and
threonine phosphopeptides varies substantially between different subtypes or cell lines,
particularly with shallow profiling methods, thus limiting inter-cell-line comparability.
To some degree, the hierarchical approach employed by VESPA can account for these
issues by further abstraction of the signaling network and inference of tyrosine kinase
activity based on substrate activity instead of substrate phosphosites directly. In a
future extension of VESPA, less scalable TK-enriched phosphoproteomic profiles
measured for only few conditions might help to more accurately estimate activity-level
kinase signaling activities based on more specific TK-signalons that can also be applied
to affinity-chromatography-enriched datasets. Using extensive benchmarks, we validated
the improvements of each component of VESPA and demonstrated substantial
improvements over the state-of-the-art. However, due to the intrinsic limitations of the
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benchmark, specifically the bias towards well studied kinases, and the requirement that
primary target activities need to correspond with drug sensitivities of the specific cell
lines, we believe that our benchmark represents a lower estimate of the potential
improvements of VESPA.

We supported the use of our CRC cell line panel by comparing the transcriptional
and signaling network states with the CPTAC tumor profiles (Fig. 3a-b). Both within
the established transcriptional Consensus Molecular Classifier (CMS) of the Colorectal
Cancer Subtyping Consortium (CRCSC), and the VESPA clusters, the cell lines
represent the tumor samples.

The assessment of our drug perturbation study from three different perspectives, 1)
temporal activity profiles of known primary drug targets, 2) the systematic assessment
of context-specific wiring of signaling pathways, and 3) the identification
context-specific adaptive stress resistance or insensitivity mechanisms, illustrates the
diverse possibilities for data interpretation.

The temporal activity profiles showed that phosphosites of primary targets very
often are difficult to measure consistently or do not show a direct response, especially in
contrast to VESPA-inferred signaling activities, which in many cases could even resolve
response profiles to the level of individual phosphosite activities (Supplemental Fig. 14).
We believe VESPA’s unique feature to generate site-specific, data-driven signaling
networks will be useful to support more mechanistic investigations of signaling networks
in future studies.

Drug perturbation-dependent rewiring of signaling networks is a critical component
of adaptive response. Our network dysregulation analysis based on DeMAND
demonstrated the value of context-specific interactions for this purpose. In contrast to
the original implementation for transcriptomic data [55], we believe that our application
to phosphoproteomic data could provide a more direct measure of protein activity, and
thus more mechanistic insights, as demonstrated by the propagation of adaptive
response through neighboring KP-enzymes (Fig. 6d, Supplemental Fig. 15).

Differential analysis of late vs. early time point VESPA activities predicted a set of
candidate vulnerabilities for each drug perturbation and cell line combination (Fig. 7a).
While a considerable fraction of those has been validated as resistance factors in CRC,
and some targets even being assessed as complementary target to reduce resistance or
insensitivity, we wanted to experimentally validate the most resistant combinations.
The CRISPRko experiment targeting all kinases, phosphatases and E3 ligases provided
the ideal high-throughput, orthogonal dataset for this purpose. Although both VESPA
and the CRISPRko experiment have intrinsic biases and limitations, it allowed us to
confidently support VESPA’s predictions with high selectivity and sensitivity and to
position VESPA as a useful tool to predict potential targets for combination therapies.
In future applications, the cell line subtypes could potentially be mapped back to
clinical subtypes for follow-up translational studies, either on signaling network or
transcriptional level, to assess the suitability of combination therapies for personalized
medicine.

Although our study focuses on the phosphoproteomic profiles, the signaling activities
inferred by VESPA are ideally suited and directly compatible with upcoming methods
for causal integration of multi-omic profiles, e.g. via TieDIE [61] or COSMOS [62].
VESPA is directly compatible with popular upstream bottom-up proteomic workflows
and can be easily adapted for various experimental designs. The algorithmic
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components are available as platform-independent open-source software under a
non-commercial usage license. We hope that VESPA can become a useful tool to assess
upcoming medium to large-scale model system and clinical phosphoproteomic profiles in
a context-specific fashion.
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Methods

VESPA

Data preprocessing

The primary input data for VESPA are quantitative, proteotypic/unique peptide-level
phosphoproteomic profiles from bottom-up mass spectrometry experiments. The data
format is a long list (hereafter referred to as VESPA input list (PVL)) consisting of the
columns “gene id” (UniProtKB entry name without species, e.g. “EGFR”), “protein id”
(UniProtKB entry identifier, e.g. “P00533”), “peptide id” (free text unique peptide
identifier from upstream software), “site id” (unambiguous combination of gene id,
protein id and phosphosite, separated by “:”, e.g. “EGFR:P00533:S229”),
“modified peptide sequence” (free text modified peptide sequence from upstream
software), “peptide sequence” (free text unmodified peptide sequence from upstream
software), “phosphosite” (unambiguous phosphosite identifier, e.g. “S229”), “run id”
(free text sample or MS run identifier), “peptide intensity” (float log2-transformed
peptide intensity from upstream software). To avoid any ambiguities and to allow for
data transferability, all peptide sequences, phosphosites and protein names and
identifiers are expected to be mapped to UniProtKB. If a phosphosite is covered by
multiple peptide precursors, the most consistently detected peptide precursor is used to
represent the phosphosite. If a peptide precursor contains multiple phosphorylated sites,
redundant entries for each phosphosite are added. Each dataset (e.g. CPTAC sample
cohort or study) should be stored in a separate PVL to ensure that differences in
experimental design or batch effects can be accounted for in downstream steps.

Optionally, protein-level abundances can be used for the inference of signaling
networks (see below). The file format is a similar PVL, however columns “peptide id”
(free text unique protein identifier), “site id” (unambiguous combination of gene id,
protein id and ”PA” (protein abundance), separated by “:”, e.g. “EGFR:P00533:PA”),
“modified peptide sequence” (free text unique protein identifier), “peptide sequence”
(free text unique protein identifier), “phosphosite” (”PA” (protein abundance)), and
“peptide intensity” (float log2-transformed protein intensity from upstream software) are
slightly altered.

The “vespa” R-package provides fully automated import functionality for the
OpenSWATH [26], IonQuant [97], MaxQuant [98] and the CPTAC [99] file formats.
Support for other file formats can be easily enabled by adapting the reference
implementation. During data import, peptide sequences are first mapped to a user
provided UniProtKB/SwissProt FASTA database to ensure consistent mapping of
phosphosites and identifiers. Peptide intensities are (optionally batch-wise) quantile
normalized and centered.
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Inference of signaling networks

Bottom-up proteomic experiments spanning dozen to hundreds of samples are affected
by both biological and technical variability. For phosphoproteomic experiments,
accounting for the technical effects can be particularly challenging, because different
sample preparation workflows, phosphopeptide enrichment strategies, labelled or
label-free quantification, biochemical peptide fractionation, data acquisition techniques
and signal processing can have a dramatic effect on phosphoproteome coverage, depth
and consistency, introducing missing values that can originate from various causes. To
ensure the integrity of the algorithmic assumptions, for each dataset or PVL, a separate
signaling network is generated by a fully integrated Snakemake [100] workflow
(“vespa.net”) consisting of the “vespa” and “vespa.db” R-packages and the
“vespa.aracne” algorithm:

Data preprocessing: The PVL is transformed to a peptide-level quantitative matrix
with missing values designated as NA. The matrix is peptide-wise rank-transformed over
all samples with missing values being retained. To restrict the query space of
regulator-target interactions, several options are available: a) all combinations of
peptides (not recommended), b) non-directional regulation, where a regulator list is
provided to restrict the query space, c) directional regulation, where activating and
repressing regulator lists are provided to restrict the query space based on positive
(kinases) or negative (phosphatases) correlation with substrates, and d) reference
network, where a list of regulators and targets with optional priors is supplied. For
options b) and c), a list of targets can be supplied if not all peptides of the matrix
should be queried as substrates.

Hybrid adaptive partitioning to estimate mutual information: Peptides measured by
bottom-up proteomics have individual limits of detection (LOD) and limits of
quantification (LOQ), resulting in censored values in most proteome-wide studies. Over
the full distribution of peptide intensities of a proteome, the absence of peptides in some
samples not due to technical effects (e.g. stochastic data-dependent acquisition or batch
effects) might thus contain information about those peptides not reaching LOD/LOQ
abundance levels. To make use of this information and to estimate mutual information
(MI) between the two sparse abundance rank vectors of regulators (R) and targets (T),
a novel hybrid adaptive partitioning algorithm implemented in “vespa.aracne” is used:
The two vectors are split in four quadrants: 1) data points without missing values in R
and T, 2) data points with missing values in both R and T, 3) data points with missing
values in R, and 4) data points with missing values in T. For quadrant 1, the MI is
estimated by the algorithm originally implemented in ARACNe-AP [27]. For quadrants
2-4, the MI is estimated by assessing the numbers of data points in each quadrant in
comparison to the other quadrants. The MI of all quadrants are then combined and
normalized, providing a more robust metric to assess the relationship between
regulators and targets.

Estimation of mutual information threshold: To estimate a lower MI threshold for
random interactions, the rank-transformed quantitative peptide matrix including
missing values is permutated while maintaining the number of missing values. Based on
the query space restrictions, the MI distribution of all interactions is computed, a null
distribution is fitted and the MI threshold fulfilling a user-defined family-wise error rate
(default: FWER=0.05) is estimated.

Bootstrapped network reconstruction: Using the estimated mutual information
threshold, and the hybrid adaptive partitioning mutual information algorithm, the
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bootstrapping and network reconstruction algorithm from ARACNe-AP [27] is applied,
randomly sampling N (default: N=200) samples of the quantitative matrix, inferring
mutual information and removing interactions not fulfilling the MI threshold. To
remove putative indirect interactions, the Data Processing Inequality (DPI) can be
applied, which resolves regulator-regulator-substrate dependencies [28]. If signal
transduction regulation query restrictions were imposed, the novel stDPI function of
“vespa.aracne” is used, which ensures that only valid regulator-regulator-substrate
triangles are considered, either kinase-kinase-substrate (i) or
phosphatase-kinase-substrate (iv) relationships, but not
phosphatase-phosphatase-substrate (ii) or kinase-phosphatase-substrate (iii)
relationships to ensure valid application of the DPI (Supplemental Fig. 1b).

Consensus network generation: In the final step, the consensus network generation
approach of ARACNe-AP is used, where the statistical significance of edge detection is
estimated based on a Poisson distribution and the network is filtered to significant
interactions only (default: BH-adjusted p-value<0.05). At this step, two networks are
generated, one on phosphosite- and the other on whole protein level, where all
phosphosites are combined.

Signalon generation: Based on the consensus network, signalons, i.e. the set of
substrate peptides regulated by the same kinase or phosphatase, are generated for use
with the activity inference module of VESPA by adapting the approach originally
developed for VIPER [29]: Peptide identifiers are mapped back to site identifiers to
ensure transferability between different datasets. For each interaction, the probabilistic
weight is computed by normalizing the interaction MI by the maximum MI across the
network. For each interaction, the optional prior from the reference networks is
normalized by the maximum prior specific to each regulator. The mode of regulation is
then determined as described previously [29] by fitting a three-Gaussian mixture model,
representing clearly repressed, clearly activated and non-monotonically regulated
targets. However, Spearman’s correlation coefficient is computed by using the pairwise
complete datapoints only. Finally, the signalons are restricted to the adaptive top N
(default: N = 500) substrates, selected by decreasing probabilistic weight until

threshold T (T =
∑N

1
likelihood

max(likelihood)

2
) is reached, optionally weighted by the reference

network priors. Signalons need to consist of at least M (default: M = 5) substrates to
be considered.

Activity-level network reconstruction and signalon generation: The exact same steps
as described above are applied to generate activity-level networks and signalons,
however, instead of using a peptide-level PVL as input, a substrate-level PVL
aggregated to the protein identifiers is used as described below. Further, non-signal
transduction and standard DPI will be used in ”vespa.aracne”, allowing to abstract the
signaling network to a functional instead enzymatic representation of the system.

Protein abundance-level regulation of substrates: In some cases, the signaling activity
of kinases and phosphatases does not only correlate with their phosphorylation state,
but also with their protein abundance, e.g. EGFR in cancer cells [101]. To assess
tyrosine kinases, where the active sites involve phosphorylated tyrosine residues that are
difficult to measure by affinity chromatography enrichment methods, using protein
abundance as proxy for activity might be useful. For network reconstruction, a run
identifier matched PVL of protein abundances, as described above, can be supplied that
is used to assess the interactions of regulators represented by their protein abundances
with downstream substrates.
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Inference of kinase/phosphatase activities

Inference of signaling activity: To infer kinase and phosphatase activities on
substrate-level, the signalons from the steps above as well as the PVL used for their
generation, or from an independent but biologically related experiment, represent the
main input to the “viper” [29] R-package. First, the PVL is transformed to a
quantitative matrix, with missing values imputed by the row-wise minimum, adding
numerical jitter to break ties. The parameters for the “viper” activity inference function
can be tailored for different applications and support the same experimental designs as
the original implementation. Most importantly, a bootstrapped null model can be
employed using the “viperSignature” function to assess differential protein signaling
activity in comparison to a reference dataset. To infer activity-level kinase and
phosphatase activity, a substrate-level activity matrix is first generated as described
above and used as input for the “viper” function in combination with activity-level
signalons. By default, signalons need to consist of at least M (default: M = 10)
substrates to be considered. Substrate- and activity-level VESPA activities are then
integrated using Stouffer’s method.

Cross-talk correction: Within the CRC-specific signaling network presented here,
VESPA signalons have a median number of 547 or 43 substrates on substrate- and
activity-levels, respectively. This results in considerable cross-talk between signalons
and signaling pathways that should ideally be corrected for. For this purpose, VESPA is
fully compatible with the shadow analysis [34] and pleiotropy correction [29] methods
implemented in the “viper” function [29]: All signalon pairs affected by cross-talk are
generated that fulfill two conditions: First, signalons A and B need to be both
significantly enriched (default: p-value < 0.05) in the peptide abundance signature.
Second, they need to coregulate at least five substrates. To assess whether the
enrichment of either signalon is driven by the coregulated substrates, the enrichment of
the coregulated substrates within two subsets consisting of the signalon A and B
substrates is computed, resulting in the estimated enrichment p-values pA and pB.
Identically to “viper” [29], the cross-talk differential score is computed as
CDE = log10(pB)− log10(pA). If pA < pB, the coregulated peptides of signalon A are

penalized by CDECI/NT , where the cross-talk index (CI) is a constant (default:
CI = 20) and NT is the number of test pairs where signalon A is involved and vice
versa.

Signaling network optimization

VESPA signalons are typically generated for multiple dependent or independent
phosphosites, one or several independent datasets and are potentially generated by
using different priors from reference databases or predictive algorithms. To select the
best signalon for each phosphosite and/or protein, the metaVIPER [35] approach is
employed by VESPA. Briefly, among the total set of available signalons for a specific
phosphosite or protein, the one resulting in the highest NES according to the
rank-normalized [39] signature is selected. In absence of suitable context-specific
phosphoproteomic datasets, this strategy can also be used to generate an optimized set
of signalons for any target phosphoproteomic profiles.

Because phosphopeptides frequently carry several phosphosites, site-specific regulons
are redundant. To also provide a non-redundant set, VESPA identifies and removes
orthogonal regulon using the “findCorrelation” function from the R-package “caret”
with a specified correlation cutoff (default: C = 0.5).
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Integrated generation of signalons on substrate- and activity-level

VESPA integrates all steps described above to generate and optimize substrate- and
activity-level signalons by the “vespa.net” Snakemake workflow in a fully automated
fashion. As primary input, one or several context-specific PVL of phosphoproteomic
(and optionally related protein abundance) profiles are supplied. In addition, a PVL
representing the reference phosphoproteomic dataset for which the signalons should be
optimized are required. “vespa.net” then by default generates directional regulation /
stDPI substrate-level signalons, as well as separate signalons constrained by and
initialized using the priors from Pathway Commons, HSM/P and LinkPhinder. For each
phosphosite and protein, optimized “meta” signalons are then generated by the
optimization function described above and the reference phosphoproteomic dataset.
This network of optimized protein/substrate-level signalons is then used to infer
cross-talk-corrected substrate-level protein signaling activities for each separate PVL.
This new quantitative matrix in turn is then used to repeat the full network
reconstruction process and to infer activity-level signalons. However, instead of
directional regulation, undirectional regulation / DPI is used.

Application to target datasets

After running “vespa.net” and generating substrate- and activity-level signalons, “vespa”
and the “viper” function is applied to the phosphoproteomic profiles used previously as
reference network. At this step, the experimental design, e.g. control runs within a drug
perturbation experiment, can be used as null model as described above. The VIPER
and VESPA frameworks provide a flexible toolkit suitable for several applications. The
tutorial dataset (“vespa.tutorial”) illustrates the use cases of this study and describes
the required parameters.

Cell culture

The six CRC cell lines used in this study (HCT-15, HT115, LS1034, MDST8, NCI-H508,
SNU-61) were previously selected to ideally represent the clinical phenotypes covered by
TCGA as assessed by their transcriptional state inferred by VIPER, while fulfilling
practical considerations [39]. The cell lines were obtained from ATCC and cultured
using prescribed conditions to the amounts as described below.

IC20 determination

To determine the 48h IC20 of each drug, cell lines were plated into 96well tissue culture
plates, in 100 µL total volume, and incubated at 37°C. After 16 hours the plates were
removed from the incubator and compounds were transferred into assay wells (1 µL) in
triplicate. Plates were then returned to the incubator. After 48 hours the assay plates
were removed from the incubator and allowed to cool to room temperature prior to the
addition of 100 µL of CellTiter-Glo (Promega Inc.) per well. The plates were then
mechanically shaken for 5 minutes prior to readout on the EnVision Multi-Label Reader
(Perkin Elmer Inc.) using the enhanced luminescence module. Relative cell viability was
computed using matched Thimerosal control wells as reference. IC20 was estimated by
fitting a four parameter sigmoid model to the titration results.

Drug perturbation of cell lines

All cell lines were perturbed with the seven drug compounds and DMSO control for the
corresponding time points, 5min, 15min, 1h, 6h, 24h, 48h and 96h. Treatment
concentrations for each targeted drug compound were selected to be at maximum
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0.5µM and lower than the FDA-approved Cmax, as well as lower than the IC20 value of
the most sensitive cell line of our panel as determined above: Alpelisib (BYL719):
0.12µM, Imatinib (STI571): 0.5µM, Linsitinib (OSI-906): 0.14µM, Osimertinib
(AZD9291): 0.5µM, Ralimetinib (LY2228820): 0.5µM, Trametinib (GSK1120212):
0.036µM, WIKI4: 0.5µM and DMSO: 0.5%. Each cell line was plated in 6-well plates in
numbers that would approach confluency by 96h for the fastest growing cell line. After
overnight attachment, cells were treated with the drugs at concentrations described and
for the time points needed, and then lysed and processed as described below. Each
sample was run in triplicate. For baseline phosphoproteomic profiling of the cell lines,
cell lines were grown in 150 mm × 25 mm dishes to about 80% confluency and split into
3 batches. At time of harvest, cells were washed 3x with PBS, pelleted, snap-frozen by
liquid nitrogen and stored at -80°C.

Proteomic sample preparation

Cells were lysed and digested, mainly as previously described [102,103]. For frozen cell
pellets, cells were lysed on ice by adding 10 M urea containing complete protease
inhibitor cocktail (Roche) and Halt™ Phosphatase Inhibitor (Thermo) to the pellets,
pellets well resuspended, and processed for tryptic digestion. For cells in 6-well plates,
plates were washed 3x with pre-cooled PBS and cells in wells lysed on ice immediately
in 10 M urea containing complete protease inhibitor cocktail (Roche) and Halt™
Phosphatase Inhibitor (Thermo) and lysates stored at -80°C until for further analysis.
Lysates were processed for tryptic digestion as follows. The cell pellets/lysates were
further subjected to sonication at 4°C for 2 min using a VialTweeter device
(Hielscher-Ultrasound Technology) and then centrifuged at 18,000 × g for 1 h to remove
the insoluble material. A total of 300-500 µg supernatant proteins (determined by
BioRad Bradford assay) were transferred to clean Eppendorf tubes. The supernatant
protein mixtures were reduced by 10 mM tris-(2-carboxyethyl)-phosphine (TCEP) for 1
h at 37°C and 20 mM iodoacetamide (IAA) in the dark for 45 min at room temperature.
Then five volumes of precooled precipitation solution containing 50% acetone, 50%
ethanol, and 0.1% acetic acid were added to the protein mixture and kept at -20 °C
overnight. The mixture was centrifuged at 18,000 × g for 40 min. The precipitated
proteins were washed with 100% acetone and 70% ethanol with centrifugation at 18,000
× g, 4°C for 40 min, respectively. The protein pellets were dried in SpeedVac for 5 min.
300 µL of 100 mM NH4HCO3 was added to all samples, which were digested with
sequencing grade porcine trypsin (Promega) at a ratio of 1:20 overnight at 37°C. After
digestion, the peptide mixture was acidified with formic acid and then desalted with a
C18 column (MarocoSpin Columns, NEST Group INC). The amount of the final
peptides was determined by Nanodrop (Thermo Scientific). About 5% of the total
peptide digests were kept for total proteomic analysis of the cell line baseline profiles.

Phosphoproteomic sample preparation

From the same peptide digest above, ˜95% of peptides per sample was used for
phosphoproteomic analysis. The phosphopeptide enrichment was performed using the
High-Select™ Fe-NTA kit (Thermo Scientific, A32992) according to the kit instruction,
as described previously [104]. Briefly, the resins of one spin column in the kit were
divided into five equal aliquots, each used for one sample. The peptide-resin mixture
was incubated for 30 min at room temperature and then transferred into the filter tip
(TF-20-L-R-S, Axygen). The supernatant was removed after centrifugation. Then the
resins adsorbed with phosphopeptides were washed sequentially with 200 µL× 3 washing
buffer (80% ACN, 0.1% TFA) and 200 µL×3 H2O to remove nonspecifically adsorbed
peptides. The phosphopeptides were eluted off the resins by 100 µL×2 elution buffer
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(50% ACN, 5% NH3·H2O). All centrifugation steps above were conducted at 500 g, 30
sec. The eluates were collected for speed-vac and dried for mass spectrometry analysis.

Mass spectrometry data acquisition

For each proteomic and phosphoproteomic sample generated above, DIA-MS analysis
was performed on 1 µg of peptides, as described previously [103,105].

Briefly, LC separation was performed on EASY-nLC 1200 systems (Thermo
Scientific, San Jose, CA) using a self-packed analytical PicoFrit column (New Objective,
Woburn, MA, USA) (75 µm × 50 cm length) using C18 material of ReproSil-Pur 120A
C18-Q 1.9 µm (Dr. Maisch GmbH, Ammerbuch, Germany). A high-throughput 75-min
measurement with buffer B (80% acetonitrile containing 0.1% formic acid) from 6% to
37% and corresponding buffer A (0.1% formic acid in H2O) during the gradient was
used to elute peptides from the LC. The flow rate was kept at 300 nL/min with the
temperature-controlled at 60°C using a column oven (PRSO-V1, Sonation GmbH,
Biberach, Germany).

The Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Scientific)
instrument coupled to a nanoelectrospray ion source (NanoFlex, Thermo Scientific) was
calibrated using Tune (version 3.0) instrument control software. Spray voltage was set
to 2,000 V and heating capillary temperature at 275°C. All the DIA-MS methods
consisted of one MS1 scan and 40 MS2 scans of variable isolated windows [105], with1
m/z overlapping between windows. The MS1 scan range is 350 – 1650 m/z, and the
MS1 resolution is 120,000 at m/z 200. The MS1 full scan AGC target value was set to
be 2.0E5, and the maximum injection time was 100 ms. The MS2 resolution was set to
15,000 at m/z 200 with the MS2 scan range 200–1800 m/z, and the normalized HCD
collision energy was 28%. The MS2 AGC was set to be 5.0E5, and the maximum
injection time was 50 ms. The default peptide charge state was set to 2. Both MS1 and
MS2 spectra were recorded in profile mode. Detailed MS settings can be inspected
through raw files provided via ProteomeXchange.

Mass spectrometry data analysis

All raw data files were processed and converted to mzXML by ProteoWizard [106]
(version 3.0), enabling centroiding (using the vendor-provided algorithm) on MS1 and
MS2 levels. For peptide identification and quantification, an integrated Snakemake
workflow consisting of DIA-Umpire [107,108] (version 2.1.6), MSFragger [109] (version
2.3.0), the Trans-Proteomic Pipeline (PeptideProphet [110,111], PTMProphet [112],
iProphet [113], version 5.2.0), EasyPQP (version 0.1.6), OpenSWATH [26]
(OpenMS [114], version 2.5.0), PyProphet [57,115] (version 2.1.4) and TRIC [116]
(msproteomicstools, version 0.11.0) was used.

A UniProtKB/Swiss-Prot protein sequence database was used for MSFragger. The
spectral library was controlled to 1% PSM-, peptide- and protein-level FDR in global
context and the best site-localization per phosphosite was selected. EasyPQP exported
a global library, as well as a sample-specific library for each run.

OpenSWATH was run using the sample-specific high confidence library for mass
calibration and non-linear retention time alignment with enabled IPF [25] module for
peptidoform-level confidence estimation. PyProphet with enabled IPF module and
using the XGBoost classifier [117] was used to for statistical validation. Peptides and
proteins were filtered to 1% FDR in global context. TRIC was used for feature

34/72

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.528736doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528736
http://creativecommons.org/licenses/by-nc-nd/4.0/


alignment using the IPF peptidoform-level scores in run-specific context, aligning
detected peptides by lowess with a seed FDR of 1% to a maximum of 5%.

For quantitative protein abundance inference, the R-package “iq” [118] (version 1.9),
implementing the MaxLFQ algorithm [98] for DIA-based datasets, was used with
default parameters.

The full workflow, all used parameters and software distributed as Docker containers
that enable accurate reproduction of the analysis are provided with the dataset via
ProteomeXchange.

CRISPRko validation experiment

Cell culturing

• HCT-15 - RPMI 10%FBS + pen/strep

• NCI-H508 - RPMI 10%FBS + pen/strep

• 293T – DMEM 10%FBS + pen/strep

All cell lines were routinely tested for mycoplasma contamination. Cell lines were
kept in a 37 °C humidity-controlled incubator with 5.0% CO2.

Optimizing drug concentrations for pooled CRISPRko screens

Drug concentrations were optimized for each cell line to ensure ideal long-term
CRISPRko screen readouts. The time to reach 10-population doublings depended
primarily on characteristics of each cell line and could take between 25-40 days.
Trametinib and linsitinib perturbations were tested with 5 concentrations (10µM, 1µM,
0.1µM, 0.01µM and DMSO only) and the cellular growth effect was assessed for each of
those concentrations for each of the cell lines in a long-term growth assay. The DMSO
concentration was optimized for 0.15%.

We let the cells grow in the presence of these drug perturbations in 15cm plate
format, splitting the cells whenever they became approx. 80-90% confluent. When the
DMSO-plate reached 10-population doublings, the total number of cell divisions were
counted for each of the above-mentioned drug treatment plates. Final concentrations for
the pooled CRISPRko-screens were selected to represent drug concentrations which had
only a modest effect on cell division rate (approx. 10-20% slower cell divisions compared
to DMSO), similarly as previously suggested [119].

CRISPRko library design

For CRISPRko screening we designed the target gene list to include all human kinases
(obtained from UniProt: pkinfam.txt), phosphatases (obtained from reference [8]) and
E3-ligases (obtained from reference [120]), altogether 1101 genes. All these genes were
targeted with 4 sgRNAs / gene. For guide designs we used CRISPick [121,122].

CRISPRko oligo synthesis and library cloning

Oligo libraries (4404 oligos) were ordered from Twist-biosciences in following format:
cttgtggaaaggacgaaacaccgNNNNNNNNNNNNNNNNNNNN-

gtttAagagctagaaatagcaagttTaaataaGgct
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Twist oligo pool amplifcation

• 1µl Twist oligo library (1ng/ul)

• 10µl 5x KAPA HIFI buffer

• 1 µl dNTPs

• 1 µl KAPA

• 2µl sgRNA insert dd F (10µM)

• 2µl sgRNA insert dd R (10µM)

• 2.5µl 20xSYBR

• 30.5µl H2O

• 95 °C 3 min

• 98 °C 20 sec (done with qPCR, stopped before saturation)

• 56 °C 15 sec (done with qPCR, stopped before saturation)

• 72 °C 20 sec (done with qPCR, stopped before saturation)

• 72 °C 5 min

• 4 °C ∞

• sgRNA insert dd F: CTTGTGGAAAGGACGAAACACCG

• sgRNA insert dd R: AGCCTTATTTAAACTTGCTATTTCTAGCTCTTAAAC

After PCR, the insert was gel purified (GeneJet) and Golden-gate cloned into
BsmBI-digested pLenti-guide-Puro (addgene #52963).

Golden-gate cloned insert + vector was Isopropanol precipitated and large-scale
electroporated into Lucigen Enduro competent cells. The bacterial colonies were
scraped from 10 x 24,5cm x 24,5cm agar plates, so that the estimated library complexity
was > 1000 colonies / sgRNA.

CRISPRko library viral packaging

13 million 293T cells were seeded for each 15cm dish previous night of the transfections.
The following morning the viral transfections were conducted the following way:

• 22.1µg sgRNA-library containing pLenti-guide-Puro or pLenti-Cas9-Blast

• 16.6µg PsPAX2 (Addgene 12260)

• 5.5µg PMD2G (Addgene 8454)

• 1660µl of sterile H2O

After mixing the plasmids 110,6µl of Fugene HD (Promega) was added to the mix.
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The transfection mixture was briefly vortexed and incubated 10 minutes in room
temperature before adding dropwise to 293T cells. Altogether 3 x 15cm plates were
transfected for sgRNA-library containing pLenti-guide-Puro and 1 x 15cm plates were
transfected for pLenti-Cas9-Blast (addgene #52962).

The transfection mixture was removed the following day and virus was collected at
48h and 72h after initial transfections. To remove cellular debris, the virus containing
supernatant was centrifuged 500 x g for 5min and filtered by using 0.45µm PES filters
(Millipore). The lentivirus was concentrated by using Lenti-X concentrator (Clontec),
aliquoted and stored at -80 °C.

Generation of Cas9 expressing CRC cell lines

Cas9 expressing cell lines were generated as follows: Concentrated
pLenti-Cas9-Blast-lentivirus was transduced to CRC cell lines (in presence of 8µg/ml
polybrene) with estimated MOI 0.3. The virus was removed the following day and
4µg/ml Blasticidin was added to the cells. Blasticidin selection was continued as long as
the control cells (non-transduced) were viable.

CRISPRko screening

sgRNA containing lentiviruses were transduced into Cas9 expressing CRC cell lines (in
15cm plate-format) in quadruplicates (in presence of 8µg/ml polybrene), at an
estimated MOI = 0.2. After 24h, the lentivirus containing media was removed, cells
were washed with PBS, and puromycin-containing media (3µg/ml) was added to the
cells for 48-96h until all control cells (not virus-infected) were dead. After this the cells
were cultured for extra couple of days so that the plates reached approx. 80%
confluency. At this point the cells were divided into 3 parts; 1/3 going into -80 °C as
time point 1 to assess sgRNA representation baseline, 1/3 to continue to culture with
DMSO and 1/3 to continue to culture with either with Linsitinib or Trametinib. Cells
were always maintained at >1,500 cells per guide throughout the screens and finally
harvested after 10 population doublings to assess gene essentiality. The exact time (in
days) for this varied for DMSO / Linsitinib / Trametinib with different cell lines. After
the screen, the genomic DNA from the first and the last timepoints (DMSO & Drug
perturbed) were extracted by using Blood and Cell culture DNA Maxi kits (Qiagen).

Preparation of the sequencing library from genomic DNA

NGS library preparations were done the following way: Briefly, 40 µg of gDNA,
theoretically corresponding to 6 million diploid cells, was used as PCR template in 4
parallel NGS PCR1 reactions (10 µg template DNA per reaction) using ExTaq DNA
polymerase (Takara bio). After 18 cycles, the 4 replicate reactions were pooled together.
2 µl of pooled NGS PCR1 product was used as template for NGS PCR2 which was run
with qPCR with index primers and stopped before the amplification started to saturate.
The resulting products of approx. 360 bp were gel purified (GeneJet), pooled together
and Next generation sequenced.

NGS PCR1 master mix:

• 10µg gDNA

• 0.75µl ExTaq

• 10µl 10 x ExTaq Buf
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• 8µl dNTPs

• 0.5µl CRISPRko PCR 1R (pool of 5 (100µM))

• 0.5µl CRISPRko PCR 1F (100µM)

• to 100µl H2O

PCR1 protocol:

• 98 °C 1 min

• 98 °C 10 sec (18 cycles)

• 58 °C 30 sec (18 cycles)

• 72 °C 30 sec (18 cycles)

• 72 °C 10 min

• 4 °C ∞

NGS PCR2 master mix:

• 2µl DNA (from 1st PCR)

• 0.375µl ExTaq

• 5µl 10 x ExTaq Buf

• 4µl dNTPs

• 0.5µl CRISPRko PCR 2F (100µM)

• 0.5µl CRISPRko PCR 2R(index) (100µM)

• 1.25µl 20xSYBR

• 36.4µl H2O

PCR2 protocol:

• 98 °C 1 min

• 98 °C 10 sec (done with qPCR, stopped before saturation)

• 60 °C 30 sec (done with qPCR, stopped before saturation)

• 72 °C 30 sec (done with qPCR, stopped before saturation)

• 72 °C 10 min

• 4 °C ∞
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CRISPRko Oligos used for NGS library preparation

• CRISPRko PCR 1F: TGGAGTTCAGACGTGTGCTCTTCCGATCTTCTAC-
TATTCTTTCCCCTGCACTGT

• CRISPRko PCR 1R: CTTTCCCTACACGACGCTCTTCCGATCT(1-
5nt stagger)TGTGGAAAGGACGAAACACCG

• CRISPRko PCR 2F: AATGATACGGCGACCACCGAGATCTACACTCTTTCC-
CTACACGACGCTCTTCCGATCT

• CRISPRko PCR 2R(index): CAAGCAGAAGACGGCATACGA-
GATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

Data processing & Statistical analysis

For all data analysis steps, “viper” (version 1.22.0), “vespa” (version 1.0.2), “vespa.db”
(version 1.0.2) and “vespa.aracne” (version 2.2) were used. “vespa.net” (version 1.0.2)
was executed using the corresponding Docker images of the algorithms converted to
Singularity images. All software tools are available from the corresponding repositories
as referred below.

Inference of a CRC-specific signaling network

To generate a CRC-specific signaling network, we obtained the processed
phosphoproteomic and total proteomic profiles from the CPTAC study S045 [36]
(referred to as “CPTAC-S045”). To account for potential confounding factors
originating from protein abundance levels, we further generated a derived dataset,
referred to as “CPTAC-S045N”, normalizing phosphopeptide abundance by the
corresponding protein-level intensity values. The datasets were imported from CCT and
CPTAC formats and converted to PVL by the corresponding “vespa” functions without
further processing except mapping of identifiers. Only tumor samples were used across
all analyses.

The phosphoproteomic dataset generated in this study (referred to as “U54”) was
imported from the OpenSWATH file format and converted to PVL by the corresponding
“vespa” function, with quantile normalization grouped by cell line and centering enabled.
The baseline profiles of the six cell lines measured in triplicates (“U54-BL”), as well as
drug perturbations across three distinct time points (1h, 24h, 96h; “U54-NET”) and the
full time series (”U54-DP”) were exported as separate PVL files.

These three PVL sets (CPTAC-S045, CPTAC-S045N and U54-NET) were used as
input to the “vespa.net” workflow. By default, separate signalons were generated for
the stDPI/DPI, LP [14] (published dataset), HSM/P [13] (published dataset) and
PC [16] (version 12) methods. For all analyses, the PVL of U54 BL was used to
generate optimized signalons. For all analysis, except the benchmark and the DeMAND
analysis, the stDPI/DPI signalons were used. For the DeMAND analysis, the HSM/P
signalons were used to allow restrictions on the prior confidence.

Benchmark and validation of dVESPA

Benchmark signaling network generation: Signaling networks based on different data
completeness thresholds of the U54-NET datasets were generated as described above.
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Comparison of MI methods: To compare the MI estimation methods, the HSM
priors were used as ground truth, as provided by the vespa.db R-package. Based on the
U54-NET datasets, subsets were generated covering >20%, >40%, >60%, >80% and
100% data completeness. To compute hpMI and dMI, the sparse input matrices were
directly used, to compute iMI, missing values were imputed row-wise, as described
above. To compute dMI, “vespa.aracne” was extended to support depletion (Git branch
“depletion support”; revision 470944f). “vespa.aracne” was run as described above, but
without stDPI/DPI and using 100 bootstraps. Only significant interactions (<5% FDR)
were considered. The overlap of these interactions with HSM was used to compute the
summed score.

Comparison of DPI methods: stDPI, DPI and noDPI signaling networks were
generated from U54-NET as described. Further, ground truth interactions were selected
if they were identified as ST-K→S pairs by PDZ, SH3, WH1, and WW domain HSM
analysis, since these represent the primary determinants of specific serine and threonine
phosphopeptide interactions with ST-Ks. As a negative gold standard, we used
candidate TK→S interactions with an inferred PTB, PTP and SH2 domain interaction
with phosphotyrosine-containing peptide, since the used dataset for this benchmark
(U54-NET), which is not enriched for phosphotyrosine peptides, should not be able to
identify these interactions. This resulted in a context-specific reference dataset that
separates between very likely direct and indirect interactions suitable for methodological
comparisons. Receiver-Operating-Characteristics (ROC) curves were generated using
the pROC R-package (version 1.17.0.1) and default parameters for each signaling
network separately. P-values for ROC curve comparisons were also computed using
pROC by DeLong’s test and using default parameters.

Benchmark and validation of mVESPA

To benchmark mVESPA, we used the phosphoproteomic cell line baseline profiles
(U54-BL) dataset as described above and obtained the curated GDSC [38] drug
sensitivity and the primary target list from the original INKA publication [19]
(Dataset EV6.xlsx).

Substrate- and activity-level signalons were generated as described above, however
reference databases, datasets and parameters were disabled in a combinatorial fashion
for the benchmark. Only those regulators present in all substrate- or activity-level
comparisons were considered. For the differential comparison, “viperSignature” of the
“viper” R-package, comparing sensitive vs. resistant or insensitive cell lines was used
with default parameters. To assess the sensitivity of the recovered primary targets, the
protein activity cumulative probability was weighted by the cell sensitivity cumulative
probability: S = pnorm (ZV ESPA) ∗ −pnorm(ZGDSC). A metric representing
“specificity” was derived by transforming kinase activity ranks to relative activity ranks.
The mean area-under-the-curve (AUC) metrics for each benchmark were computed as
proposed previously, averaging the results of all differential comparisons [55]. Statistical
comparison of the differential comparison AUC metrics were conducted using an
unpaired, right tailed Wilcox’ tests (R-package “stats”, version 4.2.1).

Representation of CRC subtypes by cell line models

Cell line selection: Cell lines were selected according to previously developed
methods [39,41]. The significance threshold for matching cell lines and patient samples
was set to p-value < 10-5. To rank matching cell lines for each cluster, score
S =

∑Mi,j

mi,j
−(log10(p), where Mi,j represents all significant matches of cell line j to
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cluster i, was computed. This score was used to select six CRC cell lines, representing 5
out of 8 (top 5) and all (top 10) clinical subtype clusters with at least one cell line.

CMS transcriptome-level classification: Preprocessed RNA-seq profiles for CPTAC
S045 [36] were obtained from the original publication. Preprocessed RNA-seq profiles
for the six CRC cell lines were obtained from CCLE [40]. Counts were normalized to
TPM for both datasets and identifiers were mapped to be compatible with CMS. Only
transcripts measured in both datasets were used for downstream analysis. The CMS
classifier [43] was then applied using the RandomForest predictor and default
parameters.

VESPA: Protein signaling activities were inferred by VESPA using the CRC-specific
signalons described above. The phosphoproteomic profiles of CPTAC-S045 and U54-BL
were first randomly subsampled on phosphosite-level to ensure that the detectability of
phosphosites has the same frequency within both datasets. The two datasets were then
concatenated and rank-normalized, first column-wise, then row-wise, as described
previously [39]. The “viper” function was applied on substrate- and activity-levels
including cross-talk correction, and statistically integrated, as described above.

Clustering: The substrate- and activity-level VESPA matrices were clustered by the
k-medoids approach, prioritizing cluster robustness, as described previously [39].

Gene set enrichment analysis: GSEA was conducted by the R-package “fgsea”
(version 1.14.0), using the Reactome pathway database (version 75) reduced to
signaling-only gene sets (downstream pathway “R-HSA-162582”). Only significant
results (adj. p-value < 0.05), belonging to primary pathways in at least one sample
were reported.

Feature selection: Feature importance was assessed by applying the Random Forest
recursive feature elimination method from the R-package “caret” (version 6.0-86),
selecting the top 50 most important features for classification into the specific groups.
For simplicity, Fig. 3b only shows the cumulative most important features of the CMS
and pVC classification systems, grouped according to pVC. Supplemental Fig. 5-6 show
the full results, whereas Supplemental Fig. 7 depicts the data underlying Fig. 3b,
grouped according to CMS.

Visualization: Heatmaps were generated using the “pheatmap” (version 1.0.12)
R-package. Hierarchical clustering on row-level was conducted using the default R
“hclust” function with default parameters.

Targeted drug perturbations of CRC cell lines

VESPA: The 336 perturbed U54-DP phosphoproteomic profiles were preprocessed by
imputing missing values by using the row-wise minimum across all samples including
numerical jitter to break ties as described above. To normalize for non-perturbation
time-series and batch effects, peptide abundances of all samples were normalized by the
corresponding DMSO controls for each cell line separately. Each time point was
normalized by a sliding window of the average between the preceding and following time
point, if available. E.g. 15min time points were normalized by the 5min, 15min and 1h
time points of the corresponding DMSO control runs. The log2 fold changes were then
used as input for all downstream steps. Protein signaling activities were inferred by
VESPA using the stDPI/DPI CRC signalons as described above. The “viper” function
was applied on substrate- and activity-levels using a bootstrapped “viperSignature” null
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model based on the DMSO controls, with 1000 permutations including cross-talk
correction as described above. To infer activity-level signaling activities, the
substrate-level activities were inferred without a null model but using the absolute log2
fold change values. Substrate- and activity-level VESPA results were integrated as
described above.

Drug compound – cell line sensitivity analysis: Drug sensitivity data from
GDSC [38] was obtained and z -score transformed per drug compound and GDSC
dataset over all covered cell lines. Sensitive combinations were defined as z-score < -1.0,
whereas insensitive combinations were defined as z-score > 1.0. Violin plots were
generated using the “geom violin” function with default parameters of the R-package
“ggplot2” (version 3.4.0).

Visualization: Heatmaps were generated using the “pheatmap” (version 1.0.12)
R-package. Hierarchical clustering on row and column-level was conducted using the
default R “hclust” function with default parameters.

Gene set enrichment analysis: GSEA was conducted by the R-package “fgsea”
(version 1.14.0), using the Reactome pathway database (version 75) reduced to
signaling-only gene sets (downstream pathway “R-HSA-162582”). Only significant
results (adj. p-value < 0.05), belonging to primary pathways in at least one sample
were reported.

Temporal VESPA activity-level perturbation profiles of known primary drug
compound targets: Known primary targets for the drug compounds were obtained from
DrugBank [58] and ProteomicsDB [59]. Only the top five most downregulated target
proteins per drug compound were visualized.

Context-specific wiring of signaling pathways

VESPA: The 336 perturbed U54-DP phosphoproteomic profiles were preprocessed as
described above. The “viper” function was applied separately for each cell line on
substrate- and activity-levels using a rank-normalized matrix, as described
previously [39] and including cross-talk correction. Substrate- and activity-level VESPA
results were integrated as described above.

DeMAND: The DeMAND [55] (version 1.18.0) algorithm was used to assess
context-specific wiring of signaling pathways. Using substrate-level VESPA activities,
the activity-level signalons were used. The STRING PPI DB (version 11) was used as
reference interaction database on activity-level VESPA activities, considering all
interactions with probability > 0.5. To generate subtype-unspecific DeMAND MoA
profiles, for each drug perturbation, the temporal profiles of all cell lines were compared
against the DMSO controls. To generate subtype-specific DeMAND MoA profiles, for
each cell line and drug perturbation, the temporal profile was used as target and all
DMSO controls were used as null distribution. Edge and node p-values were integrated
using Fisher’s method and BH-adjusted for multiple testing.

Visualization: Heatmaps were generated using the “pheatmap” (version 1.0.12)
R-package. Hierarchical clustering on row and column-level was conducted using the
default R “hclust” function with default parameters.
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Cytoscape: To visualize the interaction networks, Cytoscape (version 3.8.2) was used.
Nodes indicate the most affected regulators with the inner circos colors indicating cell
line type and the outer circos color and node size indicating VESPA activity. The edges
indicate dysregulated, undirected interactions between the regulators. Line thickness
indicates significance of dysregulation. Dysregulated nodes (BH-adjusted p-value <
0.05) and known primary targets are colored. Grey nodes indicate connecting
dysregulated nodes (BH-adjusted p-value < 0.1).

Context-specific adaptive stress resistance mechanisms

VESPA differential testing: Using the time series component of our experimental design,
which covers drug perturbation time points from 5min to 96h, we investigated the
adaptive response of kinases and phosphatases by comparing the late (24h, 48h, 96h)
drug perturbed against DMSO time points using a paired, one-tailed t-test (R version
4.2.1). To select candidates for visualization, p-values were integrated by Stouffer’s
method across all conditions and corrected for multiple testing (q-value < 0.05).

Identification of essential genes using DESeq2: Alignment of NGS with sgRNA
guides was conducted using the “ShortRead” R-package (1.54.0). Essential genes for the
DMSO vs. T0 comparison were obtained from a generalized resource [123], as well as a
CRC-specific subset of DepMap [124], filtered to the 10% quantile of the gene effect.
Differential expression analysis was conducted separately for each guide with the
“DESeq2” R-package (1.36.0). P -values were integrated using Stouffer’s method and
corrected for multiple-testing by the Benjamini-Hochberg FDR approach [125].

Receiver Operating Characteristics: ROC curves and statistics were generated using
the R-package “pROC” (version 1.18.0). Significant (FDR < 0.01) CRISPRko results
were used as ground truth values (negative beta: true; positive beta: false) and the
VESPA scores (t-statistic) were used as predictors. ROC p-values were computed using
the function “roc.area” from the R-package “validation” (version: 1.42).

Correlation analysis: Correlation analysis was conducted by comparing the
t-statistic of the differential VESPA analysis with the significant (FDR < 0.01)
log-fold-changes reported by DESeq2. Correlation statistics were computed using a
one-tailed Spearman correlation test (R version 4.2.1).

Exclusion of tumor suppressor genes: For the analyses excluding tumor suppressor
genes, all genes present in TSGene 2.0 database [91] were excluded.

Visualization: Heatmaps were generated using the “pheatmap” (version 1.0.12)
R-package. The t-statistic values of the described above are visualized. Hierarchical
clustering on row- and column-level was conducted using the default R “hclust”
function with default parameters.

Data availability

The CRC mass spectrometry proteomics data generated as part of this study have been
deposited to the ProteomeXchange Consortium via the MassIVE partner repository
(MassIVE) with the data set identifiers MSV000091204 / PXD039859.

The CRISPRko RNA-seq data discussed in this publication have been deposited in
NCBI's Gene Expression Omnibus [126] and are accessible through GEO Series
accession number GSE224396 (GEO).
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Code availability

VESPA is available as modular platform-independent open-source software under a
non-commercial usage license. VESPA consists out of five different modules, which are
provided as versioned source code, binaries or docker containers.

• The “vespa” R-package for signaling protein activity inference is available from
GitHub (https://github.com/califano-lab/vespa).

• The “vespa.db” R-package providing preprocessed reference networks is available
from GitHub (https://github.com/califano-lab/vespa.db).

• The “vespa.aracne” algorithm with is available from GitHub
(https://github.com/califano-lab/vespa.aracne).

• The “vespa.net” Snakemake workflow to generate context-specific signalons from
one or multiple datasets is available from GitHub
(https://github.com/califano-lab/vespa.net).

• A tutorial describing the full analysis workflow with example data is available
from GitHub (https://github.com/califano-lab/vespa.tutorial).
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Supplementary Figures
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Supplementary Figure 1. Walkthrough example of VESPA. a) Hybrid Partitioning computes Mutual Information
(MI) by splitting data points into four quadrants, accounting for different levels of missing data (Methods). b) The signal
transduction Data Processing Inequality (stDPI) accounts for the limited set of enzymatic actions inherent to kinases and
phosphatases, restricting the valid triangular interactions between two enzymes and a substrate (Methods): Only valid
regulator-regulator-substrate triangles are considered, either kinase-kinase-substrate (i) or phosphatase-kinase-substrate

45/72

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.528736doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528736
http://creativecommons.org/licenses/by-nc-nd/4.0/


(iv) relationships, but not phosphatase-phosphatase-substrate (ii) or kinase-phosphatase-substrate (iii) relationships. c)
An example on substrate-level illustrates the individual steps of VESPA, starting from the raw data (left), over mutual
information and probabilistic weight estimation using regulator (GSK3A) and target (SF3B1, RIN2, DOCK7, ZZEF1,
LMO7, CLK1) abundance ranks, accounting for missing values (middle), and visualization of the signalons including
Mode of Regulation (MoR) and probabilistic weight. d) An example on activity-level illustrates how the results from
VESPA on substrate-level are used to infer more abstract and generalized protein signaling activities, e.g. ERBB2, where
the Data Processing Inequality allows for both activating and deactivating interactions of a kinase or phosphatase.
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Supplementary Figure 2. Benchmark and validation of mVESPA (intersection of signalons). Using
VESPA and CRC-specific signalons, differential comparisons were conducted for each drug compound to identify the top
differentially active regulators. Together with a list of the primary targets of all drug compounds, the sensitivity was
computed based on the protein activity cumulative probability, weighted by the cell sensitivity cumulative probability, in
dependency of the relative top ranking differential active proteins (selectivity). Computed area-under-the-curve (AUC)
and p-values are listed in Supplemental Tables 1 and 2, respectively. a) Context-specific vs. reference-based signalons, b)
Use of dVESPA-inferred signalons vs. reference constrained signalons, c) Signalon integration and optimization across
multiple datasets, d) Hierarchical integration by mVESPA and e) mVESPA cross-talk correction.
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Supplementary Figure 3. Benchmark and validation of mVESPA (full signalons). Using VESPA and
CRC-specific signalons, differential comparisons were conducted for each drug compound to identify the top differentially
active regulators. Together with a list of the primary targets of all drug compounds, the sensitivity was computed based
on the protein activity cumulative probability, weighted by the cell sensitivity cumulative probability, in dependency of
the relative top ranking differential active proteins (selectivity). Computed area-under-the-curve (AUC) and p-values
are listed in Supplemental Tables 1 and 2, respectively. a) Context-specific vs. reference-based signalons, b) Use of
dVESPA-inferred signalons vs. reference constrained signalons, c) Signalon integration and optimization across multiple
datasets, d) Hierarchical integration by mVESPA and e) mVESPA cross-talk correction.
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Supplementary Figure 4. Representative CRC cell line selection. For each MOMA patient cluster, CRC CCLE
cell lines were ranked according to their VIPER matching rank (Methods).
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Supplementary Figure 5. Representation of CRC subtypes by cell line models and the full VESPA matrix
grouped according to VC. All regulators and their VESPA inferred normalized enrichment scores (NES) have been
used for visualization. CPTAC clinical profiles and cell lines were grouped according to the Consensus Molecular Classifier
(CMS) and VESPA clusters (VC). The samples are grouped according to VC.
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Supplementary Figure 6. Representation of CRC subtypes by cell line models and the full VESPA matrix
grouped according to CMS. All regulators and their VESPA inferred normalized enrichment scores (NES) have been
used for visualization. CPTAC clinical profiles and cell lines were grouped according to the Consensus Molecular Classifier
(CMS) and VESPA clusters (VC). The samples are grouped according to CMS.
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Supplementary Figure 7. Representation of CRC subtypes by cell line models and VESPA grouped by
CMS. The most informative proteins and their VESPA activity-level inferred normalized enrichment scores (NES) have
been selected for visualization. CPTAC clinical profiles and cell lines were grouped according to the Consensus Molecular
Classifier (CMS) and VESPA clusters (VC). The samples are grouped according to CMS.
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Supplementary Figure 8. Targeted drug compound sensitivity of selected cell lines in context of GDSC.
a) The distribution of GDSC 1&2 IC50 values is depicted as violinplots (Methods). b) The distribution of GDSC 1&2
z -score values, computed per drug compound over all cell lines per GDSC dataset, is depicted as violinplots (Methods).
For both subfigures 33, 39, 69, 27, 64, and 27 datapoints were used to draw the distribution of hematopoietic tumors; 676,
325, 1417, 636, 1412, and 635 datapoints were used to draw the distribution of solid tumors. Red lines indicate thresholds
for sensitive cell lines (z-score < -1.0) and resistant cell lines (z-score > 1.0)
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Supplementary Figure 9. Targeted drug perturbations of CRC cell lines on substrate-level (sorted).
A global overview of VESPA substrate-level inferred normalized enrichment scores (NES) across the full sorted drug
perturbation dataset (336 samples), covering six CRC cell lines, 7 drug perturbations and DMSO control across 7 time
points.
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Supplementary Figure 10. Targeted drug perturbations of CRC cell lines on substrate-level (grouped).
A global overview of VESPA substrate-level inferred normalized enrichment scores (NES) across the full grouped drug
perturbation dataset (336 samples), covering six CRC cell lines, 7 drug perturbations and DMSO control across 7 time
points.
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Supplementary Figure 11. Targeted drug perturbations of CRC cell lines on activity-level (sorted). A global
overview of VESPA activity-level inferred normalized enrichment scores (NES) across the full sorted drug perturbation
dataset (336 samples), covering six CRC cell lines, 7 drug perturbations and DMSO control across 7 time points.
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Supplementary Figure 12. Targeted drug perturbations of CRC cell lines on activity-level (grouped)
A global overview of VESPA activity-level inferred normalized enrichment scores (NES) across the full grouped drug
perturbation dataset (336 samples), covering six CRC cell lines, 7 drug perturbations and DMSO control across 7 time
points.
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Supplementary Figure 13. Temporal phosphosite abundance-level perturbation profiles of known primary
drug compound targets. The phosphosite abundances corresponding to the quantitative matrix used as input for
VESPA are extracted and visualized for the top 5 downregulated known primary targets, grouped according to drug
perturbations and cell lines.
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Supplementary Figure 14. Temporal phosphosite-level VESPA perturbation profiles of known primary
drug compound targets. The phosphosite-level VESPA activities are visualized for the top 5 downregulated known
primary targets, grouped according to drug perturbations and cell lines.
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Supplementary Figure 15. Context-specific wiring of signaling pathways. Visualization of network dysregulation
and drug compound mechanism of action (MoA) for ralimetinib. Nodes indicate the most affected regulators with the
inner circos colors indicating cell line type and the outer circos color and node size indicating VESPA activity. The edges
indicate dysregulated, undirected interactions between the regulators (Methods). Line thickness indicates significance of
dysregulation. Proteins highlighted in green indicate known primary and secondary targets.
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Supplementary Figure 16. CRISPRko experiment technical assessment. The sgRNA alignment rate for each
run is depicted separately.
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Supplementary Figure 17. Receiver-operating-characteristics for the recovery of known essential genes in
the CIRSPRko validation experiment. Comparing DMSO (last time point) vs. T0 (first time point) CRISPRko
samples identified known essential genes in CRC with high accuracy for both NCI-H508 and HCT-15 cells (Methods).
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Supplementary Figure 18. Correlation and receiver-operating-characteristics (ROC) for differential VESPA
predictions of KP-enzymes involved in resistance mechanism against measured differential CRISPRko
essential genes.
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Supplementary Figure 19. Correlation and receiver-operating-characteristics (ROC) for differential VESPA
predictions of KP-enzymes involved in resistance mechanism against measured differential CRISPRko
essential genes, excluding tumor suppressor genes.
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