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Abstract: The arrival of sequence-specific endonucleases that allow genome editing has shaken
the pillars of basic and applied plant biology. Clustered regularly interspaced palindromic repeats
(CRISPR) is a revolutionary genome-engineering tool that enables the enhancement of targeted
traits in plants. Numerous plants, including energy crops, known for their potential to tolerate,
immobilize, and stabilize inorganic and organic pollutants, have already been edited using different
CRISPR systems. Moreover, a large array of genes responsible for increased metal tolerance,
metal uptake and hyperaccumulation have already been identified. Thus, the CRISPR-mediated
genome reprogramming of plants, including its use in gene expression regulation through
transcriptional repression or activation (CRISPRi and CRISPRa), could be of paramount importance
for phytoremediation. The simplicity, inexpensiveness, and capabilities of this gene editing
technique could soon be used to enhance plants and bacteria involved in phytotechnologies, such
as phystabilization, phytoextraction, phytomining, phytovolatilization, and bio-energy generation.
In this brief viewpoint piece, we posit some of the potential benefits of CRISPR for phytoremediation.

Keywords: CRISPR; Cas9; genetic engineering; phytoremediation; phytomining; environmental
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1. Overview

The advent of the prokaryotic adaptive immune system, centered on clustered regularly
interspaced short palindromic repeats, i.e., CRISPR technology, has breathed new life into genome
editing endeavors [1]. CRISPR-Cas9 and the novel CRISPR-Cpf1 have been harnessed for generating
knock-outs, targeting transcriptional regulation or making substitutions in the genome [2,3]. These
systems are focused on a guide RNA (gRNA), coupled with Cas9, a type II endonuclease from
Streptococcus pyogenes, or Cpfl, a class II type V endonuclease from Prevotella and Francisella, in order
to facilitate direction to a target site [4]. Substantial progress is increasingly being made in this realm,
as tools and methods of CRISPR usage in genome editing continue to expand due to its considerable
advantage over competing techniques, like zinc finger nucleases (ZFNs) and transcription activator-like
effector nucleases (TALENSs) [5-7]. However, usage of this method for genome engineering aimed at
phytotechnologies is underrepresented, despite being the need of the hour. Here, we highlight the
potential of this effective tool for precision genome editing of plants to remediate polluted soils and
waters (either by organic or inorganic contaminants).
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Phytoremediation is a green, solar energy driven, and low cost technology to mitigate the impact
of harmful pollutants, which represents a sustainable alternative to other costly, impracticable and
often hazardous physicochemical solutions [8]. Additionally, it helps to refurbish natural habitats and
heal the hideous scars of the landscape. Ideally, phytoremediators should feature a fast growth rate,
high biomass yield, hardiness, tolerance to elevated metal levels, large root system and the capacity
to immobilize and/or uptake significant amounts of contaminants [9]. The latter is a property that is
strikingly expressed by hyperaccumulators—plants exhibiting shoot metal concentrations, 1-3 orders
of magnitude greater than other plants growing in the same environment [10]. Hyperaccumulation
and the aforementioned traits are also critical for phytomining, another plant-based technique,
akin to phytoremediation, that aims at the extraction of valuable metals from mine tailings and
mineralized /polluted soils to obtain an economic revenue [11]. In this connection, several plant
species have been identified as attractive candidates for the purpose of phytoremediation and further
enhanced by scientists via transgenics [12].

2. Genetically Engineered Phytoremediation

Genome editing of plants for phytoremediation using CRISPR systems is an unexplored and yet
promising venture to increase the remedial capacity of plants. Genomes of model phytoremediators,
Noccaea caerulescens (the Cd, Ni, and Zn hyperaccumulator, formerly known as Thiaspi caerulescens),
Arabidopsis halleri (Cd and Zn hyperaccumulator), Pteris vittata (As hyperaccumulator), Hirschfeldia
incana (known for its capacity to withstand and uptake Pb), Brassica juncea (the Swiss army knife
of phytoremediation) and several other species, have been fully or partially sequenced [13-17].
A few energy crops have also been sequenced [18], and editing their genomes for increased
tolerance to pollutants could deliver multiple benefits. Manipulation of genomic sequences of
these plants may facilitate the identification and characterization of key genetic determinants
in the investigation of phytoremediation processes, like phytoextraction, phytostabilization,
phytovolatilization, phytodegradation, or phytodesalination, to name a few. Sequence data
information of these plants can be utilized to establish CRISPR systems for phytoremediation by
targeted engineering of mechanisms involved in the accumulation, complexation, volatilization, and
degradation of pollutants. CRISPR could be used to transfer a desired set of instructions in the plant
genome in a candid mode, as it is a programmable, next-generation method for high throughput
genetic manipulation, as compared with the low throughput ZFNs and TALENSs [19,20]. Moreover,
the sequence availability of plant genomes, aided by software tools, bioinformatics-based approaches
and the availability of codon-optimized versions of Cas9 for monocots as well as dicots, has opened
new avenues for using CRISPR-Cas9 genome editing in a wide variety of plants [21].

Areas of focus for phytoremediation may include the CRISPR-mediated expression of genes to
increase the synthesis of metal ligands (such as metallothioneins and phytochelatins), metal transport
proteins (from the CDE, HMA, MATE, YSL and ZIP families, to name a few), plant growth hormones
(AUXs, CKs, and GAs), and root exudates (particularly LMWOA and siderophores). Since the early
2000s, numerous studies have identified plant and bacterial genes that, upon transfer to the target
plants, have generated advantageous effects for phytoremediation. For instance, Arabidopsis and
tobacco plants, enhanced with the NAS1 gene (which encodes the enzyme NA synthase), showed
greater tolerance towards metals like Cd, Cu, Fe, Mn, Ni, and Zn, and increased the uptake of Mn and
Ni [22,23]. The overexpression of metallothioneins encoding-genes (MT a1, MT1, and MT2) in poplar,
tobacco and Arabidopsis plants has increased their capacity to endure and accumulate Cd, Cu, and
Zn [24-26]. The expression of the metallothionein gene, MT2b (along with the up/down regulation of
genes involved in abscisic acid synthesis and catalysis, respectively), is known to increase the ability
of H. incana to tolerate and accumulate Pb [16]. The transfer of the genes APS and SMT, responsible
for the synthesis of ATP sulfurylase and selenocysteine methyltransferase, respectively, enhanced the
tolerance and accumulation of Se in B. juncea plants [27]. These and many other genes, which could
soon be enhanced via CRISPR-technology, have recently been reviewed by Fasani et al. [28] in a paper
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about transgenically modified plants reclaiming metal-polluted soils. In this comprehensive work,
the authors clearly indicate which genes were transferred and their specific source, as well as the
observed effects in the target plant. These effects, which include an increased tolerance to toxic metal
levels, enhanced metal uptake capacity, and even metal hyperaccumulation, could be critical to boost
phytoremediation. Nonetheless, it should be noted that promoting the accumulation of a given metal
through the expression of a specific gene could sometimes trigger hypersensitivity to that element in
the target plant, i.e., as metal uptake and the corresponding plant detoxification mechanisms may not
be governed by a unique gene, but rather a set of genes, this could lead to plant decay. Arazi et al. [29]
reported that the overexpression of a plasma membrane protein (NtCBP4) in transgenic tobacco plants
increased Pb accumulation, but also significantly enhanced the plant’s sensitivity to the metal. By the
same token, the expression of the MerC gene in Arabidopsis and tobacco increased Hg accumulation
2-fold in relation to wild type plants, but rendered the transgenic plants hypersensitive to Hg [30].

The above-mentioned approach could be extended to organic pollutants, ranging from
polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to explosives like
hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal Demolition Explosive; RDX) and 2,4,6-trinitro-toluene
(TNT). Numerous studies have reported genes involved in the detoxification and degradation of
organic xenobiotics in plants [31,32]. These data could be used as seed materials for future trials
involving the CRISPR-mediated enhancement of plant enzyme systems, responsible for the removal
and detoxification of organic contaminants. Transgenic Arabidopsis and rice plants, expressing the
genes responsible for the naphthalene dioxygenase system, developed the capacity to tolerate and
metabolize naphthalene and phenanthrene [33]. The expression of the gene, BphC.B, by transgenic
alfalfa plants, significantly increased their tolerance to PCBs and 2,4-dichlorophenol (2,4-DCP)
(individually and combined), as well as their capacity to dissipate and remove PCBs and 2,4-DCP,
respectively [34]. Rylott et al. [35] have demonstrated that the transfer of bacterial genes, XplA and
XplB, to Arabidopsis plants have allowed them to efficiently remove and detoxify RDX through the
cytochrome P450-reductase complex.

In addition, phytoremediation could also benefit from the application of the CRISPR technology in
designing more competent plant growth-promoting rhizobacteria (PGPR) [36]. A growing number of
genes with the potential to aid the PGPR-plant interaction, have been reported in the relevant literature.
The accounts include genes responsible for the synthesis of phytohormones [37], the nitrogenase
complex [38], and siderophores [39], to list but a few. Thus, equipping PGPR with these genes could
benefit the ability of plants to grow and handle pollutants by increasing nitrogen fixation, phosphate
solubilisation, iron sequestration, phytohormones production (direct mechanisms), and biocontrol
(indirect mechanisms) [40]. Altogether, plant and bacterial CRISPR-derived upgrades could take
phytoremediation to the next level, allowing the successful reclamation of polluted soils and waters in
tractable time frames. Some of the potential pluses of CRISPR-Cas9 for phytoremediation are depicted
in Figure 1.
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Figure 1. Potential advantages of CRISPR-Cas9 for phytoremediation. Gene editing of plants and plant
growth-promoting rhizobacteria (PGPR) with the CRISPR-Cas9 system could increase the synthesis of
a number of compounds that are critical to enhance the biomass yield, tolerance to contaminants, and
the complexation, transport, accumulation and detoxification of pollutants.

3. CRISPR-Mediated Strategies for Futuristic Phytoremediation

The outline of the several strategies that could be tested for their capacity to enhance
phytoremediation include the direct transfection of Cas9 along with gRNAs into the plant protoplasts,
plant regeneration from single-cells, T-DNA-delivered gRNA—-Cas9, modular cloning systems like
Golden-Braid or even the cloning free strategy. T-DNA-delivered gRNA-Cas9 (in Agrobacterium
mediated T-DNA transformation) has also been tested, but due to the transitory action of T-DNA
in callus induction, activity has been observed in somatic tissues via genome integration. To make
the most of this strategy, it might be imperative to amalgamate diverse gRNAs with Cas9 in a single
T-DNA, as an all-in-one plasmid approach would definitely improve editing [5,41]. Cloning systems,
like Golden-Braid, ease the association of pre-made DNA elements with multigene constructs [42,43].
Multiplexed editing regulatory assays employ a cloning-free strategy to ensure the incorporation of a
single gRNA in the cells, but effect throughput.

Nevertheless, the segment of CRISPR research that may hold greater potential for
phytoremediation is the use of gRNA-guided dCas9 to modulate gene expression. Transcription factors
can be fused with dCas9 to repress or enhance transcription by RNA polymerase and, subsequently,
upregulate or downregulate the expression of a gene or genes of interest [44]. These techniques,
known as CRISPRi (interference) and CRISPRa (activation), can modulate gene expression over a
1000-fold range [45] and have been effectively employed on plants [21,46,47]. Tang et al. [48] have
recently demonstrated the ability of CRISPR to reduce Cd accumulation in rice by knocking out
the metal transporter gene, OsNramp5. The latter is perhaps the most significant step of CRISPR
in phytoremediation to date and highlights the promise of its use in gene transcription regulation.
CRISPRi and CRISPRa could soon be used to control the expression of genes, responsible for the
production of metal transporters, growth factors, metal solubilizing exudates, or oxidative stress
metabolites, in plants and bacteria for phytoremediation purposes.

The CRISPR-Cas9 system has also been successfully employed in the past for genome editing
in several plant species of interest (food and energy crops) [18,49]. Owing to complexities in plant
genomes, e.g., high ploidy, traditional breeding trials have long turnaround times for each experiment.
Furthermore, the low frequency of homologous recombination makes site-specific mutagenesis
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difficult [18]. There may be a growing need for increased plant biomass, growth rate, disease and
climate resistance, metal tolerance, and metal accumulation, as gRNA-Cas9 facilitates the targeting of
multiple sequences and, hence, multiple traits simultaneously [5]. In fact, CRISPR-Cas9 systems have
already been used to modify the genome of species known for their applicability in phytoremediation
processes, poplar and maize [44,50]. Poplar is a recurrent choice in phytoremediation due to its
high-biomass production, fast growth, deep and wide root system, distinct adaptability to diverse
soils and climates, marked tolerance to organic and inorganic pollutants, and exceptional ability
in vegetative reproduction that facilitates its propagation [51]. Likewise, maize is a fast-growing,
high biomass yield species with a pronounced metal accumulation capability, and has presented
favorable results in phytoremediation and phytomining [52,53]. A recent review by Agarwal et al. [54]
summarizes the main breakthroughs in maize genome editing via the CRISPR/Cas9 system to date.
More importantly, both poplar and maize have been increasingly used to couple their phytoremediation
aptitude with bio-energy generation [55,56], denoting the suitability of CRISPR, not only to improve
the process efficiency, but also, on a wider scale, to promote sustainability.

4. Perspective

Although CRISPR has shown great promise for genome engineering, results depend on the choice
of target site, Cas9/Cpf1 action, design of gRNA, and delivery systems, as well as off-target effects that
may impede progress [3,57]. However, we believe that significant breakthroughs will be achieved with
time, as our understanding of the system increases. Overall, CRISPR-aided genome engineering
heralds great potential for exploiting plant genomes to enhance phytoremediation. Modifying
genes of interest, their expression, whole pathway and pollutant homeostasis networks that support
hyperaccumulation, tolerance, or degradation, can be revolutionary for cleaning the environment
via plants and, concurrently, recovering elements of economic interest and generate energy. We are
hopeful that this technique may deliver unparalleled leverage to harness desired traits in one fell
swoop, taking phytoremediation to its zenith.
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Abbreviations

AUXs auxins

Cas9 CRISPR associated protein 9

CDF cation diffusion facilitator

CKs cytokinins

Cpfl CRISPR from Prevotella and Francisella 1
CRISPR  clustered regularly interspaced short palindromic repeats
dCas9 catalytically inactive Cas9

GAs gibberellins

gRNA guide ribonucleic acid

HMA heavy metal transporting ATPases

LMWOA  low molecular weight organic acids
MATE multidrug and toxin efflux
MTs metallothioenins
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PCs

phytochelatins

PGPR plant growth-promoting rhizobacteria
TALENs transcription activator-like effector nucleases

YSL yellow strip1-like

ZFNs zinc finger nucleases

ZIP zinc-regulated transporter iron-regulated transporter proteins
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