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Abstract

Recent work has leveraged the extensive genotyping of the Icelandic population to perform long-

range phasing (LRP), enabling accurate imputation and association analysis of rare variants in 

target samples typed on genotyping arrays. Here, we develop a fast and accurate LRP method, 

Eagle, that extends this paradigm to populations with much smaller proportions of genotyped 

samples by harnessing long (>4cM) identical-by-descent (IBD) tracts shared among distantly 

related individuals. We applied Eagle to N≈150,000 samples (0.2% of the British population) 

from the UK Biobank, and we determined that it is 1–2 orders of magnitude faster than existing 

methods while achieving similar or better phasing accuracy (switch error rate ≈0.3%, 

corresponding to perfect phase in a majority of 10Mb segments). We also observed that when used 

within an imputation pipeline, Eagle pre-phasing improved downstream imputation accuracy 

compared to pre-phasing in batches using existing methods (as necessary to achieve comparable 

computational cost).

Haplotype phasing is a fundamental question in human genetics1 and a key step in genotype 

imputation2-5. Most existing methods for statistical phasing apply hidden Markov models 

(HMM) to iteratively refine haplotype frequency models and improve phase calls6-12. This 

approach produces accurate phase inference at large sample sizes but is computationally 

challenging. “Long-range phasing” (LRP)13 is an alternative approach that harnesses long 

IBD tracts shared among related individuals; in such IBD regions, phase inference is 

straightforward and extremely accurate at sites for which at least one individual is 

homozygous. LRP has been successfully used in the Icelandic population to rapidly 

determine highly accurate phase and impute rare variants, producing insights into fine-scale 
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recombination and enabling dozens of discoveries regarding numerous diseases14-27. 

However, because existing implementations of LRP rely on very long, easily identified IBD 

tracts (>10cM) in close relatives, LRP has previously only been successfully applied in 

isolated populations or populations with large fractions of individuals genotyped. In more 

general settings, existing LRP approaches are unable to phase a sizable fraction of sites28 

and have been observed to achieve worse performance (both in terms of accuracy and run 

time) than conventional HMM-based approaches29.

Here, we develop a new algorithm, Eagle, that surmounts these challenges by combining the 

key ideas of LRP and conventional methods: Eagle begins with an LRP approach, making 

initial phase calls based on long (>4cM) tracts of IBD sharing in closely or distantly related 

individuals, and concludes with two approximate HMM decoding iterations to refine phase 

calls. We demonstrate the efficiency and accuracy of Eagle by phasing N≈150,000 samples 

from the UK Biobank30 (see URLs); at large sample sizes, Eagle matches the accuracy of 

the best HMM-based methods and is far more computationally efficient (e.g., 14x faster than 

SHAPEIT212). We also show that when phasing N≈150,000 UK samples, Eagle imputes 

missing genotypes (in-sample) with accuracy R2>0.75 down to a minor allele frequency of 

0.1%, and when used to pre-phase N≈150,000 samples within a standard imputation 

pipeline, Eagle improves accuracy in downstream imputation (compared to pre-phasing 

using existing methods on batches of N≈15,000 samples at comparable cost), with larger 

improvements expected as imputation reference panels grow. We have released Eagle as 

open source software (see URLs).

 Results

 Overview of methods

The basic idea of our approach is to harness IBD from distant relatedness (up to ≈12 

generations from a common ancestor) that is pervasive within very large cohorts. IBD 

between a proband and other individuals provides a “surrogate family”13 for the proband, 

which can then immediately be used to call phase. While this approach is simple in 

principle, two major challenges have precluded its application to cohorts representing small 

fractions of large outbred populations. First, identifying IBD is difficult both in terms of 

accuracy and computational cost; moreover, the most widely used IBD inference methods 

rely on first phasing the data31-33. Second, LRP by itself can phase only sites at which the 

proband has at least one relative who is a homozygote; for cohorts representing a sizable 

fraction of a population, 2–5% of sites may be left unphased13,15, but for smaller cohorts, 

this fraction may exceed 25% even in isolated populations28, limiting the utility of LRP as a 

general-purpose method. Our algorithm, Eagle, overcomes the first challenge by employing 

a new, fast IBD-scanning strategy and overcomes the second challenge by introducing an 

approximate HMM computation that rapidly refines LRP phase calls.

The Eagle algorithm has three main steps (Figure 1). First, Eagle rapidly detects probable 

IBD tracts by identifying long regions of agreement at homozygous sites (at which alleles 

for each haplotype are known without phasing), scoring identified regions using allele 

frequency and linkage disequilibrium information, and checking overlapping regions for 

consistency; Eagle uses the detected IBD to perform accurate initial long-range phasing in 
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high-IBD regions (Fig. 1a). Second, Eagle performs local phase refinement in overlapping 

≈1cM windows by detecting complementary haplotype pairs (among haplotypes inferred in 

the previous step); specifically, for each diploid individual, Eagle re-phases the individual by 

searching for long IBD with haplotypes from step 1 and then checking for the existence of 

haplotypes complementary to the IBD hits (Fig. 1b). Third, Eagle finalizes phase calls by 

running two approximate HMM decoding iterations using up to 80 local reference 

haplotypes and aggressively pruning the search space to ≤200 states per position using a fast 

path-scoring scheme (Fig. 1c,d). All three steps are multithreaded and make use of bit 

operations to perform key computations in 64-SNP blocks. (For full details, see Online 

Methods and the Supplementary Note.)

 Computational cost

We benchmarked Eagle against state-of-the-art phasing methods—Beagle8, HAPI-UR11, 

and SHAPEIT212 (see URLs)—on subsets of the UK Biobank data set containing 

N≈15,000, 50,000, or 150,000 samples (Online Methods). After QC, this data set contained 

627K autosomal markers with average heterozygosity 0.189 and minor allele frequency 

(MAF) distribution typical of genotyping arrays: 43K variants with MAF 0.1–1%, 235K 

variants with MAF 1–5%, and 349K variants with MAF 5–50%. (Our QC procedure 

excluded very rare variants with MAF<0.1%; see Online Methods.) For our first benchmark, 

we phased only the first 40cM of chromosome 10 (≈1% of the data, 5,824 SNPs spanning 

18Mb) to allow as many methods as possible to complete in <2 weeks (using up to 10 cores 

on a single compute node; all methods except HAPI-UR support multithreading over 10 

cores). We observed that Eagle achieved a 1–2 order of magnitude speedup over other 

methods across the sample size range (Fig. 2a and Supplementary Table 1), attaining a 14x 

speedup over SHAPEIT2 and a 12x speedup over HAPI-UR at N≈150,000. (Beagle was 

unable to phase 1% of the genome in 2 weeks at N≈150,000.) We note that (like other 

methods) Eagle has parameters that produce a trade-off in speed and accuracy (Online 

Methods); Eagle's ––fast mode achieved a further ≈2x speedup over the default while 

incurring only a slight loss of accuracy (Table 1). All methods exhibited superlinear but 

subquadratic scaling of running time with sample size, consistent with the presence of both 

linear and quadratic algorithmic components. (For a detailed discussion of the run time 

scaling of each of Eagle's algorithmic steps, see Online Methods and Supplementary Table 

2.) We also observed that Eagle achieved modest (2–8x) savings in memory cost compared 

to other methods (Fig. 2b and Supplementary Table 1). All methods exhibited memory cost 

scaling roughly linearly with sample size.

 Phasing accuracy

We assessed the accuracy of each phasing method using gold standard data from the 70 

European-ancestry trios in the UK Biobank data set (all but one of which self-reported 

British ethnicity; see Online Methods). Specifically, we included all trio children and 

excluded all trio parents in each phasing run; we then assessed computational phase 

accuracy in trio children at all trio-phased sites (i.e., SNPs heterozygous in the child and 

homozygous in at least one parent, comprising ≈80% of heterozygous SNPs per trio child). 

We observed that when phasing N≈150,000 samples over the same 1% of the genome as 

above, Eagle and SHAPEIT2 achieved near-identical, very low (≈0.3%) mean switch error 
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rates (Fig. 2c and Supplementary Table 1). The accuracy of Eagle relative to SHAPEIT2 

degraded slightly with decreasing sample size (as expected with limited IBD in an outbred 

population); interestingly, however, Eagle still achieved better accuracy than all methods 

except SHAPEIT2 at sample sizes of N≈50,000 and N≈15,000, with only a 9% (s.e. 7%) 

increase in switch error rate relative to SHAPEIT2 at N≈50,000: 0.78% (0.05%) for Eagle 

vs. 0.71% (0.05%) for SHAPEIT2. To confirm these results, we performed a similar 

benchmark of Eagle and SHAPEIT2 on N≈60,000 GERA samples of more diverse 

European ancestry34,35 (Online Methods) and observed similar results: 0.94% (0.04%) 

switch error rate for Eagle vs. 0.83% (0.03%) for SHAPEIT2, a 14% (2%) increase 

(Supplementary Table 3).

We next undertook a detailed comparison of phasing accuracy achieved by the two most 

accurate methods, Eagle and SHAPEIT2, when run on N≈150,000 samples. For this 

comparison, we analyzed ten 10,000-SNP regions (of median length 44Mb) comprising 16% 

of the genome (Supplementary Table 4). To overcome the high computational cost of 

SHAPEIT2 N≈150,000 analyses (Fig. 2a), we performed these benchmarks on the Lisa 

Genetic Cluster Computer (see URLs), which offered high-throughput parallel computation 

in batches of 16-core, 5-day jobs. Because SHAPEIT2 was unable to complete 10,000-SNP 

analyses within a single job, we split each 10,000-SNP analysis into three overlapping 

blocks of 3,667 SNPs (with an overlap of 500 SNPs); we ligated the results using hapfuse 

v1.6.2 (see URLs). In these benchmarks, we observed that Eagle achieved a slightly lower 

switch error rate than SHAPEIT2 run with default parameters (K=100 conditioning 

states12): 0.276% (0.008%) for Eagle vs. 0.306% (0.013%) for SHAPEIT2 (p=0.03, one-

sided paired t-test) (Table 1). One caveat regarding these comparisons is that splitting and 

ligating the SHAPEIT2 analyses may have incurred a slight loss of accuracy12; while 

computational limitations prevented us from running SHAPEIT2 on full 10,000-SNP 

regions, performing the full analyses in single computations could improve accuracy.

In light of the very low switch error rates achieved by both Eagle and SHAPEIT2 in 

N≈150,000 analyses, we further investigated the nature of the errors made by each method. 

We observed that many of the switch errors accrued by Eagle were the result of “blips” 

involving one or occasionally two adjacent SNPs oppositely phased relative to surrounding 

SNPs (Fig. 1d); such errors can arise from genotyping error or from recent mutation or gene 

conversion. We therefore computed an alternative metric, “switch error rate without blips,” 

in which we ignored errors in which 1–2 SNPs were oppositely phased relative to ≥10 

consistently phased SNPs on both sides. This assessment showed that 1–2 SNP blips 

(previously counted as two switches) accounted for the majority (≈60%) of Eagle's switch 

errors; similarly, such errors accounted for roughly half of SHAPEIT2's switch errors (Table 

1). We further considered the metric “discrepancies within a 10Mb segment”13 and observed 

that both Eagle and SHAPEIT2 achieved perfect phase in the majority of 10Mb segments 

phased (Table 1 and Supplementary Table 5).

As both Eagle and SHAPEIT2 have parameters that trade off speed and accuracy, we also 

investigated the effect of running each method with non-default parameter settings. For 

Eagle, we benchmarked its ––fast mode, which speeds up analysis by increasing the size of 

SNP blocks and limiting the approximate HMM computation (Online Methods). We 
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observed that the ––fast mode of Eagle completed analyses roughly twice as quickly as the 

default mode with a slightly higher switch error rate (0.321%, s.e. 0.011%) (Table 1). We 

also benchmarked slower parameter settings that decrease the size of SNP blocks or expand 

the approximate HMM computation; these modifications did not significantly improve 

accuracy (Supplementary Table 6). For SHAPEIT2, we increased the number of 

conditioning states from K=100 (the default) to K=200 or K=400, simultaneously increasing 

the number of ligated blocks to 4 or 5 per 10,000-SNP region to keep per-job run times 

within the 5-day limit (Table 1). We observed that using K=200 conditioning states achieved 

accuracy similar to Eagle, while using K=400 states achieved the lowest switch error rate of 

all methods tested (0.243%, s.e. 0.011%; p=0.007 vs. Eagle, one-sided paired t-test) (Table 

1). (We note that SHAPEIT2 K=400 analyses required ≈40% more computation time than 

default SHAPEIT2 K=100 analyses; while the run time scaling of SHAPEIT2 is 

asymptotically linear in K (ref.12), the quadratic component of the computation, which is 

independent of K, dominates at very large N and typical K.) We also considered increasing 

SHAPEIT2's window size parameter from 2Mb to 4Mb, but results of a pilot experiment 

indicated that doing so substantially decreased accuracy (Supplementary Table 7).

Finally, we assessed the accuracy of analysis options for efficiently phasing N≈150,000 

samples. In addition to Eagle (run on all N≈150,000 samples together, 1×150K), we 

considered batching approaches requiring up to 3x the running time of Eagle 1×150K. Based 

on our running time benchmarks (Fig. 2a and Supplementary Table 1), SHAPEIT2 or HAPI-

UR analysis of the data in 10 batches of N≈15,000 samples (10×15K) satisfied this 

constraint. We benchmarked each method on three chromosome-scale tests: the short arm of 

chromosome 1 (26,695 SNPs), chromosome 10 (31,090 SNPs), and chromosome 20 (16,367 

SNPs), amounting to 12% of the genome. Our results (Supplementary Table 8) confirmed 

our previous benchmarks (Figure 2) and were consistent across chromosomes. In particular, 

we observed that Eagle analysis of all N≈150,000 samples together completed 3x faster than 

SHAPEIT2 10×15K analysis while achieving a 77% (1%) decrease in switch error rate: 

0.31% (0.01%) for Eagle 1×150K vs. 1.35% (0.05%) for SHAPEIT2 10×15K 

(Supplementary Table 8).

 In-sample imputation and GWAS imputation accuracy

We next investigated the utility of Eagle for genotype imputation. First, to project the 

imputation accuracy that will be achievable in the UK population using LRP-based methods 

once a reference panel of N≈150,000 sequenced UK samples becomes available 

(Supplementary Fig. 1), we performed in-sample imputation of masked genotypes in the UK 

Biobank data set (Online Methods and Supplementary Note). In these benchmarks 

(Supplementary Fig. 2 and Supplementary Tables 9–11), Eagle and SHAPEIT2 both 

achieved mean in-sample imputation R2>0.75 down to a minor allele frequency of 0.1%. As 

in our switch error benchmarks (Table 1), Eagle was slightly more accurate than SHAPEIT2 

run with default parameters and achieved accuracy similar to SHAPEIT2 run with K=200 

states; compared to SHAPEIT2 10×15K, Eagle 1×150K was much more accurate 

(Supplementary Fig. 2 and Supplementary Table 9). In-sample imputation on N samples 

bears some similarities to standard GWAS phasing and imputation on a target sample using a 

reference panel of size N (as both tasks entail copying shared haplotypes—identified based 
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on data at typed SNPs—from a set of N samples); however, the two tasks also have several 

important differences and require different algorithms and software (Supplementary Fig. 1). 

We therefore caution that our in-sample imputation results may not be representative of 

GWAS imputation performance using an N≈150,000 reference panel.

We also investigated the benefits of using Eagle for pre-phasing5 within an existing 

imputation pipeline: the Sanger Imputation Service, which currently supports imputation 

using up to N≈32,000 sequenced reference individuals from the Haplotype Reference 

Consortium (HRC; see URLs). (We note that the HRC is predominantly European and 

contains a substantial fraction of UK samples but also contains samples of other ancestries; 

see URLs.) We considered two fast pre-phasing procedures: Eagle pre-phasing of all 

N≈150,000 UK Biobank samples and SHAPEIT2 10×15K pre-phasing of N≈150,000 

samples. To benchmark imputation accuracy, we completely masked 700 SNPs (100 in each 

of seven MAF bins) in each of three chromosomes, pre-phased the remaining SNPs with 

Eagle and SHAPEIT2, imputed the same subset of N≈15,000 pre-phased samples using the 

Sanger Imputation Service, and computed R2 between the masked SNPs and their imputed 

genotype dosages across curated British samples (Online Methods; see URLs). This 

benchmarking procedure is commonly used to assess the accuracy of phasing and 

imputation pipelines5,9. We observed that when imputation was performed using the largest 

reference panel available (the N≈32,000 HRC), Eagle pre-phasing using all N≈150,000 

samples improved imputation R2 by increasing amounts for increasingly rare SNPs, with a 

gain of 0.020 (0.002) in R2 for MAF 0.1–0.2% SNPs (R2=0.594 (0.012) for Eagle 1×150K 

vs. R2=0.574 (0.012) for SHAPEIT2 10×15K; Supplementary Table 12). (We caution that 

these results are based on the preliminary release (r1) of the HRC; development of the HRC 

is still underway, and performance may improve in future releases.) When imputation was 

performed using only the N≈4,000 UK10K reference panel (see URLs), gains were roughly 

half as large (Supplementary Table 13). Finally, to verify that similar improvements could be 

obtained at genome-wide SNPs (vs. the subsets of SNPs we masked), we ran the 1000 

Genomes GBR samples through the same pipeline (after pre-phasing them together with the 

UK Biobank samples) and again observed a modest improvement using UK10K imputation 

(Supplementary Table 14). (We were unable to perform this experiment using HRC 

imputation because the HRC contains the 1000 Genomes data.) These results demonstrate 

that high-accuracy pre-phasing is already beneficial for GWAS imputation at current 

reference sizes (N≈4,000 UK10K samples and N≈32,000 diverse European HRC samples) 

and that gains will increase as reference panels grow, corroborating our in-sample 

imputation results projecting high future accuracy with N≈150,000 reference samples.

 Discussion

We have developed a fast and accurate LRP-based phasing method, Eagle, and demonstrated 

that LRP can be effective in a cohort representing a small fraction of a large outbred 

population. Ever since Kong et al.13 established the efficacy of LRP in the Icelandic 

population—speculating that “having as little as 1% of a population genotyped may be 

adequate for the method to yield useful results”—the extension of LRP to more general 

settings has been eagerly anticipated but up to now unrealized1. We have successfully 

applied Eagle to phase 0.2% of the UK population and demonstrated its utility for enhancing 
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the accuracy of downstream imputation. We note that LRP in 0.2% of the UK population 

cannot match the accuracy that was achieved in 11% of the Icelandic population13,15 (which 

further improved with genotyping of >30% of the Icelandic population25); however, these 

results give reason for optimism that LRP-based phasing accuracy in the UK (and other large 

outbred populations) will continue to improve as more individuals are genotyped.

Eagle is a very different method from the “pure” LRP approach of Kong et al.13: in order to 

create an algorithm that could harness limited, often distant relatedness, we needed to 

combine aspects of LRP and conventional HMM-based phasing, confirming the hypothesis 

that “IBD-based phasing can be extended...by using more sensitive methods for detecting 

IBD and combining IBD-based phasing with population haplotype frequency models”1. 

Indeed, these ideas have implicitly begun to converge within sophisticated HMM-based 

methods (e.g., SHAPEIT2), as has recently been observed29. SHAPEIT2 takes a “bottom-

up” approach in which it steadily improves phase accuracy over the course of a few dozen 

MCMC sampling iterations, iteratively copying phase information from progressively more 

accurate sets of best reference haplotypes. This procedure eventually achieves high-accuracy 

phase for a proband's (distant) relatives, selects them as reference haplotypes, and uses them 

to phase the proband29. In contrast, Eagle takes a “top-down” approach, first scanning all 

pairs of individuals for long IBD tracts and using them to phase long stretches of genome, 

and then applying only two iterations of approximate HMM decoding to correct errors and 

fill in unphased regions (Figure 1). Thus, at a high level, the key methodological 

contribution of Eagle's “top-down” approach is its use of LRP to greatly improve speed (by 

over an order of magnitude) by eliminating the need to slowly build phase accuracy over 

many HMM sampling iterations. This speedup is essential at large sample sizes: due to 

computational constraints, the production phasing of UK Biobank samples was not 

performed using the most accurate method available, SHAPEIT2; instead, a new (currently 

unreleased) method was developed, SHAPEIT3, which was reported to achieve a higher 

switch error rate of ≈0.4% (see URLs). At very large sample sizes to come, experience from 

Iceland indicates that HMM iterations may not be necessary at all13,15,25; instead, 

optimizing accuracy will require solving problems of a different nature, e.g., resolving 

conflicts in IBD information.

Beyond our immediate goal of fast and accurate phasing, we envision that the primary 

downstream application of Eagle will be genotype imputation (via pre-phasing with Eagle 

followed by imputation with other software) in the UK Biobank and future population 

cohorts of similar or larger size. We have demonstrated the utility of Eagle within current 

imputation pipelines and the promise of this approach for use in future data sets (e.g., 

imputation using N≈150,000 reference samples). However, realizing this potential will 

require additional work. First, as currently implemented, Eagle is optimized for phasing 

array data and will need to be modified to phase sequence data. In particular, the method 

will need to be modified to incorporate additional information available from paired-end 

reads36 and from rare variants—which can greatly aid IBD-calling—while accounting for 

increased error rates. Simulations with increased genotyping error suggest that the Eagle 

algorithm is in principle quite robust to error (Supplementary Table 15), but additional 

tuning will undoubtedly be necessary. Second, an imputation algorithm capable of rapidly 

and accurately imputing pre-phased target samples using very large imputation reference 
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panels will be needed. Several efforts to develop such methods are currently underway: the 

Sanger Imputation Service (see URLs) is already using a new (unpublished) imputation 

algorithm based on the Positional Burrows-Wheeler Transformation (PBWT)37—which like 

Eagle applies fast string matching algorithms in favor of exact statistical modeling—and the 

Beagle v4.1 imputation software38 and the Minimac3 imputation software (unpublished but 

in use by the Michigan Imputation Server; see URLs) likewise aim to satisfy these 

requirements. Finally, the sequence data itself will need to be generated. However, very large 

scale sequencing projects are already underway: e.g., Genomics England plans to sequence 

100,000 genomes by 2017 (see URLs).

While Eagle provides new levels of efficiency (and accuracy compared to fast alternatives) 

for phasing very large cohorts, we note a few limitations. First, Eagle relies on the IBD 

present within very large data sets to achieve high accuracy; on smaller data sets (e.g., 

N≈15,000), we recommend SHAPEIT2, which provides higher accuracy and is 

computationally tractable for such data sets. Second, along similar lines, we observed that 

when phasing all N≈150,000 UK Biobank samples together, Eagle achieved lower accuracy 

than SHAPEIT2 on the <10,000 samples of non-European ancestry (due to limited IBD). In 

practice, such samples are easily detected (e.g., by using FastPCA35 or SNPweights39) and 

could be phased separately with SHAPEIT2. Alternatively, a hybrid algorithm that uses the 

Eagle approach for most of the phasing computation but switches to the SHAPEIT2 model 

in segments of genome lacking IBD would be ideal; developing such an algorithm is a 

direction for future work. Finally, despite Eagle's speed, its computational complexity 

contains a quadratic term (like all other published methods) and will become daunting for 

million-sample data sets. Most simply, this issue could be sidestepped by phasing very large 

samples in batches of a few hundred thousand samples at a time, but we expect that further 

algorithmic improvements will be possible, e.g., limiting the set of haplotypes considered as 

potential surrogate parents via clustering methods (as in SHAPEIT3; see URLs). Despite 

these limitations, we expect that Eagle in its current form—already much faster than existing 

methods with equal or better accuracy—will be a useful tool for large-sample phasing, and 

we believe further innovations will amplify the advantages of LRP-based phasing and 

imputation.

 URLs

Eagle v1.0 software and source code,

http://www.hsph.harvard.edu/alkes-price/software/.

SHAPEIT v2 software,

http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html.

HAPI-UR v1.01 software, http://code.google.com/p/hapi-ur/.

Beagle v4.0 software,

http://faculty.washington.edu/browning/beagle/beagle.html.
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hapfuse v1.6.2 software, http://bitbucket.org/wkretzsch/hapfuse/src.

PLINK2 software, http://www.cog-genomics.org/plink2.

SNPweights v2.0 software, http://www.hsph.harvard.edu/alkes-price/software/.

UK Biobank, http://www.ukbiobank.ac.uk/.

UK Biobank Genotyping and QC Documentation,

http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyp 

ing_QC_documentation-web.pdf.

UK Biobank Phasing and Imputation Documentation (including brief description of 

SHAPEIT3),

http://biobank.ctsu.ox.ac.uk/crystal/docs/impute_ukb_v1.pdf.

GERA data set,

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1.

1000 Genomes data set, http://www.1000genomes.org/.

UK10K project, http://www.uk10k.org/.

Haplotype Reference Consortium,

http://www.haplotype-reference-consortium.org/.

Sanger Imputation Service, http://imputation.sanger.ac.uk/.

Michigan Imputation Server, http://imputationserver.sph.umich.edu/.

100,000 Genomes Project,

http://www.genomicsengland.co.uk/the-100000-genomes-project/.

Lisa Genetic Cluster Computer, http://geneticcluster.org/.

 Online Methods

 Eagle algorithm

We outline the three main steps of the Eagle algorithm here; full details are provided in the 

Supplementary Note. The first and second step each iterate through all individuals in the 

data exactly once, updating each individual's phase in turn; the third step performs two such 

iterations. To help guide intuition, Figure 1 provides a snapshot of the progress of the 

algorithm after each step for our first N≈150,000 phasing benchmark (Figure 2).

Loh et al. Page 9

Nat Genet. Author manuscript; available in PMC 2016 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bitbucket.org/wkretzsch/hapfuse/src
http://www.cog-genomics.org/plink2
http://www.hsph.harvard.edu/alkes-price/software/
http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
http://biobank.ctsu.ox.ac.uk/crystal/docs/impute_ukb_v1.pdf
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v1.p1
http://www.1000genomes.org/
http://www.uk10k.org/
http://www.haplotype-reference-consortium.org/
http://imputation.sanger.ac.uk/
http://imputationserver.sph.umich.edu/
http://www.genomicsengland.co.uk/the-100000-genomes-project/
http://geneticcluster.org/


 Step 1: Direct IBD-based phasing using long IBD

For each proband in turn, Eagle scans all other (diploid) individuals for long genomic 

segments (>4cM) in which one (haploid) chromosome is likely to be shared IBD with the 

proband. Eagle then analyzes these probable IBD matches for consistency, identifies a 

consistent subset, and uses this subset to make phase calls. In our N≈150,000 analyses, this 

step required ≈10% of the total computation time (Supplementary Table 2) and achieved 

near-perfect phasing within long swaths of genome covering most of each sample 

(corresponding to regions with IBD to several relatives) (Fig. 1a). In more detail, our 

algorithm applies the following four procedures to each proband in turn.

First, we run a fast O(MN)-time scan against all other individuals for long runs of diploid 

genotypes containing no opposite homozygotes (i.e., IBS>0). This filtering procedure is 

expedient for analyses of very large data sets as it operates directly on diploid data and thus 

requires little computation; a few variations of the approach have previously been 

developed40,41. Our implementation achieves a very low constant factor in its running time 

by using bit operations to analyze blocks of 16–64 SNPs simultaneously and using dynamic 

programming to record the longest ten IBS>0 stretches starting at each SNP block. We 

partition SNPs into blocks as follows: moving sequentially across the genome, we initialize 

each new block to contain the next 16 SNPs. We then continue to add subsequent SNPs to 

the block until it either contains 64 SNPs or reaches a maximum span of 0.3cM; upon 

reaching either limit, we end the current block and begin the next block.

Second, we compute an approximate likelihood ratio score for each potential IBD match 

identified by the above scan. This procedure is similar in spirit to Parente242, which likewise 

computes approximate likelihood ratio scores to increase sensitivity and specificity of IBD 

calls. Our approach prioritizes speed over accuracy; instead of using a haplotype frequency 

model as in Parente2, we use only allele frequencies and LD Scores43 to compute an 

approximate likelihood ratio for the observed match having occurred due to IBD versus by 

chance. We apply this procedure within a seed-and-extend framework in which we begin 

with long IBS>0 matches but consider extending them beyond IBS=0 sites (to tolerate 

genotyping errors). We record all extended matches with length >4cM and likelihood ratio 

>10N (where N is the number of samples) as probable IBD matches.

Third, we analyze the set of identified probable IBD matches for consistency, truncating or 

eliminating matches until we reach a consistent set. For any pair of overlapping probable 

IBD matches between the proband and potential surrogate parents 1 and 2, the implied 

shared haplotypes can be (a) consistent with the proband sharing the same haplotype with 

both surrogates 1 and 2, (b) consistent with the proband sharing one of its haploytpes with 

surrogate 1 and other with surrogate 2, or (c) inconsistent with both of these possibilities. 

We first identify pairs of overlapping probable IBD matches in which scenario (c) occurs; 

for these pairs, we assume the longer match is correct and trim the shorter match until 

consistency under either scenario (a) or (b) is achieved. If any match drops below 3cM after 

during this trimming procedure, we discard the match. At the end of the procedure, all 

remaining pairs of trimmed matches are consistent. We then perform a final check for global 

consistency of implied phase orientations among all matches, i.e., we reduce (if necessary) 
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to a subset of matches that can each be assigned to either a surrogate maternal haplotype or a 

surrogate paternal haplotype in a manner that respects pairwise constraints (a) and (b).

Fourth, we use the surrogate maternal and paternal haplotypic assignments of probable IBD 

regions to make phase calls. Whenever at least one surrogate is homozygous at a proband 

het, we use that surrogate to phase the site. If all surrogates are also heterozygous, we make 

a probabilistic phase call based on the allele frequency of the SNP and the difference 

between the numbers of (heterozygous) surrogate maternal haplotypes and surrogate 

paternal haplotypes.

 Step 2: Local phase refinement using long and short IBD

For each diploid proband in turn, Eagle analyzes overlapping ≈1cM windows of genome, 

searching for pairs of haplotypes (from the output of step 1) that approximately sum to the 

diploid proband within the window. Eagle then makes phase calls according to the haplotype 

pairs that most closely match the proband. In our N≈150,000 analyses, this step required 

≈20% of the total computation time (Supplementary Table 2) and reduced the switch error 

rate to ≈1.5% (Fig. 1b). In more detail, our algorithm applies the following three procedures 

to each proband in turn.

First, we run a fast O(MN)-time scan to find probable IBD with other haploid chromosomes 

(according to phase calls made in step 1). This procedure begins analogously to the first 

component of step 1; again, we look for long segments of IBS>0 (now between the diploid 

proband and haploid potential surrogates), now allowing a single mismatch site (IBS=0) 

within runs. We then attempt to extend the identified seed matches and record the ten longest 

matches covering each SNP block (as defined above).

Second, for each window of three consecutive blocks (containing a total of up to 192 SNPs 

spanning up to 0.9cM), and for each of the ten longest haplotype matches covering that 

window, we search for haplotypes approximately complementary (within the window) to the 

long haplotype. The idea is that often, only one of the proband's haplotypes belongs to a 

long IBD tract; however, in such cases, the other haplotype is often shared in a short IBD 

tract, allowing confident phase inference if the complementary haplotype can be found to 

exist. Looking for a complementary haplotype in an error-tolerant manner amounts to 

performing approximate nearest neighbor search in Hamming space; to do so, we apply 

locality-sensitive hashing (LSH)44,45. In brief, LSH overcomes the “curse of dimensionality” 

by building multiple hash tables (here, ten per window) using different random subsets of 

SNPs (here, up to 32); then, when searching for a complementary haplotype, chances are 

high that at least one hash table will not include any SNPs with errors, allowing the 

approximate match to be found.

Third, we select the lowest-error complementary haplotype pair in each window (i.e., block 

triplet) and use it to phase the block in the center of the window. This procedure is fairly 

straightforward, with the only subtleties being that at error SNPs (i.e., proband hets for 

which both surrogate haplotypes have the same allele), we defer to the surrogate with higher 

confidence (from step 1), and when transitioning from one block to the next, we choose the 
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orientation of the next complementary haplotype pair that best continues the current 

surrogate maternal and paternal haplotypes.

 Step 3: Approximate HMM decoding

For each diploid proband in turn, Eagle identifies candidate surrogate parental haplotypes 

(from the output of step 2) for use within an HMM (similar to the Li-Stephens model46). 

Eagle then computes an approximate maximum likelihood path through the HMM using a 

modified Viterbi algorithm (aggressively pruning the state space to increase speed) and calls 

phase according to the HMM decoding. Finally, Eagle post-processes the phase calls to 

correct sporadic errors by explicitly taking into account haplotype frequencies and long IBD. 

Eagle runs two iterations of this entire procedure. In our N≈150,000 analyses, this step 

required ≈70% of the total computation time (Supplementary Table 2) and reduced the 

switch error rate to ≈0.4% after the first HMM iteration and ≈0.3% after the second (Fig. 

1c,d). In more detail, our algorithm applies the following three procedures to each proband 

in turn (in each HMM iteration).

First, we compile a set of reference haplotypes for the proband for each SNP block. This 

procedure begins analogously to the first component of step 2, identifying long haplotype 

matches using a fast O(MN) search within a seed-and-extend framework. To ensure that both 

maternal and paternal surrogates are represented among the reference haplotypes, we 

augment the set of long haplotype matches with complementary haplotypes found using 

LSH. In total, we store K≤80 reference haplotypes per block.

Second, we compute an approximate Viterbi decoding of a diploid HMM similar to the Li-

Stephens model46 using the sets of local reference haplotypes found above. A path through 

the HMM consists of a sequence of state pairs (one maternal reference haplotype and one 

paternal reference haplotype) at each location; we score a path according to the number of 

transitions on the maternal side, the number of transitions on the paternal side, and the 

number (and types) of Mendel errors between the proband and surrogate parents. An exact 

Viterbi decoding of this HMM using dynamic programming requires O(MK3) time (for K2 

state pairs and O(K) possible transitions per position), which is too expensive for us; instead, 

we perform the dynamic programming within a beam search, pruning the search space from 

K2 state pairs to the top P=100–200 state pairs at each location and thus limiting the 

complexity to O(MKP). We then phase the proband according to the approximate Viterbi 

path.

Third, we post-process the phase calls to correct sporadic errors. Within each window of 

three consecutive blocks, we use LSH to determine the frequencies of ≈1cM haplotypes that 

match the Viterbi-inferred maternal and paternal haplotypes up to at most two errors. In rare 

cases, the haplotype frequencies give strong evidence to flip the phase of one or two SNPs, 

in which case we override the Viterbi phase call. Finally, we also check the Viterbi-inferred 

maternal and paternal haplotypes for consistency with the longest previously-identified IBD 

segments; in rare cases when the Viterbi phasing requires a phase switch >1.5cM from either 

end of a probable IBD segment, we override the switch.
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 Fast mode of Eagle algorithm

Many parameters of the Eagle algorithm can potentially be modified to trade off accuracy 

and speed. For simplicity, we created a single ––fast mode that roughly doubles Eagle's 

speed by increasing the maximum SNP block span from 0.3cM to 0.5cM and reducing the 

comprehensiveness of the second HMM iteration (by reducing its beam search width from 

P=200 to 100 and only re-phasing the samples processed in the first half of the first HMM 

iteration).

 Scaling of Eagle run time

Each of the three steps of the Eagle algorithm involves an all-pairs O(MN2) computation (M 
= number of SNPs, N = number of samples) followed by an additional computation; the 

latter computation is inexpensive for step 1 and scales close to linearly with N for steps 2 

and 3 (Supplementary Table 2). Thus, the distribution of time spent per step changes slightly 

with sample size, but no specific step is asymptotically a bottleneck. Summing across the 

three steps, the all-pairs O(MN2) computation constitutes slightly over half of the total 

computational cost at N≈150,000 (Supplementary Table 2).

All components of the Eagle algorithm have run time linear in the number of SNPs (with a 

small constant factor via bit operations). For genotype array data consisting mostly of 

common SNPs, linear scaling is optimal; however, for rare variant-dense data (e.g., sequence 

data), sublinear scaling should be possible, as rare variants have much lower information 

content than common variants. We note that this scaling could be achieved with some 

additional engineering, e.g., by applying Eagle to only a subset of common and low-

frequency variants and incorporating compressed rare variants post-hoc (in a manner similar 

to imputation).

 UK Biobank data set

We analyzed data from the UK Biobank, consisting of 152,729 samples typed at ≈800,000 

SNPs. Using PLINK247) (see URLs), we removed 480 individuals marked for exclusion 

from genomic analyses based on missingness and heterozygosity filters, leaving 152,249 

samples (see URLs, Genotyping and QC). We restricted the SNP set to autosomal, biallelic 

SNPs with MAF≥0.1% and missingness ≤5%, leaving 627K SNPs (26,695 on the short arm 

of chromosome 1, 31,090 on chromosome 10, and 16,367 on chromosome 20). We 

identified 72 trios based on IBS0<0.001, sex of parents, and age of trio members (see URLs, 

Genotyping and QC). Of the 72 trio children, 69 self-reported British ethnicity, one self-

reported Indian ethnicity, and one self-reported Caribbean ethnicity. The remaining trio child 

did not self-report any ethnicity, but her parents self-reported Irish and “Any other white 

background” as their ethnicities. UK Biobank genotyping and QC analyses indicated that 

self-reported ethnicity aligned closely with genetic ancestry (see URLs); however, UK 

Biobank also curated a subset of 120,286 self-reported British samples recommended for 

GWAS.

 GERA data set

We analyzed GERA samples (see URLs; dbGaP study accession phs000674.v1.p1) typed on 

the GERA EUR chip48. The data contained 62,318 samples, of which we removed 961 with 
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<90% European ancestry as determined by SNPweights v2.0 (ref.39). Among this subset of 

samples, we identified 197 trios from independent pedigrees according to relationships 

provided with the data release. We analyzed chromosome 10, which contained 32,741 SNPs.

 Phasing software versions and parameter settings

We tested the latest version of each method (as of August 2015) using its recommended 

parameter settings. For Eagle (v1.0), SHAPEIT v2 (r790), and Beagle (v4.0 r1399), no 

command line arguments were required beyond file paths and threading settings (10 

computational threads). For HAPI-UR (v1.01), we set the maximum window size to 80 (as 

recommended based on genotyping density) and combined results from three parallel runs of 

the algorithm using different random seeds11.

 Evaluation of phasing performance

For our benchmark analyses of N≈150,000 UK Biobank samples, we removed 144 trio 

parents and phased the remaining 152,105 samples. For our benchmarks on N≈50,000 or 

15,000 samples, we phased all 72 trio children along with 1/3 or 1/10 of the remaining non-

trio parent samples (50,752 or 15,270 samples in total). We evaluated phasing accuracy in 

trio children by comparing computational phase calls to trio phase calls (ignoring SNPs with 

Mendel errors); trio phase was available at ≈80% of heterozygous SNPs. For each child, we 

computed switch error rate by dividing the number of phase mismatches at consecutive trio-

phased SNPs by the total number of trio-phased heterozygous SNPs minus 1 (ref.1), i.e., 

≈15% of all SNPs (varying slightly among samples). In our results, we report mean switch 

error rates over the 70 European-ancestry trio children (according to self-reported ethnicity; 

see above). We applied an analogous procedure for our GERA benchmarks (differing only in 

that we removed all known relatives of the trio children—as the data contained a few 

extended pedigrees—leaving 60,929 samples).

 Evaluation of in-sample imputation accuracy

In our in-sample imputation benchmarks, we used the same SNP and sample subsets 

described above, but we modified the genotype data by randomly masking 2% of all 

genotypes (increasing the missingness of each SNP by ≈0.02). We then phased the masked 

data, obtaining imputed genotypes at all masked SNPs in the phased output. For each SNP, 

we computed adjusted R2 between actual and imputed masked genotype values according to 

the formula

(1)

where R2 on the right is the usual coefficient of determination and n is the number of data 

points. (This adjustment corrects for upward bias due to finite sample size; for simplicity, we 

always use “R2” to refer to adjusted R2 elsewhere in this manuscript.) We computed means 

and standard errors of R2 over MAF strata, treating R2 from different SNPs as 

approximately independent given that the ≈2% subset of masked individuals varied from 

SNP to SNP. To assess in-sample imputation accuracy on a subset of samples (e.g., the 
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120,000 British samples curated by UK Biobank for GWAS), we computed R2 using only 

masked genotypes from samples in the subset.

 Evaluation of GWAS imputation accuracy

For computational efficiency, we performed all benchmarks of downstream imputation 

starting from a single data set, created as follows. First, we merged the 379 European-

ancestry individuals from the 1000 Genomes Phase 1 integrated v3 release (see URLs) into 

the UK Biobank data set. Second, we entirely masked 700 random SNPs per chromosome, 

100 in each of seven MAF bins (with MAF computed in the curated British samples). We 

phased all samples together using Eagle, and we phased a subset of N≈15,000 samples (all 

1000 Genomes samples plus 10% of the UK Biobank samples) using SHAPEIT2. Finally, 

we used the Sanger Imputation Service to impute the N≈15,000 SHAPEIT2-phased samples 

and the same subset of Eagle-phased samples using both the UK10K panel (3,781 samples) 

and the Haplotype Reference Consortium (r1) panel (32,488 samples) with the PBWT 

imputation algorithm37 (see URLs). We assessed imputation R2 in N≈12,000 curated British 

samples at the masked and imputed SNPs, computing means and standard errors across 

MAF strata as before (treating R2 from different SNPs as approximately independent given 

that each MAF bin contained <1 SNP per cM). We further assessed imputation R2 in 

UK10K-imputed 1000 Genomes GBR samples (N=89); since sequence data was available 

for these samples, we computed R2 at all UK10K-imputed SNPs in the 1000 Genomes data 

set. We computed means of R2 across MAF strata and estimated standard errors using a 100-

block jackknife to account for linkage disequilibrium among SNPs.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Eagle algorithm and example phase calls after each step
We show phase calls for ten trio children after each successive step of the Eagle algorithm 

(applied to phase the first 40cM of chromosome 10 in all N≈150,000 UK Biobank samples 

except trio parents). At all trio-phased sites, red and blue indicate whether the first Eagle-

phased haplotype for each child matches the maternal or paternal haplotype. (a) After the 

first step, a sizable proportion of each genome is covered by long segments of near-perfect 

phase; these segments are the regions in which long IBD is available from several relatives. 

(b) The second step, which uses both long and short IBD, fixes most of the phase switch 

errors in the first step. (c,d) The subsequent approximate HMM iterations further reduce the 

error rate.

Loh et al. Page 19

Nat Genet. Author manuscript; available in PMC 2016 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Computational cost and accuracy of phasing methods
Benchmarks of Eagle and existing phasing methods (all run with default options) on 

N≈15,000, 50,000, and 150,000 UK Biobank samples and M=5,824 SNPs on chromosome 

10. Log-log plots of (a) run times and (b) memory consumption using up to 10 cores of a 

2.27 GHz Intel Xeon L5640 processor and up to two weeks of computation. (c) Mean switch 

error rate over 70 European-ancestry trios; error bars, s.e.m. All methods except HAPI-UR 

supported multithreading. As the HAPI-UR documentation suggested merging results from 

three independent runs with different random seeds, we parallelized these runs across three 

cores. (For the N≈150,000 experiment, HAPI-UR encountered a failed assertion bug for 

some random seeds, so we needed to try six random seeds to find three working seeds. We 
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did not count this extra work against HAPI-UR.) Numeric data are provided in 

Supplementary Table 1.
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Table 1

Computational cost and accuracy of Eagle and SHAPEIT2 on N≈150,000 samples using various parameters.

Method Run time Switch error rate Switch error rate 
without blips

0-discrepancy 10Mb segments ≤2-discrepancy 10Mb segments

Eagle --fast 2.8 days 0.321% (0.011%) 0.153% (0.012%) 60.5% (2.0%) 79.3% (1.7%)

Eagle 5.0 days 0.276% (0.008%) 0.118% (0.007%) 62.6% (2.0%) 81.6% (1.6%)

SHAPEIT2 
K=100 (3 
blocks)

106.8 days 0.306% (0.013%) 0.159% (0.010%) 56.3% (1.5%) 71.2% (1.3%)

SHAPEIT2 
K=200 (4 
blocks)

118.8 days 0.265% (0.014%) 0.124% (0.009%) 62.8% (1.8%) 77.8% (1.1%)

SHAPEIT2 
K=400 (5 
blocks)

152.8 days 0.243% (0.011%) 0.101% (0.005%) 64.2% (1.6%) 80.4% (1.1%)

We benchmarked various parameter settings of Eagle and SHAPEIT2 in analyses of ten 10,000-SNP regions comprising 16% of the genome (listed 
in Supplementary Table 4), phasing all N≈150,000 UK Biobank samples in each analysis. We split SHAPEIT2 analyses into 3, 4, or 5 blocks (with 
an overlap of 500 SNPs) as necessitated by computational constraints; we ligated SHAPEIT2 output using hapfuse v1.6.2. Run times are totals 
across all ten regions (using 16 cores of a 2.60 GHz Intel Xeon E5-2650 v2 processor). Switch error rates are means (s.e.m.) over the ten regions, 
assessed on 70 European-ancestry trios. Switch error rates without blips ignore switches arising when 1–2 SNPs are oppositely phased relative to 
≥10 consistently phased SNPs on both sides. The number of discrepancies within a 10Mb segment is defined as the minimum number of SNPs with 

incorrect phase when comparing a phased haplotype to either trio-phased haplotype13; percentages of 10Mb segments with 0 or ≤2 discrepancies 
are means (s.e.m.) over the ten 10,000-SNP regions. Detailed discrepancy distributions are provided in Supplementary Table 5.
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