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Abstract

Background

Mathematical models predict an exponential distribution of infection prevalence across

communities where a disease is disappearing. Trachoma control programs offer an oppor-

tunity to test this hypothesis, as the World Health Organization has targeted trachoma for

elimination as a public health concern by the year 2020. Local programs may benefit if a sin-

gle survey could reveal whether infection was headed towards elimination. Using data from

a previously-published 2009 survey, we test the hypothesis that Chlamydia trachomatis
prevalence across 75 Tanzanian communities where trachoma had been documented to

be disappearing is exponentially distributed.

Methods/Findings

We fit multiple continuous distributions to the Tanzanian data and found the exponential

gave the best approximation. Model selection by Akaike Information Criteria (AICc) sug-

gested the exponential distribution had the most parsimonious fit to the data. Those distribu-

tions which do not include the exponential as a special or limiting case had much lower

likelihoods of fitting the observed data. 95% confidence intervals for shape parameter esti-

mates of those distributions which do include the exponential as a special or limiting case

were consistent with the exponential. Lastly, goodness-of-fit testing was unable to reject the

hypothesis that the prevalence data came from an exponential distribution.

Conclusions

Models correctly predict that infection prevalence across communities where a disease is

disappearing is best described by an exponential distribution. In Tanzanian communities

where local control efforts had reduced the clinical signs of trachoma by 80% over 10 years,

an exponential distribution gave the best fit to prevalence data. An exponential distribution
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has a relatively heavy tail, thus occasional high-prevalence communities are to be expected

even when infection is disappearing. A single cross-sectional survey may be able to reveal

whether elimination efforts are on-track.

Author Summary

Trachoma is the leading infectious cause of blindness and the World Health Organization
plans to eliminate it as a public health concern worldwide by the year 2020. It can be diffi-
cult for local trachoma programs to assess whether disease is headed towards elimination
in their area. Mathematical infectious disease models describe that when a disease disap-
pears, its prevalence across communities in that area form an exponential distribution.
However, this theorem has never been tested with field data. In this study, we take tracho-
ma prevalence data from Tanzania, in an area where trachoma was known to be disap-
pearing, and find that the prevalence forms an exponential distribution. The implications
of this study could be applied to other infectious diseases to provide evidence that preva-
lence is headed towards elimination.

Introduction
Epidemic models hypothesize that the prevalence of infection across communities where an in-
fectious disease is disappearing should approach an exponential distribution. Simulations of
mass treatments and decreasing transmission support this.[1–3] However, these epidemic
models typically assume similar transmission parameters across communities, while observa-
tional studies suggest transmission heterogeneity even amongst neighboring communities.[4]
If this hypothesis is consistent with field data, public health stakeholders would benefit by hav-
ing the ability to forecast prevalence and learn whether a disease was on its way to elimination.

Trachoma programs offer an opportunity to test these models. Repeated ocular infection
with Chlamydia trachomatis can result in irreversible blindness. Trachoma has been targeted
by The World Health Organization (WHO) for elimination as a public health concern by the
year 2020. Efforts rely on a multifaceted approach of mass antibiotic distributions to clear in-
fection and hygiene improvements such as promoting facial cleanliness and latrine construc-
tion to reduce transmission. Whether due to intervention or secular trend, trachoma is clearly
disappearing from many areas. [5–8]

A recent study suggested that the prevalence of infection across 24 communities in two sep-
arate regions of Ethiopia approached a geometric distribution, the discrete analog of the expo-
nential. Longitudinal evidence confirmed trachoma was indeed disappearing in each of these
two areas. [9] Here, we examine a far larger data set from a recent cross-sectional survey in
Tanzania to determine the distribution of infection across communities that have received
multiple rounds of mass antibiotics and where the prevalence of clinical signs of trachoma was
known to be decreasing. We test the hypothesis that the distribution of Tanzanian prevalence
data is exponential.

Methods
In 1999, Tanzania implemented a trachoma control program within endemic districts through
the National Trachoma Taskforce. Control efforts relied on mass azithromycin distribution to
communities. During 2007–2008, 75 communities in 8 districts in Tanzania were randomly
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selected for a cross-sectional, population-based survey of infection, assessed by conjunctival
swab and PCR for chlamydial DNA.[10] These communities had received at least three rounds
of yearly azithromycin, with most having received 4–7 annual treatments. Pre-school children
aged 5 years and under were surveyed as this age group is the reservoir of ocular chlamydial in-
fection.[11,12] In 1999, mean prevalence of the clinical signs of trachoma (trachomatous in-
flammation—follicular or intense) in the 75 communities was 50% (ranged 17–79%). In the
2007–2008 cross-sectional survey, mean prevalence of clinical signs was 9.5% (ranged 0–28%).
This latter study also found the mean PCR-determined C. trachomatis infection prevalence
was 5.3% (ranged 0–25%). [10,13]

We assessed the fit of several continuous distributions to the 75 prevalence estimates from
the 2007–2008 survey. It was assumed each community had a true, unobserved prevalence of
infection and that the reported prevalence for each community was a sample from a binomial
distribution given that true prevalence. We obtained parameter values by maximum likelihood
estimation for the one-parameter (exponential, chi, chi-squared), two-parameter (beta,
gamma, Weibull, normal, Cauchy, log-normal) and three-parameter (mixture exponential,
generalized gamma) distributions, truncated between 0 and 1. The beta, gamma, Weibull, and
generalized gamma include the exponential as a special case when the shape parameter is 1.
The truncated normal and Gumbel distributions include the exponential as a limiting case as
the location parameter approaches negative infinity. The mixture exponential includes the ex-
ponential as a special case when both rate parameters are equal or the proportion parameter is
1. The Cauchy, log-normal, chi, and chi-squared distributions do not include the exponential
as a special case and were tested in this analysis to compare fit against the exponential.[14]

Models were ranked by sample size-corrected Akaike Information Criteria (AICc) which pe-
nalizes a distribution for each additional parameter.[15] Bootstrap 95% confidence intervals
for parameter estimates were determined by resampling communities (n = 999). We performed
goodness-of-fit testing using the Cramer-von-Mises statistic to determine how unusual the ob-
served data would be had they indeed come from an exponential distribution. To investigate
spatial correlation of prevalence data, we used a Moran’s I statistic on communities in the
Kongwa district. We performed two separate analyses: one using a weight matrix of inverse
pair-wise distance between communities, and another using a binary weight matrix where a 1
signified neighboring communities and 0 signified non-neighbors. Neighbors were defined by
those within the minimum distance needed such that each community had at least one neigh-
bor. Statistical significance was determined by permutation test.

Lastly, we performed a sensitivity analysis by excluding villages in the Iramba district. The
Iramba district contains four villages, all of which had 0 prevalence of infection and 0 preva-
lence of clinical signs of trachoma. The sensitivity analysis was performed by fitting the
above-mentioned distributions to the restricted data, determining parameter values, and
ranking by AICc. All calculations were performed inMathematica 9.0 (Wolfram Research,
Champaign, Illinois).

Ethics Statement
The study was carried out in accordance with the Declaration of Helsinki. Verbal consent was
obtained from the local chiefs of each community before randomization. Verbal informed
consent from each child participant’s guardian was obtained prior to the examination. This
consent process was appropriate given the high rates of illiteracy in the study area and was ap-
proved by all institutional review boards.
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Results
The exponential distribution had the lowest (best) AICc. Note those distributions which in-
clude the exponential as a special or limiting case will always achieve a likelihood of having ob-
served the data at least as high as the exponential. However, while the beta, Gumbel, normal,
gamma, Weibull, generalized gamma distributions all had slightly better log likelihoods (slight-
ly better fits), these distributions all contained additional parameters and therefore had higher
(worse) AICc results. The sensitivity analysis yielded the same results as the main analysis, i.e.
removing the 0 prevalence villages in the Iramba district had no effect and the exponential dis-
tribution gave the most parsimonious fit by AICc. Results from the main analysis are summa-
rized in Table 1. The fit of the exponential distribution to the data is shown in Fig. 1 along with
the fit of those distributions which include the exponential as a special or limiting case.

The Cauchy, log-normal, chi, and chi-squared distributions do not include the exponential as
a special or limiting case. These distributions gave far worse log likelihoods and AICc than the ex-
ponential. The fit of these distributions to the data is shown alongside the exponential in Fig. 2.

95% confidence intervals of the shape parameter estimates for the beta, gamma, Weibull,
and generalized gamma distributions included 1, consistent with the special case of an expo-
nential distribution (Table 2). The confidence interval for the location parameter of the trun-
cated normal and Gumbel distributions included negative values, which again is consistent
with the exponential. The mixture exponential distribution trivially reduced to a single expo-
nential distribution as the proportion parameter estimate was 0.99 and the confidence interval
included 1. With goodness-of-fit testing, we were unable to reject the hypothesis that the ob-
served data came from an exponential distribution (p = 0.30). We found no evidence of spatial
autocorrelation. Moran’s I using an inverse weight matrix was-.09 (p = 0.34) and Moran’s I
using binary weight matrix was -0.02 (p = 0.85).

Discussion
Here we show that chlamydial prevalence data from Tanzania are consistent with an exponen-
tial distribution. A dedicated control program had reduced the prevalence of clinical signs of

Table 1. Fit of distributions, ranked by corrected Akaike Information Criteria (AICc).

Truncated Distribution* Log Likelihood AICc

Exponential -211.791 425.637

Distributions which include the exponential as a special or limiting case

Beta -211.673 427.513

Gumbel -211.745 427.656

Normal -211.748 427.663

Gamma -211.787 427.741

Weibull -211.790 427.746

Generalized Gamma -211.554 429.446

Mixed Exponential -211.791 429.920

Other distributions
Cauchy -215.504 435.174

Log-Normal -241.203 486.574

Chi-Squared -246.164 494.382

Chi -247.538 497.132

*All distributions were truncated between a prevalence of 0 and 1

doi:10.1371/journal.pntd.0003682.t001
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Fig 1. Exponential distribution and other distributions which mimic the exponential, fit to Tanzanian
data. This figure shows the Tanzanian trachoma prevalence data as a histogram in the background along
with the fits of various distributions which can mimic the exponential. The black line indicates the exponential
distribution fit to the data, along with the 95% confidence interval as gray shading. All the other distributions
give their best fit to the data when taking on parameter values that are consistent with the exponential, as
shown by their fit within the 95% confidence interval (gray shading) of the exponential curve.

doi:10.1371/journal.pntd.0003682.g001

Fig 2. Exponential distribution and other distributions which cannot mimic the exponential, fit to
Tanzanian data. This figure shows the Tanzanian trachoma prevalence data as a histogram in the
background along with the fits of various distributions which cannot mimic the exponential. The black line
indicates the exponential distribution fit to the data, along with the 95% confidence interval as gray shading.
The best fit of all non-exponential distributions fall outside the 95% confidence interval (gray shading) of the
exponential and give worse fit to the data.

doi:10.1371/journal.pntd.0003682.g002
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trachoma 5-fold over 10 years in these Tanzanian communities. Of all distributions tested, the
exponential had the most parsimonious fit to the data. Furthermore, the 95% confidence inter-
val for the shape parameter estimate of each of the multi-parameter distributions included the
special or limiting case of the exponential. Lastly, goodness-of-fit testing was unable to reject
the hypothesis that the observed prevalence data came from an exponential distribution.

The Suceptible-Infected-Suceptible (SIS) epidemic model is used to study the transmission
dynamics of pathogens, such as C. trachomatis, which can repeatedly infect individuals. In its
simplest form, this model divides the population into two compartments: those who are sus-
ceptible to a disease and those who are infected. Members of the population flow between com-
partments at rates that reflect how transmissible the disease is and how quickly one recovers
from infection. The model assumes similar transmission conditions across communities and it
is not obvious the prevalence distribution predicted by the SIS model would be observed with
heterogeneous communities.[16,17] While a smaller study found a prevalence distribution in
Ethiopian communities consistent with the SIS model, there is no reason to believe the findings
would apply to this far larger Tanzanian survey.[9] One explanation may be that if systems
tend towards states of maximum entropy over time, an exponential distribution would not be
unexpected; it has the maximum entropy amongst all continuous distributions with finite
mean and non-negative values.[18–20] Furthermore, infection in this cross-sectional survey
was a rare event. Individual factors which normally lead to heterogeneity in transmission pa-
rameters contribute less and less as outcomes become more rare.[21]

Our study has several limitations. Models imply an exponential distribution of infection
prevalence when infection is disappearing, however we only had evidence that the clinical signs
of trachoma were disappearing. Because the clinical signs (trachomatous inflammation of the
tarsal conjunctiva) are considered lagging indicators of infection disappears, we assumed infec-
tion must have been disappearing as well.[22] It must be noted though that while the prevalence
of clinical signs of trachoma is decreasing in these areas of Tanzania from the baseline survey
to this 2007–2008 survey, this 2007–2008 survey was not powered to provide district-level

Table 2. Distribution parameter estimates with 95% confidence intervals.

Truncated Distribution Shape Parameter Parameter 2 Parameter 3

Exponential 19.4 (15.48, 24.99) n/a n/a

Distributions with exponential as a special or limiting case

Beta 0.93 (0.64, 1.47) 17.06 (11.39, 29.41) n/a

Gumbel -3.75 (-6.87, -0.75)** 1.20 (0.42, 1.98) n/a

Normal -1.32 (-32.88, 0.01)** 0.27 (0.06, 1.30) n/a

Gamma 0.98 (0.55, 1.65) 0.05 (0.03, 0.08) n/a

Weibull 1.01 (0.81, 1.29) 0.05 (0.04, 0.07) n/a

Generalized Gamma 0.54 (0.13, 1.39) 0.09 (0.03,0.22) 1.45 (0.89, 3.90)***

Mixed Exponential 0.99 (0.15, 1.00)* 19.41 (15.80, 625.17) 16.76 (13.04, 21.17)

Other Distributions
Cauchy 0.02 (-0.01, 0.04) 0.03 (0.02, 0.04) n/a

Log-Normal 0.00 (0.00, 0.05) 4.31 (3.74, 4.90) n/a

Chi-Squared 0.52 (0.47, 0.62) n/a n/a

Chi 0.25 (0.23, 0.30) n/a n/a

*Shape parameter for the truncated mixed exponential refers to the proportion parameter

**Shape parameter for the truncated normal and Gumbel distributions refers to the location parameter

***Parameter 3 for the generalized gamma refers to the second shape parameter

doi:10.1371/journal.pntd.0003682.t002
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estimates. Furthermore, we chose to fit the prevalence data to continuous as opposed to discrete
distributions because communities varied in population size. Alternatively, we could have scaled
discrete distributions by the mean prevalence, as done previously.[9] Instead, we assumed that
reported prevalences were a sample from a binomial distribution, given a true unobserved con-
tinuous prevalence. It is possible the prevalence data came from two different exponential distri-
butions. To explore this, we tested a mixture exponential distribution and found that it reduced
to a single exponential. Our goodness-of-fit testing assumed independence between samples. To
explore this, we performed a Moran’s-I calculation. Though our Moran’s I calculation suggested
there was not statistically significant geographical clustering of infection prevalences, this statis-
tic is not perfect and there may still be some clustering. Note that if the observed data were
strongly autocorrelated and we had not taken this correlation into account, then our parameter
estimates would have had less precision and the exponential would have been more difficult to
reject. Thus our analysis was conservative.

Our findings have several implications for trachoma control programs. An exponential dis-
tribution has a relatively heavy tail compared to a Gaussian distribution and outliers are not
uncommon. Therefore we expect occasional high-prevalence communities and such commu-
nities do not necessarily suggest transmission hot spots or a failure of control efforts. In fact,
models predict infection will disappear from the tail of the distribution as outliers regress to
the mean, even if transmission conditions remain the same.[3,23] Reports from Nepal, Tanza-
nia, and the Gambia have noted that infection tends to disappear in high-prevalence villages in
otherwise hypo-endemic areas.[24–27]

Assessing whether trachoma control programs are on-track to eliminate infection can be
difficult for public health stakeholders. Large-scale longitudinal surveys of community-wide in-
fection prevalence are costly and resource-intensive to perform. A single cross-sectional survey,
on the other hand, is much more feasible. If such a survey reveals the distribution of infection
prevalence is approximated by the exponential, control programs could benefit knowing dis-
ease is on its way to elimination if transmission conditions remain the same. Further studies
are needed to determine whether these findings also apply to clinical activity, the current surro-
gate for infection used by trachoma programs.
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