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Background-—Persistent congestion with deteriorating renal function is an important cause of adverse outcomes in heart failure.
We aimed to characterize new approaches to evaluate renal congestion using Doppler ultrasonography.

Methods and Results-—We enrolled 205 patients with suspected or prediagnosed pulmonary hypertension (PH) undergoing right
heart catheterization. Patients underwent renal Doppler ultrasonography and assessment of invasive cardiopulmonary hemody-
namics, echocardiography, renal function, intra-abdominal pressure, and neurohormones and hydration status. Four spectral
Doppler intrarenal venous flow patterns and a novel renal venous stasis index (RVSI) were defined. We evaluated PH-related
morbidity using the Cox proportional hazards model for the composite end point of PH progression (hospitalization for worsening PH,
lung transplantation, or PH-specific therapy escalation) and all-cause mortality for 1-year after discharge. The prognostic utility of
RVSI and intrarenal venous flow patterns was compared using receiver operating characteristic curves. RVSI increased in a graded
fashion across increasing severity of intrarenal venous flow patterns (P<0.0001) and was significantly associated with right heart and
renal function, intra-abdominal pressure, and neurohormonal and hydration status. During follow-up, the morbidity/mortality end
point occurred in 91 patients and was independently predicted by RVSI (RVSI in the third tertile versus referent: hazard ratio: 4.72
[95% CI, 2.10–10.59; P<0.0001]). Receiver operating characteristic curves suggested superiority of RVSI to individual intrarenal
venous flow patterns in predicting outcome (areas under the curve: 0.789 and 0.761, respectively; P=0.038).

Conclusions-—We propose RVSI as a conceptually new and integrative Doppler index of renal congestion. RVSI provides additional
prognostic information to stratify PH for the propensity to develop right heart failure.

Clinical Trial Registration-—URL: https://www.clinicaltrials.gov/. Unique identifier: NCT03039959. ( J Am Heart Assoc. 2019;8:
e013584. DOI: 10.1161/JAHA.119.013584.)
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H eart failure (HF) is a major cause of death worldwide1

and the leading cause of hospitalization in both the
United States and Europe.2 In addition to low cardiac output,

persistent congestion with deterioration of renal function due
to progressive right ventricular (RV) failure has been identified
as an important cause of adverse outcomes in HF.3–5
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Congestion may lead to a vicious circle of renal dysfunc-
tion, increases in intra-abdominal pressure, neurohormonal
activation, excessive renal tubular sodium reabsorption, fluid
overload, and diuretic resistance, leading to further RV
stress.6,7 Elevation of right atrial pressure (RAP) is transmitted
to the renal veins, causing increased interstitial and tubular
hydrostatic pressure within the encapsulated kidney, which
decreases net glomerular filtration rate (GFR) and oxygen
delivery.8 Similar pathophysiological mechanisms are
expected to occur during increases in intra-abdominal pres-
sure.6 Congestion may also directly compress vessels in the
renal parenchymal regions or reduce vessel compliance.9

Consequently, changes in vessel shape and function may lead
to transient and cardiac cycle-dependent stasis of renal
venous flow and to changes in intrarenal venous flow (IRVF)
patterns.

Doppler ultrasonography was recently proposed to evalu-
ate renal congestion, with different IRVF patterns and the
intrarenal venous impedance index having been shown to
predict diuretic response and adverse outcomes in patients
with HF or undergoing cardiac surgery.9–12 However, these
approaches do not reflect the continuum of renal congestion:
classification of IRVF patterns into different categories may
miss important changes within those categories, and the

venous impedance index does not distinguish between IRVF
patterns with different degrees of venous stasis. We sought to
identify and rigorously characterize a new approach to
evaluate the continuum of renal congestion based on Doppler
renal venous flow.

Methods

Study Design and Participants
We prospectively enrolled consecutive hospital inpatients
aged ≥18 years with suspected or prediagnosed pulmonary
hypertension (PH) who were undergoing invasive right heart
catheterization (RHC) between January 2017 and September
2017 at the Department of Pulmonology, University Hospital
Giessen and Marburg, Giessen, Germany. PH is the most
common precursor to RV failure13 and thus represents an
ideal scenario for studying congestion. Suspicion of PH was
determined on clinical grounds including echocardiographic
evaluation, in accordance with the most recent guidelines for
the diagnosis and treatment of PH.14 Patients with prediag-
nosed PH had received the diagnosis based on previous RHC.
Diagnosis and classification of PH and pulmonary vasoactive
treatment were based on current guidelines.14 PH was
defined as invasively measured mean pulmonary arterial
pressure (PAP) ≥25 mm Hg at rest. Patients were assigned a
diagnosis of pulmonary arterial hypertension (group 1), PH
due to left heart disease (group 2), PH due to lung diseases
and/or hypoxia (group 3), chronic thromboembolic PH (group
4), or PH with unclear and/or multifactorial mechanisms
(group 5)14 by a multidisciplinary board. Patients receiving PH
therapy could enter the study without restrictions. HF was
diagnosed according to current guidelines.15

Patients were excluded if they had chronic kidney disease
stage 5, preexisting acute kidney injury, non–end-stage renal
disease with extracorporeal or peritoneal ultrafiltration due to
diuretic-resistant fluid overload, prediagnosed glomeru-
lonephritis, autosomal dominant polycystic kidney disease,
or postrenal obstruction; if they were recipients of solid-organ
transplants; or if they had received NSAIDs within 72 hours
before RHC. The exclusion criteria acute kidney injury and
chronic kidney disease were diagnosed by an adjudication
committee of 3 expert nephrologists. Chronic kidney disease
was considered as estimated GFR (eGFR; creatinine–cystatin
C equation) <60 mL/min per 1.73 m2 or the presence of
microalbuminuria independent of eGFR.16 Acute kidney injury
was defined as an increase in serum creatinine by ≥0.3 mg/
dL within 48 hours or ≥1.5 times baseline within the prior 7
days17 (determined by all available serum creatinine values
from hospital and outpatient medical records within the
previous 90 days). Diuretic-resistant fluid overload was
defined as the inability to achieve an adequate negative fluid

Clinical Perspective

What Is New?

• Doppler-derived intrarenal venous flow patterns having been
shown to predict adverse outcomes in patients with heart
failure; however, these approaches do not reflect the
continuum of renal congestion because classification of
intrarenal venous flow into different categories may miss
important changes within those categories.

• In patients with suspected pulmonary hypertension under-
going right heart catheterization, we developed a continuous
index from intrarenal venous flow patterns, and we propose
the renal venous stasis index as a conceptually new and
integrative Doppler measure of renal congestion.

• Our study suggests that renal venous stasis index may be
superior to individual intrarenal venous flow pattern in
predicting outcome in patients with pulmonary hyperten-
sion.

What Are the Clinical Implications?

• Renal venous stasis index provides additional prognostic
information to stratify pulmonary hypertension for the
propensity to develop right heart failure.

• Longitudinal studies are needed to clarify the role of renal
venous stasis index in the management of pulmonary
hypertension.
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balance when the following 4 therapeutic options had been
exploited: (1) restriction of fluid intake to <1.5 L/day and
sodium chloride intake to ≤6.0 g/day; (2) (continuous)
intravenous infusion of furosemide (minimum 500 mg/day);
(3) sequential nephron blockade with the addition of a thiazide
diuretic (eg, hydrochlorothiazide minimum 25 mg/day or
xipamide minimum 20 mg/day); (4) addition of an aldos-
terone antagonist if tolerable with serum potassium level
(spironolactone minimum 25 mg/day or eplerenone minimum
50 mg/day). RHC data, echocardiography, renal function,
IRVF patterns, laboratory measurements, intra-abdominal
pressure, and bioimpedance data were evaluated separately,
as described in the next section, by examiners who were
blinded to the other data. All patients were included in the
Giessen PH registry.18

The study was approved by the local Human Research
Ethics Committee (AZ 237/16) and complied with the
Declaration of Helsinki. The study was registered at Clini-
calTrials.gov (identifier: NCT03039959). All participants gave
signed informed consent. The data that support the findings
of this study are available from the corresponding author on
reasonable request.

Procedures and Measurements
Renal Doppler ultrasonography

Ultrasound and spectral Doppler analyses were performed in
duplicate by 2 independent nephrologists with experience in
Doppler ultrasound, using an EPIQ 5 system (Philips Health-
care) with a sector transducer frequency range of 2.5–
5.0 MHz. The analyses were performed after a Swan-Ganz
catheter had been inserted for RHC assessment (described in
the next section) and the patient had rested in a supine
position for ≥10 minutes. Color Doppler images were used to
identify interlobar vessels. Pulsed Doppler waveforms of the
interlobar arteries and veins were recorded simultaneously
with the patient in a resting decubitus position. Except for
renal resistive index (RRI), which was assessed in both
kidneys, all renal Doppler ultrasonography studies were
performed in the right kidney (except in cases of unsatisfac-
tory image quality) because left renal vein phasicity may be
attenuated because of entrapment in the fork between the
abdominal aorta and the superior mesenteric artery. In
addition, the left ovarian or testicular veins drain into the
left renal vein, which, in the rare event of ovarian or testicular
varicosis, may affect renal venous flow.

All values were recorded as means of at least 3 measure-
ments obtained in different interlobar vessels over 3 cardiac
cycles during sinus rhythm. If atrial fibrillation was present, an
index beat (the beat following 2 preceding cardiac cycles of
equal duration) was used for each measurement. Venous
impedance index and RRI were calculated as follows:

(maximum flow velocity�minimum diastolic flow velocity)/
maximum flow velocity.9 A side-to-side difference in RRI of
>5% between the kidneys was considered indicative for
significant renal artery stenosis.19 RRI <0.7 was regarded as
normal.20

IRVF patterns were characterized by a blinded adjudication
committee comprising a nephrologist, an angiologist, and a
pulmonologist blinded to clinical, laboratory, and RHC data. If
2 reviewers disagreed, a third reviewer provided input and
consensus was developed. The IRVF patterns were broadly
categorized into continuous (noncongestive) and discontinu-
ous (nadir velocity=0) flow patterns. We further classified the
discontinuous IRVF patterns into 3 stages: pulsatile, biphasic
(with venous peaks during systole and diastole), and
monophasic (with venous peak during diastole; Figure 1).

To reflect the full continuum of renal congestion, we
defined and evaluated a new, continuous ratio, the renal
venous stasis index (RVSI). RVSI indicates the proportion of
the cardiac cycle during which there is no renal venous outlet
flow and is calculated as follows: (cardiac cycle time�venous
flow time)/cardiac cycle time (Figure 2).

Right heart catheterization

On the day of RHC, each patient took his or her usual dose of
medication at 07:00 AM except for the maintenance dose of
diuretics. In patients with long-term oxygen treatment, oxygen
was applied via nasal cannula at the previously prescribed
flow rate. A Swan-Ganz catheter (7F balloon tipped; Baxter
Healthcare) was inserted under local anesthesia in the right
internal jugular vein. RHC was performed according to current
guidelines,14 with assessment of mean PAP, RAP, pulmonary
vascular resistance, pulmonary capillary wedge pressure,
cardiac output (thermodilution method), cardiac index, mean
arterial pressure, and mixed venous oxygen saturation
immediately after renal ultrasonography (for details see
Data S1).

Echocardiography

Echocardiography was performed by experienced echocardio-
graphers 1 day before RHC using Vivid E9 and Vivid S5
systems (GE Healthcare). Right heart parameters (RV myocar-
dial performance index [Tei index], tricuspid annular plane
systolic excursion, systolic PAP, right atrial size, basal
diameter of the right ventricle, inferior vena cava diameter,
and systolic free wall myocardial velocity) and left heart
parameters (left atrial and ventricular diameters and the ratio
of mitral inflow velocity to lateral annular relaxation velocity
[E/e’]) were measured as recommended.21

Other measures

Body composition (including hydration status) was analyzed
by bioimpedance spectroscopy using the body composition
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monitor (Fresenius Medical Care; see Data S1) before
catheterization. Hydration status was also evaluated by
clinical assessment (edema) and ultrasound (ascites and
pleural effusion). Intra-abdominal pressure was measured via
an indwelling urinary catheter in all patients using the
transvesical method as previously described (Data S1).6 The
mean arterial pressure was calculated as follows: [systolic
blood pressure+(29diastolic blood pressure)]/3. The abdom-
inal perfusion pressure was determined as mean arterial
pressure minus intra-abdominal pressure.6 The renal filtration
gradient can be estimated as glomerular filtration pressure
minus proximal tubular pressure.6 In the presence of elevated
intra-abdominal pressure, proximal tubular pressure may be
assumed to equal intra-abdominal pressure, and thus
glomerular filtration pressure can be estimated mean arterial
pressure minus intra-abdominal pressure. The renal filtration
gradient was therefore calculated as follows: mean arterial
pressure�(29intra-abdominal pressure). Intra-abdominal
pressures from 4 to 7 mm Hg were considered as normal
range, whereas values ≥12 mm Hg were considered as intra-

abdominal hypertension.22 Six-minute walk distance and New
York Heart Association functional class were assessed 1 day
before RHC according to current guidelines.15,23 Loop diuretic
doses were converted to furosemide equivalents with 20 mg
torasemide equal to 80 mg furosemide for oral diuretics and
20 mg torasemide equal to 40 mg furosemide for intravenous
diuretics.24 Thiazide diuretics included hydrochlorothiazide
and xipamide. If triamterene was taken, it was used in a fixed
diuretic combination with hydrochlorothiazide. Aldosterone
antagonists included spironolactone and eplerenone.

Laboratory methods

Laboratory methods are detailed in Data S1. Briefly, blood
samples were collected on the day of RHC from the Swan-
Ganz catheter after the patient had rested in a supine position
for ≥60 minutes. Urine samples were collected from first
morning-void specimens. BNP (B-type natriuretic peptide),
copeptin, creatinine, and cystatin C were measured using
chemiluminescence, time-resolved amplified cryptate emis-
sion, photometric-enzymatic, and immunoturbidimetric

<1 1 1 1

A: No congestion

A

C

B

D

Continuous Pulsatile
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Figure 1. Congestion stages as defined by intrarenal venous flow patterns. Pulsed-wave Doppler samples of renal congestion patterns in the
interlobar renal vessel. The upward Doppler signal shows the intrarenal arterial flow, which is used to measure renal resistive index; the
downward Doppler signal shows the venous flow, used to measure venous impedance index or renal venous stasis index. A, No congestion:
continuous venous flow. B, Stage 1 congestion: pulsatile venous flow. C, Stage 2 congestion: biphasic venous flow. D, Stage 3 congestion:
monophasic venous flow. D indicates diastole; S, systole; VII, venous impedance index.
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methods, respectively. We chose BNP and copeptin as
biomarkers of neurohormonal activation because both are
commonly used for diagnosis and determining prognosis in
HF.15 The eGFR was determined using both creatinine25 and
creatinine–cystatin C26 Chronic Kidney Disease–Epidemiology
Collaboration equations.

Follow-Up and End Points
Clinical outcomes were evaluated for 1 year after discharge.
Patients were closely followed during the observation period
by clinical visits or telephone interviews. Changes of medi-
cation for clinical reasons were permitted (the primary
physician caring for the patient was blinded to the IRVF
patterns and RVSI results). Use of diuretics was at the
discretion of the treating physician. At 1 year, all patients
were recontacted for follow-up analyses at the nephrology
outpatient department. If the primary cause of PH was
surgically treated (eg, pulmonary thrombendarterectomy in
patients with chronic thromboembolic PH or lung transplan-
tation), the patients were followed until the surgical proce-
dure. If a patient died outside of the hospital, telephone calls
to the general practitioner or the family members were
performed to confirm the date of death.

We evaluated the first occurrence of a composite end point
of PH-related morbidity (any hospitalization for worsening of
PH, lung transplantation, or need for escalation of PH-specific

therapy) and death from any cause. In addition, the following
components of the composite end point were each analyzed
separately: unscheduled hospitalization due to fluid overload
with requirement for an increase in diuretic therapy (eg, due
to pulmonary or peripheral edema, pleural effusion, ascites, or
recent increase of body weight by ≥10%); need for escalation
or change of PH-specific therapy due to clinical and echocar-
diographic progress of PH; and death from any cause. Patients
who underwent pulmonary thromboendarterectomy were
considered as withdrawn alive. All available medical records
were collected, and morbidity and mortality data were
evaluated according to the predefined end point components
in a blinded fashion by a clinical end point adjudication
committee including medical experts in nephrology, PH, and
cardiology who were unaware of the IRVF patterns and RVSI
results and not responsible for the primary care of the patient.

Index cardiac cycle (ms) – venous flow (ms)
Renal venous stasis index =

Index cardiac cycle (ms)

Pulsatile Biphasic Monophasic

30

20

10

–10

–20

–30

Artery
flow

cm/s

Vein
flow

Cardiac cycle time Cardiac cycle time Cardiac cycle time

Venous flow time Venous flow time Venous flow time

Figure 2. Renal venous stasis index (RVSI). The RVSI is a novel Doppler-based parameter to estimate severity of renal congestion. Pulsed-
wave Doppler samples of renal congestion patterns in the interlobar renal vessel are shown. The upward Doppler signal shows the intrarenal
arterial flow, which is used to measure cardiac cycle time; the downward Doppler signal shows the venous flow, used to measure venous flow
time. Under physiological conditions, the index is zero due to the presence of a continuous venous flow, whereas it increases with rising severity
of congestion. The figure illustrates the method of measurement of RVSI in different congestion stages. ms indicates milliseconds.

 270 patients undergoing right 
heart catheterization were screened

 205 patients were included
in the analysis

65 patients were excluded
• 25 had pre-existing acute kidney injury  
• 6 had stage 5 chronic kidney disease  
• 1 had non-end-stage renal disease with
 extracorporeal ultrafiltration
• 3 had non-end-stage renal disease with
 peritoneal ultrafiltration
• 10 received non-steroidal inflammatory 
 drugs within 72 h before catheterization  
• 15 declined to participate
• 5 other reasons

Figure 3. Study flow chart. The diagram describes the protocol
used for the enrollment of patients in this study.
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Table 1. Clinical Characteristics, Invasive Hemodynamics, Echocardiographic Data, Renal Function, and Neurohormonal and
Hydration Status According to RVSI Tertile

All patients(N=205) RVSI 0(n=59)

RVSI Tertiles

P Value*
First, 0 to ≤0.12
(n=49)

Second, >0.12 to
≤0.32 (n=48)

Third,
>0.32(n=49)

Demographics

Age, y 68.0 (57.0–78.0) 68.0 (55.0–73.0) 67.0 (51.0–75.5) 72.5 (61.0–78.0) 74.0 (65.0–81.0) 0.0152

Male, n (%) 87 (42.4) 24 (40.7) 17 (34.7) 17 (35.4) 29 (59.2) 0.0488

Body mass index, kg/m2 27.82�6.07 29.03�6.05 26.05�6.37 28.30�6.84 27.67�4.52 0.075

Baseline clinical data

Oxygen supply, n (%) 118 (57.6) 28 (47.5) 28 (57.1) 32 (66.7) 30 (61.2) 0.224

PaO2
† 69.32�11.71 71.09�10.74 68.11�11.21 68.00�10.01 69.67�14.57 0.474

PaCO2
† 38.57�8.98 40.20�11.68 37.76�7.30 37.38�7.88 38.59�7.66 0.367

6MWD, m 277.23�136.05 309.76�118.16 285.08�156.43 283.77�131.30 223.80�127.02 0.0098

NYHA classification, n (%)

1–2 44 (21.5) 15 (25.4) 12 (24.5) 13 (27.1) 4 (8.2) 0.178

3–4 161 (78.5) 44 (74.6) 37 (75.5) 35 (72.9) 45 (91.8)

Laboratory data

Leukocytes, 9109/L 7.43�2.49 7.33�2.53 7.72�2.29 7.14�2.68 7.56�2.47 0.674

Hemoglobin, g/dL 13.27�2.09 13.95�1.83 13.53�2.06 13.49�2.18 13.02�2.31 0.504

Sodium, mmol/L 139.56�3.07 139.32�3.15 139.73�2.72 140.15�3.14 139.10�3.22 0.343

Potassium, mmol/L 3.67�0.42 3.65�0.40 3.64�0.34 3.63�0.44 3.73�0.47 0.612

Uric acid, mg/dL 6.77�2.52 6.26�2.18 5.89�2.07 6.65�2.31 8.38�2.82 <0.0001

Albumin, g/dL 38.20�3.22 38.91�3.18 37.49�3.25 38.09�2.96 38.18�2.42 0.162

C-reactive protein, mg/L 5.22 (1.52–11.44) 3.13 (1.07–8.60) 3.70 (0.50–11.58) 5.22 (2.05–11.48) 7.20 (3.18–14.51) 0.0172

Comorbidities, n (%)

Hypertension 128 (62.4) 35 (59.3) 29 (59.2) 32 (66.7) 32 (65.3) 0.800

Diabetes mellitus 48 (23.4) 12 (20.3) 9 (18.4) 9 (18.8) 18 (36.7) 0.092

Atrial fibrillation 56 (27.3) 7 (11.9) 14 (28.6) 9 (18.8) 26 (53.1) <0.0001

Maintenance therapy

ACEI or ARB, n (%) 83 (40.5) 23 (39.0) 18 (36.7) 20 (41.7) 22 (44.9) 0.858

b-Blocker 103 (50.2) 25 (42.4) 18 (36.7) 27 (56.3) 33 (67.3) 0.0095

Loop diuretic dose, mg/d‡ 40 (0.0–60.0) 20 (0.0–40.0) 20 (0.0–55.0) 30 (0.0–55.0) 80 (40.0–170.0) <0.0001

PH-specific therapy (%)

Treatment-naive 116 (56.6) 42 (71.2) 21 (42.9) 25 (47.9) 30 (61.2) 0.0292

Monotherapy 49 (23.9) 8 (13.6) 18 (36.7) 11 (22.9) 12 (24.5)

Dual therapy 28 (13.7) 6 (10.2) 7 (14.3) 12 (25.0) 3 (6.1)

Triple therapy 12 (5.9) 3 (5.1) 3 (6.1) 2 (4.2) 4 (8.2)

Hemodynamics

Mean PAP, mm Hg 34.84�14.63 24.10�9.62 34.78�12.79 41.10�16.03 41.69�12.39 <0.0001

PVR, dyne∙s/cm5 394 (214–604) 229 (110–420) 422 (214–589) 516 (279–679) 495 (313–833) <0.0001

RAP, mm Hg 5.76�5.63 2.46�3.66 3.88�3.76 5.56�3.72 11.80�6.06 <0.0001

Cardiac index, L/min/m2 2.73�0.98 2.98�1.01 2.88�1.16 2.67�0.68 2.32�0.89 0.0032

PCWP, mm Hg 9.0 (5.0–13.0) 7.0 (4.0–10.0) 8.0 (5.0–12.0) 9.5 (6.0–14.8) 12.0 (8.0–18.0) <0.0001

Continued
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Table 1. Continued

All patients(N=205) RVSI 0(n=59)

RVSI Tertiles

P Value*
First, 0 to ≤0.12
(n=49)

Second, >0.12 to
≤0.32 (n=48)

Third,
>0.32(n=49)

Mixed venous oxygen
saturation, %

63.76�8.35 66.70�6.42 65.15�7.17 65.00�5.85 57.62�10.43 <0.0001

Heart rate, beats/min 71.62�13.23 72.00�11.32 69.84�12.90 71.38�11.49 73.18�16.95 0.65

MAP, mm Hg§ 84.25�11.57 85.22�10.28 82.76�13.39 84.81�10.82 84.02�11.99 0.72

Echocardiographic parameters

Right heart

TAPSE, mm 19.89�4.41 21.88�3.82 21.14�4.44 19.50�3.64 16.63�3.85 <0.0001

RV myocardial performance
index (Tei index)

0.49�0.22 0.46�0.20 0.45�0.21 0.54�0.24 0.49�0.24 0.334

RV S’, cm/s 11.60�3.52 12.95�3.31 12.13�3.27 11.49�3.29 9.54�3.36 <0.0001

TAPSE/systolic PAP ratio 0.39�0.21 0.55�0.24 0.38�0.22 0.33�0.12 0.30�0.12 <0.0001

Tricuspid insufficiency,
n (%)

<0.0001

Mild 66 (32.2) 34 (57.6) 10 (20.4) 12 (25.0) 10 (20.4)

Moderate 112 (54.6) 23 (39.0) 31 (63.3) 32 (66.7) 26 (53.1)

Severe 25 (12.2) 1 (1.7) 7 (14.3) 4 (8.3) 13 (26.5)

RA area, cm2 18.89�6.72 15.14�6.30 18.48�5.64 19.21�5.64 23.58�6.44 <0.0001

RV diameter, mm 40.78�8.08 37.93�7.38 41.09�6.97 40.52�7.75 44.40�9.00 0.0005

IVC, cm 2.27�0.49 2.01�0.52 2.26�0.42 2.34�0.41 2.53�0.43 <0.0001

Left heart

LVEF, % 60.0 (60.0–65.0) 60 (60.0–65.0) 62 (60.0–65.0) 60 (60.0–65.0) 60 (55.0–65.0) 0.0442

LA diameter, mm 41.98�6.86 39.78�6.35 40.33�6.98 41.42�6.16 46.43�5.98 <0.0001

LVEDD, mm 46.03�5.59 46.28�4.73 45.26�5.73 45.83�6.23 46.67�5.81 0.65

E/e’ ratio 12.98�5.34 11.07�3.52 12.46�4.50 14.09�5.69 14.79�6.78 0.0023

Renal function

Serum creatinine, mg/dL|| 1.01�0.45 0.92�0.40 0.79�0.21 0.98�0.36 1.35�0.55 <0.0001

Cystatin C, mg/L 1.10 (0.91–1.52) 0.98 (0.81–1.24) 1.01 (0.88–1.18) 1.27 (0.97–1.62) 1.53 (1.10–2.09) <0.0001

Urea, mg/dL¶ 47.44�35.85 40.97�26.71 34.29�13.13 44.69�25.25 71.10�54.75 <0.0001

eGFR (CKD-EPI creatinine
equation),
mL/min/1.73 m2#

74.45�26.12 80.07�24.52 87.31�18.86 72.69�24.01 56.57�26.75 <0.0001

eGFR (CKD-EPI creatinine–
cystatin C equation),
mL/min/1.73 m2**

68.58�26.86 77.68�27.65 80.80�20.25 64.06�22.56 49.84�24.49 <0.0001

Renal filtration
gradient, mm Hg††

69.30�12.46 73.70�10.60 69.62�13.32 69.81�11.12 63.20�12.81 <0.0001

Urine PCR, mg/g creatinine 58.8 (40.2–114.2) 51.5 (36.4–72.6) 55.3 (37.5–85.4) 58.0 (39.9–92.9) 116.2 (49.1–190.8) <0.0001

Urine ACR, mg/g creatinine 11.4 (6.3–29.7) 9.3 (5.2–16.0) 9.0 (5.7–18.5) 10.3 (6.7–19.0) 29.7 (11.7–107.8) <0.0001

Urine a1MCR, mg/g
creatinine

10.9 (6.0–19.1) 8.7 (5.1–16.5) 8.7 (5.7–15.1) 12.0 (6.5–21.4) 15.4 (7.6–32.7) 0.0092

Renal Doppler ultrasonography

Venous impedance index 0.84�0.26 0.44�0.12 1.00�0 1.00�0 1.00�0 <0.0001

RRI 0.71�0.07 0.69�0.08 0.69�0.07 0.73�0.07 0.74�0.06 <0.0001

Continued

DOI: 10.1161/JAHA.119.013584 Journal of the American Heart Association 7

Renal Venous Stasis Index and Right Heart Failure Husain-Syed et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



Statistical Analysis

Descriptive statistics were expressed as mean�SD or median
(interquartile range [IQR]) for continuous variables, and
frequency (percentage) for categorical variables. Patient char-
acteristics were compared between subgroups using ANOVA,
Mann-Whitney U tests, or Kruskal–Wallis tests for continuous
variables and v2 tests for categorical variables. Intra- and
interobserver reliability was evaluated using the intraclass
correlation coefficient. To understand the relationships of renal
function and RVSI with other continuous variables, we
performed Spearman and Pearson correlation analysis. Corre-
lation coefficient values >0.3 were considered relevant.
Kaplan-Meier analysis was performed to determine the

relationship of RVSI and IRVF patterns with clinical end points.
Risk factors for clinical end points were determined with Cox
proportional hazards models. Univariate factors with P<0.05
were entered into the multiple Cox regression model. A
stepwise backward procedure was used in multiple Cox
regression analysis (likelihood ratio). RVSI values >0 were
divided into tertiles, and then the hazard rates of each tertile for
reaching the clinical end points were calculated in relation to
the control group (RVSI=0). Receiver operating characteristic
curves were used to evaluate RVSI and IRVF as predictors of
binary clinical end points. Time-to-event information and
censoring were ignored when computing the areas under the
curves. Receiver operating characteristics were compared with
the DeLong test implemented in the R package pROC

Table 1. Continued

All patients(N=205) RVSI 0(n=59)

RVSI Tertiles

P Value*
First, 0 to ≤0.12
(n=49)

Second, >0.12 to
≤0.32 (n=48)

Third,
>0.32(n=49)

Neurohormonal status

BNP, pg/mL 138.0 (50.0–321.0) 46.0 (26.0–113.0) 98.0 (38.0–264.5) 198.5 (111.3–322.5) 468.0 (228.5–820.0) <0.0001

Copeptin, pmol/L 11.1 (5.8–23.3) 9.1 (4.6–16.0) 7.3 (4.9–14.4) 14.0 (5.2–23.5) 23.2 (11.1–39.6) <0.0001

Urine feNa, % 0.6 (0.4–1.3) 0.7 (0.4–1.2) 0.6 (0.4–1.1) 0.6 (0.4–1.2) 1.2 (0.4–2.1) 0.072

Hydration status

Peripheral edema, n (%) 60 (29.3) 13 (22.0) 11 (22.4) 16 (33.3) 20 (40.8) 0.105

Pleural effusion, n (%) 17 (8.3) 3 (5.1) 3 (6.1) 3 (6.3) 8 (16.3) 0.137

Ascites, n (%) 7 (3.4) 0 (0) 1 (2.0) 0 (0) 6 (12.2) 0.0013

Hydration status (as
measured by
bioimpedance)‡‡

0.71�2.12 �0.14�1.41 0.50�1.78 1.18�2.41 1.50�2.48 <0.0001

ECW/ICW ratio‡‡ 0.88�0.12 0.85�0.11 0.85�0.09 0.89�0.13 0.91�0.13 0.0286

Intra-abdominal pressure measurement

Intra-abdominal
pressure, mm Hg

7.0 (6.0–9.0) 6.0 (5.0–6.0) 6.0 (6.0–7.0) 7.0 (7.0–8.0) 10.0 (9.0–12.0) <0.0001

Abdominal perfusion
pressure, mm Hg§§

76.78�11.81 79.46�10.38 77.31�10.89 76.19�13.32 73.61�12.21 0.078

Values are mean�SD or median (interquartile range) except as noted. Additional data are provided in the Data S1. ACEI indicates angiotensin-converting enzyme inhibitor; ACR, albumin/
creatinine ratio; a1MCR, a1-microglobulin/creatinine ratio; ARB, angiotensin receptor blocker; BNP, B-type natriuretic peptide; CKD-EPI, Chronic Kidney Disease Epidemiology
Collaboration; ECW, extracellular water; E/e’ ratio, ratio of mitral inflow velocity to lateral annular relaxation velocity; eGFR, estimated glomerular filtration rate; feNa, fractional excretion of
sodium; ICW, intracellular water; IVC, inferior vena cava; LA, left atrial; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; MAP, mean arterial pressure;
NYHA, New York Heart Association; PAP, pulmonary arterial pressure; PCR, protein/creatinine ratio; PCWP, pulmonary capillary wedge pressure; PH, pulmonary hypertension; PVR,
pulmonary vascular resistance; RA, right atrial; RAP, right atrial pressure; RRI, renal resistive index; RV, right ventricular; RV S’, systolic annular tissue velocity of the lateral tricuspid
annulus; RVSI, renal venous stasis index; 6MWD indicates 6-min walk distance; TAPSE, tricuspid annular plane systolic excursion.
*After application of the Bonferroni correction, P<0.0008 was considered significant.
†Blood gas measurements were taken from arterialized capillary ear lobe blood during right heart catheterization. In patients with long-term oxygen treatment, oxygen was applied by nasal
cannula at the previously prescribed flow rate. To convert mm Hg to kPa, multiply by 0.133.
‡A total of 14 patients received intravenous furosemide.
§MAP was calculated as follows: (systolic blood pressure+[29diastolic pressure])/3.
||To convert the values for serum creatinine to lmol/L, multiply by 88.4.
¶To convert the values for urea to blood urea nitrogen, multiply by 0.467.
#eGFR was calculated with the CKD-EPI equation based on serum creatinine.25

**eGFR was calculated with the CKD-EPI equation based on serum creatinine and cystatin C.26
††The renal filtration gradient was calculated as follows: MAP–(29intra-abdominal pressure).6
‡‡Additional bioimpedance data are provided in Data S1.
§§Abdominal perfusion pressure was calculated as MAP minus intra-abdominal pressure.6
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(1.14.0).27,28 Overall, the significance level was set at a=0.05
except in multiple Cox regression analysis, where the signif-
icance level was a=0.10. The Bonferroni correction was applied
to adjust for multiple testing. The size of the RHC cohort was
estimated based on feasibility considerations. The power to
detect a hazard ratio >2.0 at a=0.05 between the third tertile
RVSI group (n=49) versus RVSI=0 (n=59) was 50%. The power
was calculated in R (3.5.1) using the function powerCT from the
package powerSurvEpi (0.1.0), based on a method proposed by
Freedman.27,29,30 All other statistical analyses were performed
using SPSS 23.0 software (IBM Corp).

Results

Patients
Of 270 eligible patients undergoing RHC, 205 patients were
enrolled and included in the analysis (Figure 3). None were
lost to follow-up. In all patients except 2, renal Doppler
studies were performed in the right kidney. IRVF pattern
classifications were completely consistent, and RVSI mea-
surements showed excellent reliability in both intra- and
interobserver comparisons (Table S1). Patients’ baseline
characteristics are shown in Table 1 and Table S2.

Association of RVSI with IRVF patterns and
demographic and clinical characteristics

After completion of recruitment, we confirmed the predefined
IRVF patterns with invasive hemodynamics and echocardio-
graphy and assessed their associations with other parameters
(Figure S1 and Table S3). By definition, patients with no renal

congestion had RVSI=0 and were assigned as the referent
group. As shown, RVSI showed a significant stepwise increase
along the predefined IRVF patterns (P<0.0001; Figure 4).

Table 1 and Figure 5 show the associations of RVSI tertiles
with key clinical parameters (additional parameters are shown
in Table S4). Cardiopulmonary hemodynamics (evaluated by
RHC) worsened with increasing RVSI tertile, with RAP showing
the clearest association. RV systolic function (tricuspid
annular plane systolic excursion) showed a significant step-
wise decrease along the tertiles, with manifest dysfunction at
the highest tertile. Right atrial and ventricular diameter, left
atrial diameter, and E/e’ ratio significantly increased along
the RVSI tertiles.

Patients with no congestion had normal mean serum
creatinine and eGFR values. From the second RVSI tertile
onward, there was gradual lower eGFR and renal filtration
gradient across RVSI tertiles, whereas from RVSI=0 (no
congestion) to the first RVSI tertile, there was no significant
change in serum creatinine (P=0.09), eGFR (P=0.53), and
cystatin C (P=0.70). RRI significantly increased with increas-
ing RVSI tertile. Of note, none of the patients exhibited a
significant difference in mean RRI values between kidneys
(indicative of renal artery stenosis). There was a significant
increase in proteinuria, albuminuria, and tubular proteinuria
(a1-microglobulin) with increasing RVSI tertile, but the median
values stayed within the physiological range.

RVSI tertiles were associated with levels of BNP and
copeptin, as well as hydration status (as measured by
bioimpedance), loop diuretic dose, and intra-abdominal pres-
sure. Fluid overload was detected as an extracellular fluid
expansion in relation to intracellular fluid depletion. Of note,
all patients with ascites were in the highest RVSI tertile and
exhibited a monophasic IRVF pattern except 1 patient who
was diagnosed with hepatitis C–associated liver cirrhosis and
porto-PH who was within the first RVSI tertile.

Correlation analyses (Figure S2 and Table S5) showed
relevant and statistically significant relationships between
RVSI and cardiopulmonary hemodynamics, echocardiographic
parameters, renal function, intra-abdominal pressure, and
neurohormonal and hydration status. As expected, tricuspid
insufficiency had an impact on RVSI values (median RVSI: 0.00
[IQR: 0.15–0.36] in mild, 0.13 [IQR: 0.17–0.46] in moderate,
and 0.33 [IQR: 0.26–0.72] in severe tricuspid insufficiency;
P<0.0001). However, in multivariate Cox regression analysis,
RVSI was superior to tricuspid insufficiency in predicting the
composite end point and all individual components. Further-
more, RVSI values were significantly increased in patients with
versus without atrial fibrillation (0.28 versus 0.09; P<0.0001);
this large difference was not due to interobserver variability
(intraclass correlation coefficient was >0.9 in both groups).

Of the echocardiographic and hemodynamic parameters
assessed, right atrial area and RAP showed the strongest
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Figure 4. Association of renal venous stasis index with con-
gestion stages. Under physiological conditions, the renal venous
stasis index is zero due to the presence of a continuous venous
flow, whereas it increases with rising severity of congestion.
Horizontal lines indicate median, boxes indicate interquartile
range (IQR), and whiskers indicate minimum and maximum
values. Data labels show median (IQR).
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correlations with renal function (Table S6). Arterial blood gas
measurements showed no correlation with renal function.

Analysis of PH subtypes

Baseline parameters significantly differed across the PH
subtype groups, and confirmed the correctness of the
classification of each group (Table S7). All 30 patients with
PH due to left heart disease had HF with preserved ejection
fraction (Table S2). Patients with PH due to left heart disease
exhibited the highest RVSI values and were most likely to
have a monophasic pattern; they also had the poorest right
and left heart function, lowest renal function, and highest BNP
levels and intra-abdominal pressures.

Clinical outcomes

All 205 patients were included in the analysis of outcomes.
During the observational period (12 months [range: 11–13

months]), the composite end point of PH-related morbidity
and death from any cause occurred in 91 of 205 patients
(Table S8). We observed 64 (31.2%) unscheduled hospitaliza-
tions for fluid overload, 71 (34.6%) escalations of PH-specific
therapy, and 21 (10.2%) deaths. Five patients underwent
pulmonary thromboendarterectomy, and 1 patient underwent
lung transplantation.

Patients in higher RVSI tertiles had increased rates of the
composite end point (Figure 6) and 2 of the individual
components (Figure S3). Analysis of outcomes by IRVF
patterns showed broadly similar trends but with some
overlap between the groups with biphasic and monophasic
IRVF patterns (Figure S4). In multiple Cox regression
analysis, RVSI tertiles remained independent predictors of
the composite end point and 2 of the individual components
(Table 2; univariate analyses are provided in Tables S9–
S12).
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Figure 5. RVSI and associated clinical parameters. Severity of renal congestion can be evaluated by measurement of RVSI using renal Doppler
ultrasonography. The figure illustrates the associations of RVSI tertiles with RAP and renal function (A), right ventricular systolic function and RA area
(B), neurohormonal status (C), and hydration status (D). Fluid overload as measured by bioimpedance is likely to occur because of hemodynamic
alterations and neurohormonal activation leading to a deterioration of renal function and fluid retention. BNP indicates B-type natriuretic peptide;
eGFR, estimated glomerular filtration rate (based on Chronic Kidney Disease Epidemiology Collaboration creatinine–cystatin C equation); RA, right
atrial; RAP, right atrial pressure; RVSI, renal venous stasis index; TAPSE, tricuspid annular plane systolic excursion; VII, venous impedance index.
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During the observational period, 3 patients developed stage
3 acute kidney injury with diuretic-resistant fluid overload and
required RRT; all 3 exhibited a monophasic IRVF pattern with a
median RVSI of 0.64 (IQR: 0.59–0.73) at baseline.

RVSI versus IRVF patterns for prediction of clinical
outcomes

Receiver operating characteristic curves suggested that RVSI
was amore sensitive and specific predictor of the composite end
point than the individual IRVF patterns (areas under the curve:
0.789 and 0.761, respectively; P=0.038; Figure S5). The
maximal Youden statistic was obtained for an RVSI cutoff of
0.14, yielding 77% specificity and 63% sensitivity. RVSI ≥0.14
was also an independent predictor of the composite end point
when added in multiple Cox regression analysis instead of RVSI
tertiles. A model including both RVSI and IRVF patterns as
predictor variables indicated superiority of RVSI over IRVF
patterns (Wald values: 2.817 and 2.059, respectively). Compar-
isons of RVSI and IRVF patterns for prediction of the individual
component end points are shown in Figure S5 and Table S13.

Discussion
We developed a continuous index from Doppler-derived IRVF
patterns and propose the RVSI as a simple, noninvasive, and

integrative Doppler measure of renal congestion. In patients
undergoing RHC based on clinical grounds, the RVSI was
correlated with invasive hemodynamics. Furthermore, our
data suggest that the RVSI may be superior to individual IRVF
patterns in predicting outcome.

Elevated RAP has been identified as a main driver of
deteriorating renal function in acutely decompensated HF.3–5

Only 3 HF studies9–11 have previously investigated the
association of Doppler-derived IRVF patterns and venous
impedance index with RAP and their utility in predicting
diuretic response and adverse outcomes. Furthermore, we
assessed the tricuspid annular plane systolic excursion/
systolic PAP ratio as a parameter of right ventricle–pulmonary
artery coupling, which was recently demonstrated to be
associated with prognosis in patients with pulmonary arterial
hypertension and HF with preserved ejection fraction.31,32 The
association of the tricuspid annular plane systolic excursion/
systolic PAP ratio and RVSI further emphasizes the meaning
of RVSI as a marker of renal congestion, as it mirrors not only
RV failure but also right ventricle–pulmonary artery uncou-
pling when afterload exceeds contractility.

IRVF depends on extrinsic factors (interstitial pressure and
intra-abdominal pressure) and intravenous pressure, which is
highly dependent on RAP.33–35 Under physiological condi-
tions, intrarenal veins exhibit continuous flow independent of
renal function,36,37 with superimposed biphasic forward
velocities that peak during systole (reflecting right atrial
filling during RV ejection) and diastole (reflecting RAP release
after the tricuspid valve opens and RV filling occurs). With
increasing RAP, intrarenal veins become less compliant,
dampening the continuous flow to a discontinuous (RVSI>0)
flow and increasing prominence of the superimposed biphasic
forward velocities. Further increases in RAP may ultimately
lead to a diastolic-only (monophasic) flow pattern, in which
renal venous outflow may exclusively depend on RV filling. Of
note, the increase in RAP during end-diastole (corresponding
to atrial contraction) can be transmitted to the renal veins,
potentially causing a reversal of vein flow, as recently
described38; this may have been masked by the arterial
waveforms in our analysis of interlobar arteries and veins.

Deterioration of renal function in right HF appears to be
mainly hemodynamic (congestive), independent of PH sub-
type, and associated with activation of the neurohormonal
system and fluid overload. This type of congestive nephropa-
thy can be described as a gradual decrease of renal function
as RVSI worsens, with no proteinuria even at severe
congestion. Interestingly, we see no significant changes in
creatinine, eGFR, or cystatin C in patients with RVSI in the
first tertile compared with normal RVSI (=0). This could be
explained by renal lymphatic flow increasing dramatically with
early congestion, consequently preventing an increase in renal
interstitial pressure until full saturation,39,40 and suggests that
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DOI: 10.1161/JAHA.119.013584 Journal of the American Heart Association 11

Renal Venous Stasis Index and Right Heart Failure Husain-Syed et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



Table 2. Predictors of Clinical End Points Identified by the Cox Proportional Hazards Model

Predictor

Univariate Multiple

HR (95% CI) P Value HR (95% CI) P Value

PH-related morbidity and death from any cause

RVSI tertiles 20.57 (9.03–46.87) <0.0001 0.0015

First tertile group vs RVSI 0 2.31 (1.06–5.05) 0.0363 2.30 (0.95–5.53) 0.064

Second tertile group vs RVSI 0 3.63 (1.71–7.65) 0.0007 3.41 (1.49–7.81) 0.0037

Third tertile group vs RVSI 0 8.70 (4.33–17.48) <0.0001 4.72 (2.10–10.59) <0.0001

Congestion stages 2.00 (1.63–2.44) <0.0001 0.0012

Stage 1 vs stage 0 2.65 (1.29–5.44) 0.0078 2.61 (1.18–5.80) 0.0182

Stage 2 vs stage 0 6.35 (3.08–13.09) <0.0001 4.90 (2.15–11.18) <0.0001

Stage 3 vs stage 0 8.45 (3.98–17.96) <0.0001 4.07 (1.68–9.85) 0.0019

Uric acid 1.25 (1.16–1.34) <0.0001 1.15 (1.05–1.26) 0.0017

Atrial fibrillation 2.56 (1.68–3.88) <0.0001 1.94 (1.05–3.56) 0.0355

6MWD 0.997 (0.996–0.999) 0.0006 0.997 (0.995–0.999) 0.0099

LA diameter 1.07 (1.04–1.10) <0.0001 1.05 (1.01–1.10) 0.0301

Age 1.02 (1.00–1.03) 0.0439 0.98 (0.96–1.00) 0.079

Unscheduled hospitalization due to fluid overload

RVSI tertiles 1.71 (1.48–1.98) <0.0001 0.0016

First tertile group vs RVSI 0 6.49 (1.42–29.64) 0.0157 5.50 (1.09–27.85) 0.0395

Second tertile group vs RVSI 0 10.98 (2.52–47.76) 0.0014 6.27 (1.36–28.96) 0.0187

Third tertile group vs RVSI 0 35.60 (8.54–148.38) <0.0001 13.01 (2.95–57.34) 0.0007

Congestion stages 2.49 (1.94–3.20) <0.0001 0.0193

Stage 1 vs stage 0 7.36 (1.71–31.72) 0.0074 5.01 (1.14–22.07) 0.0334

Stage 2 vs stage 0 25.51 (6.05–107.67) <0.0001 8.84 (1.98–39.46) 0.0043

Stage 3 vs stage 0 32.17 (7.44–139.09) <0.0001 5.06 (1.02–25.20) 0.0478

Uric acid 1.29 (1.19–1.41) <0.0001 1.27 (1.13–1.43) <0.0001

PCWP 1.08 (1.05–1.11) <0.0001 1.04 (1.01–1.08) 0.0159

Urine a1MCR 1.01 (1.01–1.02) <0.0001 1.01 (1.00–1.02) 0.0262

Atrial fibrillation 4.05 (2.47–6.63) <0.0001 1.88 (1.00–3.54) 0.0510

6MWD 0.996 (0.994–0.998) <0.0001 0.99 (0.99–1.00) 0.0006

RA area 1.11 (1.07–1.14) <0.0001 1.05 (1.00–1.10) 0.0477

Urine feNa 1.21 (1.07–1.36) 0.0017 0.82 (0.67–1.00) 0.0547

NYHA classification 1.81 (1.24–2.64) 0.0022 0.60 (0.34–1.05) 0.074

Escalation of PH-specific therapy

Mixed venous oxygen saturation 0.92 (0.90–0.95) <0.0001 0.96 (0.93–1.00) 0.0403

Uric acid 1.26 (1.16–1.36) <0.0001 1.31 (1.02–1.26) 0.0242

RVSI tertiles 1.43 (1.26–1.63) <0.0001 0.0186

First tertile group vs RVSI 0 2.16 (0.89–5.24) 0.087 1.89 (0.68–5.27) 0.2241

Second tertile group vs RVSI 0 3.52 (1.53–8.07) 0.0030 2.91 (1.13–7.51) 0.0271

Third tertile group vs RVSI 0 7.03 (3.22–15.35) <0.0001 4.29 (1.63–11.27) 0.0031

Congestion stages 1.86 (1.49–2.33) <0.0001 0.0106

Stage 1 vs stage 0 2.37 (1.05–5.35) 0.0373 2.13 (0.84–5.37) 0.110

Continued
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an increase of RVSI from 0 to the first tertile may be a more
sensitive marker to identify patients at risk for subsequent
renal function decline than established biomarkers such as
creatinine and cystatin C. Transmission of venous congestion
to the renal veins is thought to impair GFR by increasing
pressure in the efferent end of the glomerular capillary, which
reduces glomerular–capillary hydrostatic pressure8; this can
be reversed by lowering renal venous pressure in experimen-
tal models.34 As an additional component, concomitant
elevation of renal interstitial pressure is likely to reduce
glomerular net ultrafiltration pressure by opposing glomeru-
lar–capillary hydrostatic pressure and to reduce renal blood
flow, as shown by the significant increases in RRI in our
population. Future studies need to determine whether ther-
apies that reduce RAP will improve renal function and
particularly which RAP range must be achieved to provide
an acceptable balance of RV and renal function.

Our study has all the limitations of retrospective analyses of
prospectively collected data. Limitations include its single-
center design, selection bias, and moderate sample size and
duration of follow-up. We assumed that the monophasic IRVF
pattern reflects venous pressure release resulting from RV
filling, but we did not determine end-diastolic filling pressures
or RV volumes. In addition, entering RVSI and congestion
stages to 1 Cox regression model was done for comparison of
their prognostic value but may lead to overfitting of the model.
All echocardiography data were collected 1 day before RHC.
Although PH-specific therapy was not initiated or changed in
the interval between these assessments, some patients
received additional diuretics when fluid overload was present,
which limits the interpretation of echocardiography relative to
RHC data. Renal venous congestion does not necessarily
indicate right HF because tricuspid insufficiency with intact RV

function may also induce congestion, and discontinuous IRVF
patterns have been described in obstructive nephropathy,41

where they are at least partly explained by increased renal
interstitial pressure subsequent to ureter obstruction.

Our study confirmed the prognostic relevance of renal
venous congestion, and the novel RVSI in particular showed
promise as a simple, noninvasive, and objective Doppler
measure. RVSI and IRVF patterns may be useful to identify
patients who are likely to experience adverse outcomes.
Longitudinal studies are needed to clarify their roles in the
management of HF.

Conclusions
Our analyses of patients undergoing RHC present RVSI as a
novel Doppler measurement of renal congestion that may be
superior to IRVF patterns in predicting outcome in patients
with PH. Further studies are needed to validate our findings
and assess the utility of RVSI in PH management.
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SUPPLEMENTAL MATERIAL 



Data S1. 

 

SUPPLEMENTAL METHODS 

Study design and participants 

 

Data collection 

Clinical variables were abstracted from patient medical records. All clinical and laboratory data, including 

patient demographics, were collected and stored in a password-protected dataset.  

 

Right heart catheterization (RHC) 

All RHC measures were derived at end-expiration, and reported values represent the average of 5 to 10 cardiac 

cycles. Cardiac output (average of three cycles with <10% variation in patients in sinus rhythm and five cardiac 

cycles in patients with atrial fibrillation) was derived by both thermodilution and the Fick method using 

nomograms for oxygen uptake in conjunction with the Fick method. If patients did not have supplemental 

oxygen therapy, the direct Fick method was performed directly after oxygen uptake assessment. When a 

discrepancy was present between both methods, cardiac output was reported by direct Fick; if direct Fick 

measurement was not possible, thermodilution was used. Pulmonary vascular resistance and cardiac index were 

calculated as described previously (pulmonary vascular resistance=[mean pulmonary arterial 

pressure−pulmonary capillary wedge pressure]/cardiac output; cardiac index=[cardiac output/body surface 

area]).1  

 

Bioimpedance spectroscopy 

Bioimpedance is based on the principle that the body acts as a circuit with a given resistance (opposition of 

current flow through intracellular and extracellular solutions [Ri and Re]) and reactance (the capacitance of cells 

to store energy [Xc]).2 The volume of the body fluid component is largely reflected in the resistance, whereas 

reactance might represent cell membrane integrity. The impedance is composed of the sum of resistance and 

reactance (√[R2 + Xc2]).3 Another parameter that can be derived is the phase angle, which is the arc tangent of 

Xc/R. When a current passes through cells, a portion of the electrical current is stored and subsequently released 

in a different phase, termed “phase angle”. The phase angle is related to the ability of cells to function as 

capacitors, which is dependent on the integrity of the cell membrane and cellular health. Bioimpedance data 

from the study population are provided in Table S4.  

The three-compartment model of the BCM Body Composition Monitor has been validated against standard 

reference methods for assessment of fluid status and body composition in patients undergoing hemodialysis and 

peritoneal dialysis, albeit partly against gold standard techniques in healthy controls only.4-7 BCM has been 

shown to be valid in different ethnicities5, and measures impedance at 50 different frequencies between 5 kHz 

and 1 MHz. Reproducibility of BCM-derived parameters is high, with a coefficient of variation for the inter-

observer variability for extracellular water and total body water around 1.2% in studies8 performed in patients 

undergoing hemodialysis. Therefore, only one BCM measurement was performed in each individual patient. 

BCM results are normalized by sex and patient height. According to the manufacturer’s recommendations we 

excluded patients if they had an unipolar pacemaker, while there were no limitations for patients with stents 

or bipolar pacemakers.9 For measurement, the skin was cleansed with alcohol, then the electrodes were attached 

to one hand and one foot at the ipsilateral side, after the patient had been supine for at least 5 minutes and not 

touching any metal objects. 

Hydration status (expressed in Liters) was derived from the impedance data based on a physiologic tissue model 

that separates the body into three compartments4: surplus water, normohydrated lean tissue, and fat tissue. 

Hydration status represents the difference between the measured amount of extracellular water and the amount 

of water expected in normohydrated tissue conditions. Patients are considered ‘dehydrated’ or ‘overhydrated’ 

when their absolute hydration status is below the 10th or above the 90th percentile of the normal, presumed 

healthy, reference population, respectively (corresponding to 1.1 L of negative or positive hydration status, 

respectively).10, 11 Due to bio-physical reasons, bioimpedance spectroscopy does not measure sequestered fluid in 

the trunk, and presence of pleural effusion and ascites was documented by ultrasound.12 Lean tissue mass 

represents the body mass without adipose tissue and excess extracellular water (fluid overload). Fat represents 

the mass of adipose lipids in the body. Lean tissue mass and fat are provided in kilograms as well as in relation 

to body weight (%). Lean tissue index is calculated as the quotient of lean tissue mass/height. Fat tissue index is 

defined as the quotient of adipose tissue mass/height. Adipose tissue mass is the mass of the adipose tissue, 

including the adipose water. Body cell mass represents the cellular, metabolically active body mass, excluding 

the extracellular fluid in the metabolically active tissue.12  

 

Intra-abdominal pressure measurement  

Intra-abdominal pressure was measured with a standard Foley catheter, which was connected to a pressure 

transducer placed in-line with the iliac crest at the midaxillary line. The Foley catheter was flushed with a 

maximal instillation volume of 50 mL sterile saline via the aspiration port of the Foley catheter with the drainage 



tube clamped to allow a fluid-filled column to develop up into the bladder. A pressure transducer was then 

inserted in the aspiration port, and the pressure was measured. The intra-abdominal pressure was expressed in 

mm Hg and was measured at end-expiration in the supine position, ensuring that abdominal muscle contractions 

were absent.  

 

Laboratory methods 

Blood and urine samples were centrifuged for 10 minutes at 3000xg and 5 minutes at 500xg, respectively. 

Samples were processed within 30 minutes of collection.  

B-type natriuretic peptide (BNP) and parathormone were measured by the chemiluminescence method on an 

Advia Centaur XPT analyzer (Siemens Healthcare GmbH, Erlangen, Germany). BNP >35 pg/mL was taken as 

the cut-off for diagnosing chronic heart failure.13 Copeptin was measured by the Time-Resolve-Amplified 

Cryptate Emission method on a Brahms Kryptor Compact Plus (Thermo Fisher Scientific, MA, USA). The range 

of copeptin, a surrogate marker for proarginine vasopressin release and neurohormonal activation, in healthy 

individuals has been recently described as 4.2 [9.5] pmol/L.14 Serum aldosterone was measured by the 

radioimmunological method on a Multi Crystal LB 2111 Gamma Counter (Berthold Technologies, Bad 

Wildbach, Germany). Urine sodium-to-potassium ratio <2 was considered as a marker of hyperaldosteronism. 

Urine fractional excretion of sodium <1% was considered as a marker of sodium retention. Cystatin C was 

measured by the immunoturbidimetric method on an AU5800 Chemistry Analyzer (Beckman Coulter, 

California, USA) with reference material ERM-DA471/IFCC (distributed by the European Joint Research 

Institute for Reference Materials and Measurements, Geil, Belgium).15 Creatinine was measured by the 

photometric-enzymatic method on an Advia Centaur XPT analyzer, with calibration to isotope dilution mass 

spectrometry reference measurements. Blood urea nitrogen-to-creatinine ratio >20 was considered as a marker of 

neurohormonally mediated disproportionate reabsorption of urea compared with that of creatinine.16 Creatinine 

clearance was calculated as: urine creatinine (mg/dL) x urine volume (mL) x1.73 (m2)/1440 min x serum 

creatinine (mg/dL) x body surface area (m2). For calculation of urea clearance, creatinine was substituted with 

urea. 

Proteinuria was measured using a colorimetric method with pyrogallol red on an AU5800 Chemistry Analyzer. 

Albuminuria was measured by the immunoturbidimetric method on a Advia Centaur XPT, and alpha 1-

microglobulin was measured by the immunonephelometric method on a BNII analyzer (Siemens Healthcare 

GmbH, Erlangen, Germany). Protein-to creatinine ratio, albumin-to-creatinine ratio, and alpha 1-microglobulin-

to-creatinine ratio (all reported in units of mg/g creatinine) were then calculated. Microalbuminuria and 

increased tubular proteinuria (alpha 1 microglobulin) were defined as values >30mg/g and >20mg/g creatinine, 

respectively.17, 18 Positive acanthocyturia, a diagnostic criterion of glomerulonephritis, was defined as >5% 

acanthocytes in centrifuged urinary sediment detected with a phase-contrast microscope Eclipse Ci-L (Nikon, 

Tokyo, Japan).19 Sterile leukocyturia, associated with interstitial nephritis, nephrolithiasis, uroepithelial tumors, 

and infection with atypical organisms, was defined as a positive urinary dip stick test for leukocyte esterase in 

combination with a negative urine culture.20  

 

Renal replacement therapy (RRT) 

Patients with fluid overload received a stepped pharmacological diuretic therapy including adjustable doses of 

intravenous loop diuretic agents, thiazide diuretic agents, and aldosterone antagonists. Patients who fulfilled the 

criteria for diuretic resistance despite the stepped pharmacological therapy were transferred to RRT, as were 

patients who developed stage 3 acute kidney injury with fluid overload or a life-threatening complication (eg, 

pulmonary edema).21 Modality of RRT was based on illness acuteness, patient preference, and co-morbidities 

(eg, presence of ascites). In general, peritoneal dialysis (conventional surgical technique; peritoneal dialysis 

catheter type Oreopoulous-Zellermann) was the preferred modality for patients with HF, except patients with 

life-threatening indications or cardiovascular instability, for whom slow extended daily hemodialysis with the 

GENIUS dialysis system (Fresenius Medical Care, Bad Homburg, Germany) was preferred.  

  



Table S1. ICC for RVSI measured by two independent nephrologists. 

 

 

Intraclass 

correlation* 

95% confidence interval F test with true value 0 

Lower bound Upper bound Value df1 df2 Significance 

Inter-observer reliability 

Single measures 0.978† 0.973 0.982 178.709 204 612 0.000 

Average measures 0.994‡ 0.993 0.996 178.709 204 612 0.000 

Intra-observer reliability 

TS – single measures 1.000† 1.000 1.000  204   

TS – average measures 1.000‡ 1.000 1.000  204   

FH-S – single measures 1.000† 1.000 1.000 5302.258 204 204 0.000 

FH-S – average measures 1.000‡ 1.000 1.000 5302.258 204 204 0.000 

Two-way mixed effects model where people effects are random and measures effects are fixed. 

 

*Type A ICCs using an absolute agreement definition for inter-observer reliability; Type C ICCs using a 

consistency definition for intra-observer reliability. 

†The estimator is the same, whether the interaction effect is present or not. 

‡This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. 

df=degrees of freedom; ICC=intraclass correlation coefficient; RVSI=renal venous stasis index. 

  



Table S2. Classification of the RHC Cohort According to PH Subcategories. 

 
 n (%) 

No PH 40 (100) 

   Disease control 27 (67.5) 

   HF with preserved ejection fraction 13 (32.5) 

Group 1 (PAH) 46 (100) 

   Idiopathic PAH 27 (58.7) 

   Connective tissue disease 8 (17.4) 

   Congenital systemic-to-pulmonary shunts 6 (13.0) 

   Porto-pulmonary PH 5 (10.9) 

Group 2 (PH due to left heart disease) 30 (100) 

   PH-HF with preserved ejection fraction 30 (100) 

Group 3 (PH due to lung disease and/or hypoxemia) 41 (100) 

   Chronic obstructive pulmonary disease 22 (53.7) 

   Interstitial lung disease 15 (36.6) 

   Sleep-disordered breathing 4 (9.8) 

Group 4 (chronic thromboembolic PH) 34 (100) 

Group 5 (PH with unclear multifactorial mechanisms) 14 (100) 

   Sarcoidosis 9 (64.3) 

   Churg-Strauss syndrome 1 (1.6) 

   Unknown mechanisms 4 (28.6) 

 

HF denotes heart failure, PAH pulmonary arterial hypertension, PH pulmonary hypertension, and RHC right 

heart catheterization



 

Table S3. Clinical characteristics, invasive hemodynamics, echocardiographic data, renal function, and neurohormonal and hydration status stratified according to 

congestion stages as determined by intrarenal venous flow patterns. 
 All patients 

(n=205) 

No congestion  

(n=59) 

Stage 1 congestion  

(n=77) 

Stage 2 congestion  

(n=44) 

Stage 3 congestion  

(n=25) 

p value* 

 

Baseline clinical data       

6MWD, m 277.23±136.05  309.76±118.16  296.83±142.97 224.55±127.15 232.80±137.57 0.0022 

NYHA classification, n (%)       0.078 

   1–2 44 (21.5) 15 (25.4) 22 (28.6) 4 (9.1) 3 (12)  

   3–4 161 (78.5) 44 (74.6) 45 (71.4) 40 (90.9) 22 (88)  

Oxygen supply, n (%) 118 (57.6) 28 (47.5) 45 (58.4) 33 (75.0) 12 (48.0) 0.0306 

Maintenance therapy       

ACEi or ARB, n (%) 83 (40.5) 23 (39.0) 33 (42.9) 13 (29.5) 14 (56.0) 0.178 

Loop diuretic dose, mg/day     40.0 [0.0–60.0] 20.0 [0.0–40.0] 20.0 [0.0–45.0] 40.0 [0.0–80.0] 80.0 [40.0–200.0] <0.0001 

Thiazide diuretic, n (%)  72 (35.1) 18 (30.5) 27 (35.1) 17 (38.6) 10 (40.0) 0.789 

Aldosterone antagonist, n (%) 76 (37.1) 16 (27.1) 30 (39.0) 17 (38.6) 13 (52.0) 0.168 

Triamterene, n (%) 5 (2.4) 0 (0) 3 (3.9) 2 (4.5) 0 (0) 0.307 

PH-specific therapy, n (%)      0.433 

Treatment-naïve 116 (56.6) 42 (71.2) 36 (46.8) 24 (54.5) 14 (56.0)  

Monotherapy 49 (23.9) 8 (13.6) 23 (29.9) 11 (25.0) 7 (28.0)  

Dual therapy 28 (13.7) 6 (10.2) 13 (16.9) 6 (13.6) 3 (12.0)  

Triple therapy 12 (5.9) 3 (5.1) 5 (6.5) 3 (6.8) 1 (4.0)  

Hemodynamics       

Mean PAP, mm Hg 34.84±14.63 24.10±9.62 37.14±15.02 42.84±12.33 39.00±13.11 <0.0001 

PVR, dyn.s/cm5 394 [214–604] 229 [110–420] 440 [277–600] 558 [293–829] 428 [245–750] <0.0001 

RAP, mm Hg 5.76±5.63 2.46±3.66 4.44±4.75 9.00±5.04 11.88±7.54 <0.0001 

Cardiac index, L/min/m2 2.73±0.98 2.98±1.01 2.76±1.00 2.47±0.70 2.48±1.13 0.0332 

PCWP, mm Hg 9.0 [5.0–13.0] 7.0 [4.0–10.0] 9.0 [6.0–13.0] 10.5 [6.0–15.8] 12.0 [8.5–18.5] <0.0001 

Mixed venous oxygen saturation, % 63.76±8.35 66.70±6.42 65.11±6.59 59.83±9.70 59.60±10.63 <0.0001 

Heart rate, beats/min 71.62±13.23 72.00±11.32 70.34±12.55 72.23±13.49 73.60±18.51 0.703 

MAP, mm Hg† 84.25±11.57 85.22±10.28 83.71±12.18 85.69±13.06 81.09±9.48 0.375 

Echocardiographic parameters       

Right heart       

TAPSE, mm 19.89±4.41 21.88±3.82 20.87±4.01 18.18±3.80 15.20±3.46 <0.0001 

RV myocardial performance index (Tei 
index) 

0.49±0.22 0.46±0.20 0.47±0.23 0.55±0.23 0.48±0.22 0.323 

RV S’, cm/s 11.60±3.52 12.95±3.31  12.18±3.20 10.17±3.23 9.08±3.43 <0.0001 

TAPSE/Systolic PAP ratio 0.39±0.21 0.56±0.27 0.35±0.15 0.30±0.11 0.30±0.13 <0.0001 

Tricuspid insufficiency, n (%)      0.0007 

   Mild 66 (32.2) 34 (57.6) 15 (19.5) 12 (27.3) 5 (20)  

   Moderate 112 (54.6) 23 (39.0) 51 (66.2) 25 (56.8) 13 (52)  

   Severe  25 (12.2) 1 (1.7) 10 (13.0) 7 (15.9) 7 (28)  

RA area, cm2 18.89±6.72 14.14±6.30 18.87±5.70 20.99±6.24 24.16±6.60 <0.0001 

RV diameter, mm 40.78±8.08 37.93±7.38 40.43±6.68 43.40±8.86 44.04±9.86 0.0009 

IVC, cm 2.27±0.49 2.01±0.52 2.30±0.44 2.45±0.31 2.51±0.54 <0.0001 

Left heart       

LVEF, % 60.0 [60.0–65.0] 60 [60.0–65.0] 60 [60.0–65.0] 60 [55.0–65.0] 60 [52.5–60.5] 0.0552 



 

LA diameter, mm 41.98±6.86 39.78±6.35 40.65±6.51 43.17±6.12 48.56±5.85 <0.0001 

LVEDD, mm 46.03±5.59 46.28±4.73 45.10±5.45 46.24±7.01 47.84±4.85 0.184 

E/e’ ratio 12.98±5.34 11.07±3.52 12.96±4.12 13.80±6.52 16.42±8.07 0.0007 

Renal function       

Serum creatinine, mg/dL‡ 1.01±0.45 0.92±0.40 0.86±0.26 1.13±0.53 1.44±0.52 <0.0001 

Cystatin C, mg/L 1.10 [0.91–1.52] 0.98 [0.81–1.24] 1.06 [0.88–1.29] 1.33 [1.03–1.64] 1.83 [1.34–2.22] <0.0001 

Urea, mg/dL§ 47.44±35.85 40.97±26.71 37.12±17.31 59.84±56.61 72.72±32.68 <0.0001 

eGFR (CKD-EPI creatinine equation), 

mL/min/1.73 m2|| 

74.45±26.12 80.07±24.51 81.57±21.49 67.25±27.96 51.96±24.92 <0.0001 

eGFR (CKD-EPI creatinine-cystatin C 
equation), mL/min/1.73 m2# 

68.58±26.86 77.68±27.65 74.42±21.81 59.42±25.85 45.24±23.37 <0.0001 

Renal filtration gradient, mm Hg** 69.30±12.46 73.70±10.60 70.36±12.08 67.64±13.00 58.61±10.42 <0.0001 

Urine PCR, mg/g creatinine 58.8 [40.2–114.2] 51.5 [36.4–72.6] 55.3 [38.4–93.3] 70.3 [46.9–160.5] 116.2 [52.7–222.7] 0.0022 

Urine ACR, mg/g creatinine 11.4 [6.3–29.7] 9.3 [5.2–16.0] 10.3 [6.2–22.2] 13.8 [8.1–45.8] 33.4 [11.3–223.7] <0.0001 

Urine α1MCR, mg/g creatinine 10.9 [6.0–19.1] 8.7 [5.1–16.5] 10.4 [5.9–19.0] 11.7 [7.0–25.3] 16.3 [8.3–40.1] 0.0283 

Acanthocyturia, n (%) 7 (3.4) 2 (3.4) 3 (3.9) 2 (4.5) 0 (0) 0.775 

Sterile leukocyturia, n (%) 2 (1.0) 1 (1.7) 0 (0) 1 (2.3) 0 (0) 0.555 

Renal Doppler ultrasonography       

RVSI 0.11 [0.00–0.32] 0 [0.0–0.0] 0.10 [0.07–0.14] 0.33 [0.20–0.41] 0.56 [0.48–0.74] <0.0001 

Venous impedance index  0.84±0.26 0.44±0.12 1.00±0 1.00±0 1.00±0 <0.0001 

RRI 0.71±0.07 0.69±0.08 0.70±0.07 0.74±0.06 0.75±0.06 <0.0001 

Neurohormonal status       

BNP, pg/mL 138.0 [50.0–321.0] 46.0 [26.0–113.0] 150.0 [50.5–254.5] 303.0 [147.0–633.8] 534.0 [228.5–776.5] <0.0001 

Copeptin, pmol/L 11.1 [5.8–23.3] 9.1 [4.6–16.0] 7.9 [5.2–15.4] 18.8 [7.3–29.8] 27.7 [13.7–50.7] <0.0001 

Sodium, mmol/L 139.56±3.07 139.32±3.15 139.57±2.80 140.59±2.86 138.24±3.60 0.0206 

Urine FeNa, % 0.6 [0.4–1.3] 0.7 [0.4–1.2] 0.6 [0.4–1.1] 0.5 [0.4–1.5] 1.3 [0.5–2.5] 0.073 

BUN-to-creatinine ratio 21.15±7.53 20.48±7.14 20.16±6.52 20.35±9.39 23.63±7.22 0.131 

Aldosterone, ng/dL 5.60 [3.1–11.8] 4.90 [3.0–8.6] 4.90 [3.0–13.4] 6.15 [3.0–11.7] 10.50 [4.2–19.1] 0.0531 

Potassium, mmol/L 3.67±0.42 3.65±0.40 3.65±0.41 3.77±0.453 3.66±0.42 0.591 

Urine Na/K ratio 3.23±2.24 3.84±2.58 3.20±2.28 2.68±1.47 2.88±2.17 0.0532 

Hydration status       

Ascites, n (%) 7 (3.4) 0 (0) 1 (1.3) 0 (0) 6 (24.0) <0.0001 

Pleural effusion, n (%) 17 (8.3) 3 (5.1) 5 (6.5) 2 (4.5) 7 (28.0) 0.0021 

Peripheral edema, n (%) 60 (29.3) 12 (22.0) 22 (28.6) 15 (34.1) 10 (40.0) 0.335 

Hydration status (as measured by 

bioimpedance), L 

0.71±2.12 -0.14±1.41 0.78±2.24 1.16±2.09 1.70±2.55 0.0006 

Total body water, L  37.78±7.47 37.93±8.71 36.78±6.99 39.46±7.20 37.73±5.86 0.359 

ECW, L 17.55±3.30 17.36±3.79 16.94±3.01 18.50±3.38 18.31±2.32 0.069 

ICW, L 20.28±4.53 20.56±5.24 19.85±4.43 20.97±4.24 19.83±3.32 0.574 

ECW/ICW ratio 0.95±0.15 0.86±0.11 0.86±0.11 0.89±0.11 0.94±0.14 0.0204 

Intra-abdominal pressure measurement       

Intra-abdominal pressure, mm Hg 7.0 [6.0–9.0] 6.0 [5.0–6.0] 7.0 [6.0–7.0] 9.0 [8.0–10.0] 11.0 [10.0–13.0] <0.0001 

Abdominal perfusion pressure, mm Hg†† 76.78±11.81 79.46±10.38 77.04±12.09 76.67±12.96 69.85±9.67 0.0078 

Values are mean±SD, median [interquartile range], or n (%). 



 

*After application of the Bonferroni correction, p<0.0008 was considered significant. †MAP was calculated as (systolic blood pressure+2x diastolic pressure)/3. ‡To convert the 

values for serum creatinine to μmol/L, multiply by 88.4. §eGFR was calculated with the CKD-EPI equation based on serum creatinine.23 ||To convert the values for urea to BUN, 

multiply by 0.467. #eGFR was calculated with the CKD-EPI equation based on serum creatinine and cystatin C.22 **The renal filtration gradient was calculated as: MAP–2x 

intra-abdominal pressure.24 ††The abdominal perfusion pressure was calculated using the equation: MAP–intra-abdominal pressure.24 

6MWD=6-min walk distance; ACEi=angiotensin-converting enzyme inhibitor; ACR=albumin-to-creatinine ratio; α1MCR=α1-microglobulin-to-creatinine ratio; 

ARB=angiotensin receptor blocker; BUN=blood urea nitrogen; BNP=b-type natriuretic peptide; CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; 

ECW=extracellular water; E/e’ ratio=ratio of mitral inflow velocity to lateral annular relaxation velocity; eGFR=estimated glomerular filtration rate; FeNa=fractional excretion of 

sodium; ICW=intracellular water; IVC=inferior vena cava; LA=left atrial; LVEDD=left ventricular end-diastolic diameter; LVEF=left ventricular ejection fraction; MAP=mean 

arterial pressure; Na/K=sodium/potassium; NYHA=New York Heart Association; PAP=pulmonary arterial pressure; PCR= protein-to-creatinine ratio; PCWP=pulmonary 

capillary wedge pressure; PH=pulmonary hypertension; PVR=pulmonary vascular resistance; RA=right atrial; RAP=right atrial pressure; RRI=renal resistive index; RV=right 

ventricular; RV S’=systolic annular tissue velocity of the lateral tricuspid annulus; RVSI=renal venous stasis index; TAPSE=tricuspid annular plane systolic excursion. 

 



 

Table S4. Additional data on clinical characteristics, invasive hemodynamics, echocardiographic data, 

renal function, neurohormonal and hydration status according to congestion stages as determined by 

renal venous stasis index. 
   RVSI tertiles  

 All patients 

 

(n=205) 

RVSI=0 

 

(n=59) 

First 

0<RVSI≤0.12 

(n=49) 

Second 

>0.12<RVSI≤0.32 

(n=48) 

Third 

RVSI>0.32 

(n=49) 

p 

value* 

 

Maintenance therapy, 

n (%) 

      

Calcium channel 

blocker 

46 (22.4) 10 (16.9) 11 (22.4) 14 (29.2) 11 (22.4) 0.518 

Thiazide diuretic  72 (35.1) 18 (30.5) 18 (36.7) 17 (35.4) 19 (38.8) 0.826 

Aldosterone antagonist 76 (37.1) 16 (27.1) 24 (49.0) 12 (25.0) 24 (49.0) 0.0095 

Triamterene 5 (2.4) 0 (0) 2 (4.1) 3 (6.3) 0 (0) 0.103 

Renal function, n (%)       

Acanthocyturia 7 (3.4) 2 (3.4) 2 (4.1) 1 (2.1) 2 (4.1) 0.942 

Sterile leukocyturia 2 (1.0) 1 (1.7) 0 (0) 0 (0) 1 (2.0) 0.605 

Neurohormonal status       

BUN-to-creatinine ratio 21.15±7.53 20.48±7.14 20.38±6.60 20.78±6.93 23.06±9.14 0.236 

Aldosterone, ng/dL 5.60 [3.1–11.8] 4.9 [3.0–8.6] 5.9 [3.0–13.5] 4.7 [3.0–11.8] 7.2 [4.1–16.7] 0.0292 

Urine Na/K ratio 3.23±2.24 3.84±2.58 3.34±2.35 2.87±1.76 2.76±1.98 0.0470 

Hydration status, n 

(%) 

      

Total body water, L  37.78±7.47 37.93±8.71 36.50±7.30 37.82±6.19 38.92±7.11 0.495 

Extracellular water, L 17.55±3.30 17.36±3.79 16.62±2.95 17.80±3.17 18.54±2.87 0.0450 

Intracellular water, L 20.28±4.53 20.56±5.24 19.88±4.66 20.03±3.64 20.62±4.27 0.812 

Values are mean±SD, median [interquartile range], or n (%).  

*After application of the Bonferroni correction, p<0.004 was considered significant.  

BUN=blood urea nitrogen; Na/K=sodium/potassium; PH=pulmonary hypertension; RVSI=renal venous stasis 

index. 

  



 

Table S5. Correlation of RVSI with relevant parameters*. 
 RVSI 

Correlation coefficient 

p value† 

Demographics   

Age 0.238 0.0006 

Body mass index – 0.025 0.720 

Clinical variables   

6MWD – 0.239 0.0006 

Loop diuretic dose 0.369 <0.0001 

Hemodynamics   

Mean PAP 0.472 <0.0001 

PVR 0.321 <0.0001 

RAP 0.584 <0.0001 

Cardiac index – 0.321 <0.0001 

PCWP 0.404 <0.0001 

Mixed venous oxygen saturation – 0.391 <0.0001 

Echocardiographic parameters   

Right heart   

TAPSE – 0.456 <0.0001 

RV myocardial performance index (Tei index) 0.037 0.672 

RV S’ – 0.357 <0.0001 

TAPSE/Systolic PAP ratio – 0.332 <0.0001 

RA area 0.471 <0.0001 

RV diameter 0.272 <0.0001 

IVC 0.355 <0.0001 

Left heart   

LVEF – 0.163 0.0201 

LA diameter 0.404 <0.0001 

E/e’ ratio 0.250 0.0006 

Renal function   

Serum creatinine 0.394 <0.0001 

Urea 0.427 <0.0001 

Cystatin C 0.462 <0.0001 

eGFR (MDRD equation) ‡ – 0.365 <0.0001 

eGFR (CKD-EPI creatinine equation)§ – 0.365 <0.0001 

eGFR (CKD-EPI creatinine-cystatin C equation)|| – 0.433 <0.0001 

Renal filtration gradient# – 0.327 <0.0001 

Urine PCR 0.315 <0.0001 

Urine ACR 0.341 <0.0001 

Urine α1MCR 0.233 0.0008 

RRI 0.323 <0.0001 

Neurohormonal status   

BNP 0.623 <0.0001 

Copeptin 0.350 <0.0001 

Hydration status   

Hydration status (as measured by bioimpedance) 0.301 <0.0001 

ECW/ICW ratio 0.178 0.0141 

Intra-abdominal pressure measurement   

Intra-abdominal pressure 0.772 <0.0001 

Abdominal perfusion pressure** – 0.214 0.0021 

Pearson or Spearman correlation was considered as appropriate. *Relevant parameters were chosen based on 

their clinical role; in addition, parameters that showed a significant difference across RVSI tertiles (table 2) were 

included. †After application of the Bonferroni correction, p<0.0014 was considered significant. ‡eGFR was 

calculated with the MDRD equation based on serum creatinine.25 §eGFR was calculated with the CKD-EPI 

equation based on serum creatinine.23 ||eGFR was calculated with the CKD-EPI equation based on serum 

creatinine and cystatin C.22 #The renal filtration gradient was calculated as: MAP–2x intra-abdominal pressure.24 

**The abdominal perfusion pressure was calculated using the equation: MAP–intra-abdominal pressure.24 

6MWD=6-min walk distance; ACR=albumin-to-creatinine ratio; α1MCR=α1-microglobulin-to-creatinine ratio; 

CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; BNP=b-type natriuretic peptide; 

ECW=extracellular water; E/e’ ratio=ratio of mitral inflow velocity to lateral annular relaxation velocity; 

eGFR=estimated glomerular filtration rate; ICW=intracellular water; IVC=inferior vena cava; LA=left atrial; 

LVEF=left ventricular ejection fraction; MAP=mean arterial pressure; MDRD=Modification of Diet in Renal 

Disease; PAP=pulmonary arterial pressure; PCR=protein-to-creatinine ratio; PCWP=pulmonary capillary wedge 

pressure; PVR=pulmonary vascular resistance; RA=right atrial; RAP=right atrial pressure; RRI=renal resistive 

index; RV=right ventricular; RV S’=systolic annular tissue velocity of the lateral tricuspid annulus; RVSI=renal 

venous stasis index; TAPSE=tricuspid annular plane systolic excursion.   



 

Table S6. Correlation of renal function with relevant parameters*.  

 Serum creatinine 

 

Correlation 

coefficient 

p value† eGFR (CKD-EPI 

creatinine-cystatin C 

equation) 

Correlation coefficient 

p value† 

Demographics     

Age, yrs 0.342 <0.0001 –0.542 <0.0001 

Baseline clinical data     

PaO2‡ –0.021 0.764 0.028 0.685 

PaCO2‡ 0.005 0.944 0.053 0.451 

6MWD –0.211 0.0023 0.350 <0.0001 

Laboratory data     

Hemoglobin –0.166 0.0173 0.258 0.0002 

Uric acid 0.479 <0.0001 –0.510 <0.0001 

C-reactive protein 0.213 0.0022 –0.282 <0.0001 

Maintenance therapy     

Loop diuretic dose 0.482 <0.0001 –0.389 <0.0001 

Hemodynamics     

RAP 0.293 <0.0001 –0.323 <0.0001 

PCWP 0.265 <0.0001 –0.270 <0.0001 

Mixed venous oxygen saturation –0.249 <0.0001 0.312 <0.0001 

Echocardiographic parameters     

TAPSE –0.315 <0.0001 0.300 <0.0001 

RV myocardial performance 

index (Tei index) 

–0.011 0.901 0.062 0.092 

RV S’ –0.176 0.012 0.126 0.073 

TAPSE/Systolic PAP ratio –0.168 0.016 0.258 <0.0001 

RA area 0.342 <0.0001 –0.333 <0.0001 

LA diameter 0.310 <0.0001 0.310 <0.0001 

Renal function     

Renal filtration gradient –0.279 <0.0001 0.283 <0.0001 

Urine PCR 0.180 0.0099 –0.240 0.0005 

Urine ACR 0.179 0.0104 –0.238 0.0006 

Urine α1MCR 0.397 <0.0001 –0.523 <0.0001 

Renal Doppler 

Ultrasonography 

    

RRI 0.237 <0.0001 –0.430 <0.0001 

RVSI 0.486 <0.0001 –0.433 <0.0001 

Neurohormonal status     

BNP 0.343 <0.0001 –0.416 <0.0001 

Copeptin 0.554 <0.0001 –0.599 <0.0001 

Urine FeNa 0.447 <0.0001 –0.492 <0.0001 

Hydration status     

ECW/ICW ratio 0.085 0.246 –0.261 0.0003 

Intra-abdominal pressure 

measurement 

    

Intra-abdominal pressure 0.333 <0.0001 –0.327 <0.0001 

Pearson or Spearman correlation was considered as appropriate. *All available study variables were included in 

the analysis, but only variables that were significant in the analysis are presented here; in addition, paO2 and 

paCO2 are presented based on their clinical role. †After application of the Bonferroni correction, p<0.0006 was 

considered significant. ‡Blood gas measurements were taken from arterialized capillary ear lobe blood during 

right heart catheterization. In patients with long-term oxygen treatment, oxygen was applied via nasal cannula at 

the previously prescribed flow rate. 

 

6MWD=6-min walk distance; ACR=albumin-to-creatinine ratio; α1MCR=α1-microglobulin-to-creatinine ratio; 

BNP=b-type natriuretic peptide; CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; 

ECW=extracellular water; E/e’ ratio=ratio of mitral inflow velocity to lateral annular relaxation velocity; 

eGFR=estimated glomerular filtration rate; FeNa=fractional excretion of sodium; ICW=intracellular water; 

LA=left atrial; LVEF=left ventricular ejection fraction; MAP=mean arterial pressure; PaCO2=arterial carbon 

dioxide pressure; PaO2=arterial oxygen pressure; PAP=pulmonary arterial pressure; PCR=protein-to-creatinine 



 

ratio; PCWP=pulmonary capillary wedge pressure; RA=right atrial; RAP=right atrial pressure; RV=right 

ventricular; RV S’=systolic annular tissue velocity of the lateral tricuspid annulus; RVSI=renal venous stasis 

index; TAPSE=tricuspid annular plane systolic excursion. 

 



 

Table S7. Clinical characteristics, invasive hemodynamics, echocardiographic data, renal function, and neurohormonal and hydration status according to PH groups 

 No PH 

 

 

 

(n=40) 

Group 1 PH 

(pulmonary arterial 

hypertension) 

 

(n=46) 

Group 2 PH 

(PH due to left 

heart disease) 

 

(n=30) 

Group 3 PH 

(PH due to lung 

disease and/or 

hypoxemia) 

(n=41) 

Group 4 PH 

(chronic 

thromboembolic 

PH) 

(n=34) 

Group 5 PH 

(PH with unclear 

multifactorial 

mechanisms) 

(n=14) 

p value* 

 

Baseline clinical data        

Oxygen supply, n (%)   27 (58.7) 13 (43.3) 35 (85.4) 17 (50.0) 14 (100) <0.0001 

6MWD, m 313.15±126.56 309.07±153.40 269.60±115.46 199.12±105.30 308.38±147.46 239.43±104.40 <0.0001 

NYHA classification, n (%)        0.0054 

   1–2 10 (25) 17 (37.0) 5 (16.7) 3 (7.3) 8 (23.5) 1 (7.1)  

   3–4 30 (75) 29 (63.0) 25 (83.3) 38 (92.7) 26 (76.5) 13 (92.9)  

Comorbidities, n (%)        

Hypertension 23 (57.5) 21 (45.7) 27 (90.0) 32 (78.0) 18 (52.9) 7 (50.0) <0.0001 

Diabetes mellitus 8 (20.0) 8 (17.4) 11 (36.7) 11 (26.8) 6 (17.6) 4 (28.6) 0.388 

Atrial fibrillation 10 (25.0) 7 (15.2) 24 (80.0) 6 (14.6) 7 (20.6) 2 (14.3) <0.0001 

Maintenance therapy        

ACEi or ARB, n (%) 18 (45.0) 12 (26.1) 21 (70.0) 18 (43.9) 9 (26.5) 5 (35.7) 0.0027 

Loop diuretic dose, mg/day 0.0 [0.0–35.0] 40.0 [0.0–65.0] 50.0 [20.0–90.0] 40.0 [0.0–50.0] 40.0 [0.0–80.0] 40.0 [0.0–80.0] 0.0017 

Thiazide diuretic, n (%)  9 (22.5) 18 (39.1) 11 (36.7) 17 (41.5) 12 (35.3) 5 (35.7) 0.567 

Aldosterone antagonist, n (%) 8 (20.0) 22 (47.8) 12 (40.0) 13 (31.7) 17 (50.0) 4 (28.6) 0.0562 

Triamterene, n (%) 0 (0) 3 (6.5) 0 (0) 0 (0) 1 (2.9) 1 (7.1) 0.197 

PH-specific therapy, n (%)       <0.0001 

Treatment-naive 40 (100) 10 (21.7) 21 (70.0) 22 (53.7) 18 (52.9) 5 (35.7)  

Monotherapy 0 (0) 14 (30.4) 9 (30) 11 (26.8)  10 (29.4) 5 (35.7)  

Dual therapy 0 (0) 14 (30.4) 0 (0) 6 (14.6) 4 (11.7) 4 (28.6)  

>Triple therapy 0 (0) 8 (17.4) 0 (0) 2 (4.9) 2 (5.9) 0 (0)  

Hemodynamics        

Mean PAP, mm Hg 17.68±4.60 42.13±18.07 37.90±12.03 35.63±9.31 36.91±8.25 46.00±11.75 <0.0001 

PVR, dyn.s/cm5 151.5 [89.5–223.8] 547.5 [343.8–786.5] 315.5 [166.3–478.5] 486.0 [344.5–707.5] 454.5 [334.0–632.5] 519.5 [475.0–613.5] <0.0001 

RAP, mm Hg 2.75±4.74 5.24±5.61 9.97±6.08 5.29±5.55 5.53±5.05 8.93±5.44 <0.0001 

Cardiac index, L/min/m2 3.10±1.41 2.69±0.80 2.68±0.92 2.47±0.67 2.56±0.64 2.99±1.31 0.0533 

PCWP, mm Hg 7.0 [4.0–10.0] 8.5 [5.0–11.3] 19.0 [12.8–24.3] 7.0 [4.5–10.0] 8.0 [5.0–11.3] 12.0 [8.5–15.3] <0.0001 

Mixed venous oxygen 

saturation, % 

67.65±7.01  64.69±8.81  61.91±8.81 62.69±7.05 60.73±8.72 64.05±8.51 0.0083 

Heart rate, beats/min 71.45±11.11 70.39±11.46 66.13±12.01 73.98±12.91 72.15±13.56 97.71±21.30 0.0306 

MAP, mm Hg† 86.28±10.54 81.28±10.42 82.94±10.16 84.91±13.16 82.58±13.07 84.52±10.88 0.191 



 

Echocardiographic 

parameters 

       

Right heart        

TAPSE, mm 21.45±4.83 20.22±4.25 18.07±4.09 19.07±4.02 19.82±3.55 20.86±2.77 0.0269 

RV myocardial performance 

index (Tei index) 

0.40±0.19 0.52±0.22 0.43±0.19 0.54±0.22 0.52±0.25 0.49±0.27 0.237 

RV S’, cm/s 12.40±3.88 11.76 ±3.71 10.62±3.37 10.71±3.13 11.91±3.27 12.79±3.30 0.112 

TAPSE/Systolic PAP ratio 0.67±0.24 0.31±0.15 0.32±0.11 0.33±0.16 0.35±0.15 0.32±0.10 <0.0001 

Tricuspid insufficiency       0.159 

   Mild 23 (57.5) 14 (30.4) 6 (20.0) 14 (34.1) 8 (23.5) 3 (21.4)  

   Moderate 12 (30.0) 22 (47.8) 14 (46.7) 15 (36.6) 16 (47.1) 4 (28.6)  

   Severe  5 (12.5) 10 (21.7) 10 (33.3) 12 (29.2) 10 (29.4) 7 (50)  

RA area, m2 15.15±6.47 18.42±6.56 20.70±6.93 19.25±6.62 20.78±6.00 21.85±5.58 0.0009 

RV diameter, mm 36.43±7.88 42.13±8.29 40.31±8.02 42.20±8.24 41.21±6.16 44.57±7.86 0.0031 

IVC, cm 2.15±0.47 2.25±0.59 2.37±0.41 2.30±0.46 2.27±0.43 2.45±0.50 0.317 

Left heart        

LVEF, % 60.0 [58.1–65.0] 60.5 [60.0–65.0] 60.0 [55.0–65.0] 60.0 [60.0–65.0] 60.0 [60.0–65.0] 60.0 [60.0–65.0] 0.161 

LA diameter, mm 40.87±7.60 40.70±6.90 47.47±6.40 40.89±6.08 40.44±5.40 43.69±5.22 <0.0001 

LVEDD, mm 47.78±5.09 44.40±5.96 49.20±4.81 44.39±5.48 45.79±5.60 44.00±3.49 <0.0001 

E/e’ ratio 11.69±4.64 11.03±2.83 20.44±6.03 13.30±4.91 11.57±4.48 11.68±3.61 <0.0001 

Renal function        

Serum creatinine, mg/dL‡  0.91±0.45 1.04±0.43 1.23±0.50 0.99±0.43 0.99±0.42 0.78±0.25 0.0175 

Cystatin C, mg/L 0.97 [0.76–1.21] 1.19 [0.93–1.50] 1.36 [1.10–1.98] 1.09 [0.94–1.73] 1.07 [0.88–1.52] 1.06 [0.98–1.22] 0.0032 

Urea, mg/dL§ 39.98±29.56 45.67±42.10 61.57±34.11 49.05±29.86 49.15±44.64 35.50±14.40 0.143 

eGFR (CKD-EPI creatinine 

equation), mL/min/1.73 m2|| 

83.28±23.76 73.30±27.87 56.57±21.63 77.15±25.32 71.97±25.05 89.50±21.14 <0.0001 

eGFR (CKD-EPI creatinine-

cystatin C equation), 

mL/min/1.73 m2# 

80.60±27.39 67.46±27.24 50.77±20.19 69.30±26.56 66.91±26.29 78.07±19.50 <0.0001 

Renal filtration gradient, mm 

Hg** 

73.88±10.66 66.19±10.32 65.01±11.71 70.03±14.57 68.05±13.88 68.45±11.52 0.0288 

Urine PCR, mg/g creatinine 54.3 [44.9–82.9] 57.0 [35.9–106.3] 57.7 [35.6–131.7] 70.5 [46.7–146.2] 50.2 [36.4–121.9] 64.1 [44.8–111.9] 0.443 

Urine ACR, mg/g creatinine  11.6 [6.1–17.0] 9.2 [5.3–27.1] 12.1 [7.9–39.7] 11.5 [6.6–66.2] 11.7 [7.5–29.3] 16.0 [6.5–55.3] 0.442 

Urine α1MCR, mg/g 

creatinine 

9.8 [15.9–18.6] 8.7 [4.9–17.6] 15.3 [9.3–27.9] 13.1 [5.6–34.5] 11.2 [4.7–22.0] 7.6 [6.2–11.5] 0.071 

Acanthocyturia, n (%) 1 (2.5) 5 (10.9) 0 (0) 1 (2.4) 0 (0) 0 (0) 0.057 

Sterile leukocyturia, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 1 (2.9) 1 (7.1) 0.135 



 

Intrarenal Doppler 

Ultrasonography 

       

Congestion stage       <0.0001 

   0 27 (67.5)  10 (21.7) 1 (3.3) 1 (24.4) 9 (26.5) 2 (14.3)  

   1 13 (32.5) 20 (43.5) 12 (40) 16 (39.0) 14 (41.2) 6 (42.9)  

   2 0 (0)  11 (23.9) 7 (23.3) 10 (24.4) 9 (26.5) 4 (28.6)  

   3 0 (0) 5 (10.9) 10 (33.3) 5 (12.2) 2 (5.9) 2 (14.3)  

Venous impedance index of 

1.0 

13 (32.5) 36 (78.3) 29 (96.7) 31 (75.6) 25 (73.5) 12 (85.7) 0.482 

RVSI 0.0 [0.00–0.09] 0.13 [0.04–0.34] 0.27 [0.11–0.46] 0.09 [0.02–0.29] 0.12 [0.00–0.29] 0.15 [0.06–0.36] <0.0001 

RRI 0.67±0.05 0.71±0.07 0.76±0.06 0.71±0.08 0.73±0.07 0.71±0.07 <0.0001 

Neurohormonal status        

BNP, pg/mL 51.00 [22.5–175.5] 134.00 [375.5–324.8] 232.50 [157.5–590.0] 114.00 [55.0–538.5] 160.00 [98.5–314.5] 196.00 [45.8–531.0] <0.0001 

Copeptin, pmol/L 6.95 [4.2–13.5] 7.95 [5.2–18.9] 15.45 [6.4–39.2] 14.15 [8.0–27.7] 16.30 [6.8–23.1] 11.35 [6.1–20.1] 0.0063 

Urine FeNa, % 0.60 [0.4–1.1] 0.65 [0.3–1.4] 1.20 [0.6–1.9] 0.80 [0.4–1.3] 0.50 [0.3–1.4] 0.4 [0.3–0.5] 0.0162 

Sodium, mmol/L 139.33±3.24 139.24±3.14 139.90±2.90 139.66±3.03 139.47±3.52 140.50±1.51 0.783 

BUN-to-creatinine ratio 20.28±8.18 19.09±6.80 23.05±7.86 22.58±7.22 21.47±7.84 21.29±6.46 0.189 

Aldosterone, ng/dL 4.70 [3.00–8.45] 8.85 [3.90–19.88] 5.75 [3.00–10.90] 4.70 [3.00–12.30] 6.30 [3.00–11.83] 4.65 [3.00–6.95] 0.079 

Potassium, mmol/L 3.75±0.45 3.61±0.39 3.78±0.45 3.60±0.43 3.62±0.40 3.67±0.25 0.271 

Urine Na/K ratio 3.52±2.31 2.80±1.70 3.61±2.65 3.45±2.54 3.04±2.16 2.90±1.94 0.53 

Hydration status        

Ascites, n (%) 0 (0) 2 (4.3) 3 (10.0) 1 (2.4) 1 (2.9) 0 (0) 0.588 

Peripheral edema, n (%) 9 (22.5) 14 (30.4) 9 (30.0) 12 (29.3) 11 (32.4) 5 (35.7) 0.929 

Pleural effusion, n (%) 0 (0) 5 (10.9) 3 (10.0) 3 (7.3) 2 (5.9) 4 (28.6) 0.0346 

Hydration status (as measured 

by bioimpedance), L 

0.11±1.64 0.97±2.02 1.05±2.53 0.54±2.21 0.71±2.28 1.35±1.91 0.282 

Total body water, L  38.46±7.26 36.13±7.81 37.73±6.31 38.85±8.35 37.76±7.91 38.16±5.58 0.679 

ECW, L 17.57±3.30 16.88±3.28 17.74±2.84 17.82±3.75 17.54±3.45 18.39±2.68 0.710 

ICW, L 20.88±4.31 19.51±4.53 19.97±4.01 20.03±5.12 20.22±4.93 19.76±3.37 0.669 

ECW/ICW ratio 0.85±0.09 0.87±0.12 0.90±0.12 0.86±0.13 0.88±0.13 0.94±0.11 0.132 

Intra-abdominal pressure 

measurement 

       

Intra-abdominal pressure, mm 

Hg 

6.0 [5.0–7.0] 7.0 [6.0–9.0] 8.5 [7.0–10.0] 7.0 [6.0–9.0] 7.0 [6.0–8.3] 8.0 [6.8–10.3] <0.0001 

Abdominal perfusion 

pressure, mm Hg††_ 

80.08±10.50 73.73±10.11 75.99±10.66 79.47±13.70 75.31±13.35 74.74±10.95 0.092 

Values are mean±SD, median [interquartile range], or n (%). 



 

*After application of the Bonferroni correction, p<0.0008 was considered significant. †MAP was calculated as (systolic blood pressure+2x diastolic pressure)/3. ‡To convert the 

values for serum creatinine to μmol/L, multiply by 88.4. §To convert the values for urea to BUN, multiply by 0.467. ||eGFR was calculated with the CKD-EPI equation based on 

serum creatinine.23 #eGFR was calculated with the CKD-EPI equation based on serum creatinine and cystatin C.22 **The renal filtration gradient was calculated as: MAP–2x 

intra-abdominal pressure.24 ††The abdominal perfusion pressure was calculated using the equation: MAP–intra-abdominal pressure.24 

6MWD=6-min walk distance; ACEi=angiotensin-converting enzyme inhibitor; ACR=albumin-to-creatinine ratio; α1MCR=α1-microglobulin-to-creatinine ratio; 

ARB=angiotensin receptor blocker; BNP=b-type natriuretic peptide; BUN=blood urea nitrogen; CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; 

ECW=extracellular water; E/e’ ratio=ratio of mitral inflow velocity to lateral annular relaxation velocity; eGFR=estimated glomerular filtration rate; FeNa=fractional excretion of 

sodium; ICW=intracellular water; IVC=inferior vena cava; LA=left atrial; LVEDD=left ventricular end-diastolic diameter; LVEF=left ventricular ejection fraction; MAP=mean 

arterial pressure; Na/K=sodium/potassium; NYHA=New York Heart Association; PAP=pulmonary arterial pressure; PCR=protein-to-creatinine ratio; PCWP=pulmonary 

capillary wedge pressure; PH=pulmonary hypertension; PVR=pulmonary vascular resistance; RA=right atrial; RAP=right atrial pressure; RRI=renal resistive index; RV=right 

ventricular; RV S’=systolic annular tissue velocity of the lateral tricuspid annulus; RVSI=renal venous stasis index; TAPSE=tricuspid annular plane systolic excursion.



 

Table S8. Outcomes in the RHC cohort. 

 

Outcome, n (%) RHC cohort (n=205) 

PH-related morbidity and death from any cause 91 (44.4%) 

Unscheduled hospitalizations for fluid overload 64 (31.2%) 

Escalations of PH-specific therapy 71 (34.6%) 

Death from any cause 21 (10.2%) 

Five patients underwent pulmonary thrombendarterectomy, and one patient underwent lung transplantation. 

RHC=right heart catheterization; PH=pulmonary hypertension.  



 

Table S9. Predictors of morbidity and mortality by the univariate Cox proportional hazard model. 
 Univariate 

Predictor HR (95% CI) p value 

Baseline clinical data   

Age 1.02 (1.00–1.03) 0.0439 

Sex 0.63 (0.42–0.95) 0.0265 

6MWD 0.997 (0.996–0.999) 0.0006 

NYHA classification 1.62 (1.19–2.20) 0.0024 

Pulmonary hypertension group 0.81 (0.72–0.91) <0.0001 

Diabetes mellitus 1.88 (1.21–2.91) 0.0048 

Atrial fibrillation 2.56 (1.68–3.88) <0.0001 

Uric acid 1.25 (1.16–1.34) <0.0001 

Hemodynamics   

Mean PAP 1.03 (1.02–1.04) <0.0001 

PVR 1.00 (1.00–1.00) <0.0001 

RAP 1.12 (1.07–1.14) <0.0001 

Cardiac index 0.54 (0.39–0.74) <0.0001 

PCWP 1.06 (1.03–1.09) <0.0001 

Mixed venous oxygen saturation 0.93 (0.91–0.96) <0.0001 

Echocardiographic parameters   

TAPSE 0.90 (0.86–0.94) <0.0001 

RV S’ 0.86 (0.80–0.93) <0.0001 

TAPSE/Systolic PAP ratio 0.05 (0.01–0.19) <0.0001 

Tricuspid insufficiency 1.76 (1.32–2.35) <0.0001 

RA area 1.07 (1.04–1.09) <0.0001 

RV diameter 1.05 (1.02–1.07) <0.0001 

IVC diameter 2.08 (1.38–3.13) <0.0001 

LVEF 0.98 (0.95–1.00) 0.0477 

LA diameter 1.07 (1.04–1.10) <0.0001 

E/e’ ratio 1.07 (1.03–1.11) <0.0001 

Renal function   

Serum creatinine 2.59 (1.83–3.66) <0.0001 

Cystatin C 2.18 (1.69–2.82) <0.0001 

Urea 1.01 (1.01–1.02) <0.0001 

eGFR (MDRD equation)* 0.99 (0.98–0.99) <0.0001 

eGFR (CKD-EPI creatinine equation) † 0.98 (0.97–0.98) <0.0001 

eGFR (CKD-EPI creatinine-cystatin C equation)‡ 0.98 (0.97–0.99) <0.0001 

Renal filtration gradient 0.97 (0.95–0.99) 0.0007 

Urine α1MCR 1.01 (1.01–1.02) <0.0001 

Urine FeNa 1.21 (1.09–1.34) <0.0001 

Renal Doppler ultrasonography   

RVSI tertiles 20.57 (9.03–46.87) <0.0001 

1st tertile RVSI group vs RVSI=0 2.31 (1.06–5.05) 0.0363 

2nd tertile RVSI group vs RVSI=0 3.63 (1.71–7.65) 0.0007 

3rd tertile RVSI group vs RVSI=0 8.70 (4.33–17.48) <0.0001 

Congestion stages 2.00 (1.63–2.44) <0.0001 

Stage 1 congestion vs stage 0 2.65 (1.29–5.44) 0.0078 

Stage 2 congestion vs stage 0 6.35 (3.08–13.09) <0.0001 

Stage 3 congestion vs stage 0 8.45 (3.98–17.96) <0.0001 

Venous impedance index  14.61 (4.31–49.55) <0.0001 

Neurohormonal status   

BNP 1.00 (1.00–1.00) <0.0001 

Copeptin 1.02 (1.02–1.03) <0.0001 

Aldosterone 1.01 (1.00–1.02) 0.0184 

Hydration status   

Hydration status (as measured by bioimpedance) 1.14 (1.03–1.25) 0.0081 

Extracellular/intracellular water 8.42 (1.31–54.25) 0.0251 

Ascites 2.85 (1.30–6.23) 0.0089 

Pleural effusion 2.27 (1.26–4.10) 0.0064 

Intra-abdominal pressure measurement   

Intra-abdominal pressure 1.25 (1.17–1.34) <0.0001 

Abdominal perfusion pressure§ 0.98 (0.96–1.00) 0.0226 

All available study variables were included in the univariate analysis, but only variables that were significant in 

the univariate analysis are presented here. *eGFR was calculated with the MDRD equation based on serum 

creatinine.25 †eGFR was calculated with the CKD-EPI equation based on serum creatinine.23 ‡eGFR was 

calculated with the CKD-EPI equation based on serum creatinine and cystatin C.22 §The abdominal perfusion 

pressure was calculated using the equation: MAP–intra-abdominal pressure, while MAP was calculated as 

(systolic blood pressure+2x diastolic pressure)/3.24 

6MWD=6-min walk distance; α1MCR=α1-microglobulin-to-creatinine ratio; BNP=b-type natriuretic peptide; 

CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; CI=confidence interval; E/e’ ratio=ratio of 



 

mitral inflow velocity to lateral annular relaxation velocity; eGFR=estimated glomerular filtration rate; 

FeNa=fractional excretion of sodium; HR=hazard ratio; IVC=inferior vena cava; LA=left atrial; LVEF=left 

ventricular ejection fraction; MAP=mean arterial pressure; MDRD=Modification of Diet in Renal Disease; 

NYHA=New York Heart Association; PAP=pulmonary arterial pressure; PCWP=pulmonary capillary wedge 

pressure; PVR=pulmonary vascular resistance; RA=right atrial; RAP=right atrial pressure; RV=right ventricular; 

RV S’=systolic annular tissue velocity of the lateral tricuspid annulus; RVSI=renal venous stasis index; 

TAPSE=tricuspid annular plane systolic excursion. 

  

  



 

Table S10. Predictors of unscheduled hospitalization due to fluid overload by the univariate Cox 

proportional hazard model.  
 Univariate 

Predictor HR (95% CI) p value 

Baseline clinical data   

Age 1.04 (1.01–1.06) 0.0013 

Sex 0.48 (0.29–0.79) 0.0039 

6MWD 0.996 (0.994–0.998) <0.0001 

NYHA classification 1.81 (1.24–2.64) 0.0022 

Pulmonary hypertension group 0.83 (0.72–0.95) 0.0083 

Diabetes mellitus 2.58 (1.56–4.27) <0.0001 

Atrial fibrillation 4.05 (2.47–6.63) <0.0001 

Sodium 0.93 (0.86–0.99) 0.0286 

Uric acid 1.29 (1.19–1.41) <0.0001 

Hemodynamics   

Mean PAP 1.02 (1.01–1.04) 0.0008 

PVR 1.00 (1.00–1.00) 0.0246 

RAP 1.15 (1.11–1.20) <0.0001 

Cardiac index 0.46 (0.31–0.68) <0.0001 

PCWP 1.08 (1.05–1.11) <0.0001 

Mixed venous oxygen saturation 0.92 (0.90–0.95) <0.0001 

Echocardiographic parameters   

TAPSE 0.86 (0.81–0.91) <0.0001 

RV S’ 0.77 (0.70–0.85) <0.0001 

TAPSE/Systolic PAP ratio 0.02 (0.00–0.18) <0.0001 

Tricuspid insufficiency 2.22 (1.55–3.18) <0.0001 

RA area 1.11 (1.07–1.14) <0.0001 

RV diameter 1.06 (1.03–1.10) <0.0001 

IVC diameter 2.60 (1.59–4.16) <0.0001 

LVEF 0.96 (0.94–0.99) 0.0037 

LA diameter 1.07 (1.04–1.11) <0.0001 

E/e’ ratio 1.08 (1.03–1.12) <0.0001 

Renal function   

Serum creatinine 3.40 (2.33–4.94) <0.0001 

Cystatin C 2.62 (1.99–3.45) <0.0001 

Urea 1.01 (1.01–1.02) <0.0001 

eGFR (MDRD equation)* 0.98 (0.97–0.99) <0.0001 

eGFR (CKD-EPI creatinine equation) † 0.97 (0.96–0.98) <0.0001 

eGFR (CKD-EPI creatinine-cystatin C equation)‡ 0.97 (0.96–0.98) <0.0001 

BUN-to-creatinine ratio 1.04 (1.01–1.07) 0.0117 

Renal filtration gradient 0.96 (0.94–0.98) <0.0001 

Urine α1MCR 1.01 (1.01–1.02) <0.0001 

Urine FeNa 1.21 (1.07–1.36) 0.0017 

Renal Doppler ultrasonography   

RVSI tertiles 1.71 (1.48–1.98) <0.0001 

1st tertile RVSI group vs RVSI=0 6.49 (1.42–29.64) 0.0157 

2nd tertile RVSI group vs RVSI=0 10.98 (2.52–47.76) 0.0014 

3rd tertile RVSI group vs RVSI=0 35.60 (8.54–148.38) <0.0001 

Congestion stages 2.49 (1.94–3.20) <0.0001 

Stage 1 congestion vs stage 0 7.36 (1.71–31.72) 0.0074 

Stage 2 congestion vs stage 0 25.51 (6.05–107.67) <0.0001 

Stage 3 congestion vs stage 0 32.17 (7.44–139.09) <0.0001 

Venous impedance index  121.10 (9.45–1552.61) <0.0001 

Neurohormonal status   

BNP 1.00 (1.00–1.00) <0.0001 

Copeptin 1.03 (1.02–1.04) <0.0001 

Aldosterone 1.02 (1.00–1.03) 0.0122 

Hydration status   

Hydration status (as measured by bioimpedance) 1.16 (1.04–1.29) 0.0089 

Extracellular/intracellular water 14.97 (1.66–135.09) 0.0159 

Extracellular water 1.09 (1.01–1.18) 0.0280 

Ascites 3.11 (1.24–7.77) 0.0153 

Pleural effusion 2.42 (1.19–4.90) 0.0142 

Peripheral edema 2.09 (1.28–3.44) 0.0034 

Intra-abdominal pressure measurement   

Intra-abdominal pressure 1.36 (1.26–1.47) <0.0001 

Abdominal perfusion pressure§ 0.97 (0.95–1.00) 0.0210 

All available study variables were included in the univariate analysis, but only variables that were significant in 

the univariate analysis are presented here. *eGFR was calculated with the MDRD equation based on serum 

creatinine.25 †eGFR was calculated with the CKD-EPI equation based on serum creatinine.23 ‡eGFR was 

calculated with the CKD-EPI equation based on serum creatinine and cystatin C.22 §The abdominal perfusion 



 

pressure was calculated using the equation: MAP–intra-abdominal pressure, while MAP was calculated as 

(systolic blood pressure+2x diastolic pressure)/3.24 

6MWD=6-min walk distance; α1MCR=α1-microglobulin-to-creatinine ratio; BNP=b-type natriuretic peptide; 

BUN=blood urea nitrogen; CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; CI=confidence 

interval; E/e’ ratio=ratio of mitral inflow velocity to lateral annular relaxation velocity; eGFR=estimated 

glomerular filtration rate; FeNa=fractional excretion of sodium; IVC=inferior vena cava; HR=hazard ratio; 

LA=left atrial; LVEF=left ventricular ejection fraction; MAP=mean arterial pressure; MDRD=Modification of 

Diet in Renal Disease; NYHA=New York Heart Association; PAP=pulmonary arterial pressure; PCR=protein-

to-creatinine ratio; PCWP=pulmonary capillary wedge pressure; PVR=pulmonary vascular resistance; RA=right 

atrial; RAP = right atrial pressure; RV=right ventricular; RV S’=systolic annular tissue velocity of the lateral 

tricuspid annulus; RVSI=renal venous stasis index; TAPSE=tricuspid annular plane systolic excursion.  



 

Table S11. Predictors of escalation of PH-specific therapy by the univariate Cox proportional hazard 

model. 
 Univariate 

Predictor HR (95% CI) p value 

Baseline clinical data   

6MWD 0.997 (0.995–0.999) 0.0013 

NYHA classification  1.59 (1.11–2.27) 0.0110 

Pulmonary hypertension group 0.79 (0.69–0.91) 0.0008 

Diabetes mellitus 1.90 (1.16–3.12) 0.0105 

Atrial fibrillation 1.79 (1.11–2.89) 0.0177 

Potassium 0.49 (0.28–0.88) 0.0162 

Uric acid 1.26 (1.16–1.36) <0.0001 

Hemodynamics   

Mean PAP 1.03 (1.02–1.04) <0.0001 

PVR 1.00 (1.00–1.00) <0.0001 

RAP 1.08 (1.04–1.12) <0.0001 

Cardiac index 0.41 (0.28–0.60) <0.0001 

PCWP 1.04 (1.01–1.07) 0.0072 

Mixed venous oxygen saturation 0.92 (0.90–0.95) <0.0001 

Echocardiographic parameters   

TAPSE 0.89 (0.85–0.94) <0.0001 

RV S’ 0.84 (0.77–0.91) <0.0001 

TAPSE/Systolic PAP ratio 0.04 (0.01–0.21) <0.0001 

Tricuspid insufficiency 1.54 (1.12–2.12) 0.0079 

RA area 1.05 (1.02–1.09) 0.0013 

RV diameter 1.05 (1.02–1.08) 0.0005 

IVC diameter 2.00 (1.25–3.19) 0.0037 

LA diameter 1.05 (1.01–1.08) 0.0072 

LVEDD 0.95 (0.91–0.99) 0.0221 

E/e’ ratio 1.07 (1.03–1.12) 0.0006 

Renal function   

Serum creatinine 2.55 (1.74–3.73) <0.0001 

Urea 1.01 (1.00–1.01) <0.0001 

Cystatin C 1.95 (1.50–2.55) <0.0001 

eGFR (MDRD equation)* 0.99 (0.98–0.99) <0.0001 

eGFR (CKD-EPI creatinine equation) † 0.98 (0.97–0.99) <0.0001 

eGFR (CKD-EPI creatinine-cystatin C equation)‡ 0.98 (0.97–0.99) <0.0001 

Renal filtration gradient 0.96 (0.94–0.99) 0.0007 

Urine α1MCR 1.01 (1.01–1.02) <0.0001 

Urine FeNa 1.24 (1.10–1.39) <0.0001 

Renal Doppler ultrasonography   

RVSI tertiles 1.43 (1.26–1.63) <0.0001 

1st tertile RVSI group vs RVSI=0 2.16 (0.89–5.24) 0.0872 

2nd tertile RVSI group vs RVSI=0 3.52 (1.53–8.07) 0.0030 

3rd tertile RVSI group vs RVSI=0 7.03 (3.22–15.35) <0.0001 

Congestion stages 1.86 (1.49–2.33) <0.0001 

Stage 1 congestion vs stage 0 2.37 (1.05–5.35) 0.0373 

Stage 2 congestion vs stage 0 6.22 (2.79–13.87) <0.0001 

Stage 3 congestion vs stage 0 6.39 (2.73–14.97) <0.0001 

Venous impedance index  12.59 (3.20–49.45) <0.0001 

Neurohormonal status   

BNP 1.00 (1.00–1.00) <0.0001 

Copeptin 1.03 (1.02–1.04) <0.0001 

Hydration status   

Pleural effusion 2.15 (1.10–4.21) 0.0256 

Intra-abdominal pressure measurement   

Intra-abdominal pressure 1.22 (1.13–1.32) <0.0001 

Abdominal perfusion pressure§ 0.97 (0.95–0.99) 0.0098 

All available study variables were included in the univariate analysis, but only variables that were significant in 

the univariate analysis are presented here. *eGFR was calculated with the MDRD equation based on serum 

creatinine.25 †eGFR was calculated with the CKD-EPI equation based on serum creatinine.23 ‡eGFR was 

calculated with the CKD-EPI equation based on serum creatinine and cystatin C.22 §The abdominal perfusion 

pressure was calculated using the equation: MAP–intra-abdominal pressure, while MAP was calculated as 

(systolic blood pressure+2x diastolic pressure)/3.24 

6MWD=6-min walk distance; α1MCR=α1-microglobulin-to-creatinine ratio; BNP=b-type natriuretic peptide; 

CKD-EPI=Chronic Kidney Disease Epidemiology Collaboration; CI=confidence interval; E/e’ ratio=ratio of 

mitral inflow velocity to lateral annular relaxation velocity; eGFR=estimated glomerular filtration rate; 

FeNa=fractional excretion of sodium; HR=hazard ratio; IVC=inferior vena cava; LA=left atrial; LVEDD=left 

ventricular end-diastolic diameter; MAP=mean arterial pressure; MDRD=Modification of Diet in Renal Disease; 



 

NYHA=New York Heart Association; PAP=pulmonary arterial pressure; PCWP=pulmonary capillary wedge 

pressure; PH=pulmonary hypertension; PVR=pulmonary vascular resistance; RA=right atrial; RAP=right atrial 

pressure; RV=right ventricular; RV S’=systolic annular tissue velocity of the lateral tricuspid annulus; 

RVSI=renal venous stasis index; TAPSE=tricuspid annular plane systolic excursion.  



 

Table S12. Predictors of death from any cause by the univariate Cox proportional hazard model. 

 
 Univariate 

Predictor HR (95% CI) p value 

Baseline clinical data   

Sex 0.30 (0.12–0.77) 0.0127 

6MWD 1.0 (0.99–1.00) 0.0239 

NYHA classification 2.65 (1.30–5.41) 0.0074 

Uric acid 1.25 (1.09–1.43) 0.0018 

Hemodynamics   

RAP 1.08 (1.02–1.15) 0.0149 

Mixed venous oxygen saturation 0.92 (0.88–0.96) <0.0001 

Echocardiographic parameters   

TAPSE 0.88 (0.80–0.96) 0.0045 

RV S’ 0.74 (0.64–0.87) <0.0001 

TAPSE/Systolic PAP ratio 0.01 (0.00–0.17) 0.011 

RA area 1.10 (1.04–1.17) 0.0018 

RV diameter 1.07 (1.02–1.12) 0.0076 

Renal function   

Serum creatinine 2.14 (1.05–4.40) 0.0376 

Urea 1.01 (1.00–1.02) 0.0262 

Renal Doppler ultrasonography   

RVSI tertiles  0.065 

1st tertile RVSI group vs RVSI=0 2.00 (0.48–8.38) 0.342 

2nd tertile RVSI group vs RVSI=0 1.25 (0.25–6.17) 0.788 

3rd tertile RVSI group vs RVSI=0 4.33 (1.19–15.72) 0.026 

Congestion stages 1.39 (1.10–1.77) 0.0066 

Stage 1 congestion vs stage 0 1.29 (0.31–5.38) 0.732 

Stage 2 congestion vs stage 0 3.84 (1.02–14.48) 0.0469 

Stage 3 congestion vs stage 0 4.03 (0.96–16.86) 0.0564 

Neurohormonal status   

BNP 1.00 (1.00–1.00) 0.0012 

Copeptin 1.02 (1.00–1.04) 0.0193 

Intra-abdominal pressure measurement   

Intra-abdominal pressure 1.22 (1.06–1.41) 0.0069 

All available study variables were included in the univariate analysis, but only variables that were significant in 

the univariate analysis are presented here.  

6MWD=6-min walk distance; BNP=b-type natriuretic peptide; CI=confidence interval; HR=hazard ratio; 

NYHA=New York Heart Association; PAP=pulmonary arterial pressure; RA=right atrial; RAP=right atrial 

pressure; RV=right ventricular; RV S’=systolic annular tissue velocity of the lateral tricuspid annulus; 

RVSI=renal venous stasis index; TAPSE=tricuspid annular plane systolic excursion. 

   



 

Table S13. Performance of RVSI versus IRVF patterns in models including both variables for prediction 

of secondary endpoints. 

 Wald statistic 

Secondary endpoint Unplanned 

hospitalization due to 

fluid overload 

Escalation of PH-specific 

therapy 

All-cause mortality 

RVSI 6.163 0.721 0.611 

IRVF patterns 0.996 2.675 0.204 

Higher Wald statistic indicates superiority for prediction of endpoint. RVSI was superior to IRVF patterns in 

models including both RVSI and IRVF patterns as predictor variables for all component endpoints except need 

for escalation of PH-specific therapy. 

IRVF=intrarenal venous flow; PH=pulmonary hypertension; RVSI=renal venous stasis index. 

 

  



Figure S1. IRVF patterns and associated clinical parameters. 

 

  
Severity of renal congestion can be evaluated by identifying four distinct IRVF patterns using renal Doppler 

ultrasonography. The figure illustrates the associations of these IRVF patterns with RAP and renal function (a), 

right ventricular systolic function and right atrial area (b), neurohormonal (c), and hydration status (d). Fluid 

overload as measured by bioimpedance is likely to occur as a result of hemodynamic alterations and 

neurohormonal activation leading to a deterioration of renal function and fluid retention. 

BNP=b-type natriuretic peptide; D=diastole; eGFR=estimated glomerular filtration rate (based on Chronic 

Kidney Disease Epidemiology Collaboration creatinine-cystatin C equation22); IRVF=intrarenal venous flow; 

RA=right atrial; RAP=right atrial pressure; S=systole; TAPSE=tricuspid annular plane systolic excursion; 

VII=venous impedance index.  

  



Figure S2. Correlation of RVSI with RAP (a), TAPSE (b), eGFR (c), and intra-abdominal pressure (d). 

 

 
 

eGFR=estimated glomerular filtration rate (based on Chronic Kidney Disease Epidemiology Collaboration 

creatinine-cystatin C equation22); RAP=right atrial pressure; RVSI=renal venous stasis index; TAPSE=tricuspid 

annular plane systolic excursion.  

  



Figure S3. Kaplan-Meier estimate curves according to RVSI tertiles. 

 

 
 

Patients in the 3rd tertile RVSI group had a significantly higher probability than other patients of the following 

individual components of the composite endpoint: unscheduled hospitalization for fluid overload (p<0.0001) (a) 

and escalation of PH-specific therapy (p<0.0001) (b). After Bonferroni correction, death from any cause did not 

show a significant difference between patients in the 3rd tertile RVSI group and other patients (p=0.0412) (c). 

PH=pulmonary hypertension; RVSI = renal venous stasis index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S4. Kaplan-Meier estimate curves according to IRVF patterns.  

 

 
 

Patients in the highest IRVF pattern group had a significantly higher probability than other patients of the 

composite endpoint of PH-related morbidity or death from any cause (p<0.0001) (a) and the following 

individual components of the composite endpoint: unscheduled hospitalization for fluid overload (p<0.0001) (b) 

and escalation of PH-specific therapy (p<0.0001) (c). After Bonferroni correction, death from any cause did not 

show a significant difference between patients in the highest IRVF pattern group and other patients (p=0.0387) 

(d).  

IRVF=intrarenal venous flow; PH=pulmonary hypertension. 

  



Figure S5. Comparison of RVSI and IRVF patterns as predictors of the primary and secondary clinical 

endpoints.  

 

 
 

Receiver operating characteristic analyses indicate that RVSI was superior to the four IRVF patterns as a 

predictor of the composite primary endpoint (AUC: 0.789 and 0.761, respectively; p=0.038) (a), and for the 

prediction of unplanned hospitalization due to fluid overload (AUC: 0.843 and 0.813, respectively; p=0.045) (b) 

but not escalation of pulmonary hypertension-specific therapy (AUC: 0.737 and 0.724, respectively; p=0.36) (c), 

nor all-cause mortality (AUC: 0.650 and 0.668, respectively; p=0.37) (d). Diagonal segments are produced by 

ties.  

AUC=area under the curve; IRVF=intrarenal venous flow; RVSI=renal venous stasis index. 
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