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Purpose: Acute liver injury (ALI) is characterized by inflammation and oxidative stress (OS). Although mangiferin (MGF) has 
antioxidant and anti-inflammatory effects, its role in ALI remains unclear. Accordingly, we investigated the MGF molecular 
mechanism in carbon tetrachloride (CCl4)-induced ALI in vivo and in vitro.
Materials and Methods: The CCl4 was utilized to induce ALI in mice. In vivo, the therapeutic effects of MGF on CCl4-induced 
liver injury were evaluated through biochemical assays and histomorphological analysis. Additionally, immunohistochemistry, 
immunofluorescence, ELISA and Western blotting were further applied to explore the mechanism. In vitro, The CCK-8 assay and 
flow cytometry were employed to investigate the protective effects of MGF against CCl4-induced toxicity in HepG2 cells, while 
mitochondrial reactive oxygen species levels and Western blotting were used to explore the biological effects and molecular 
mechanisms.
Results: MGF treatment resulted in a reduction in serum levels of AST and ALT, diminished concentrations of TNF-α, IL-6, and IL- 
1β in liver tissue, and concurrently decreased cellular apoptosis. Furthermore, MGF pretreatment enhanced the activity of SOD and 
GSH while concurrently diminishing the MDA production. This study further demonstrated the upregulation of Nrf2, NQO1, and HO- 
1 protein expression levels, as well as the downregulation of p-p65 protein expression levels. In vitro investigations revealed that the 
mitigation of CCl4-induced inflammation and OS by MGF was mediated via the Nrf2- antioxidant response element (ARE) pathway, 
which was disrupted by ML385 in HepG2 cells.
Conclusion: CCl4 can induce liver injury, while treatment with MGF mitigates ALI by inhibiting oxidative stress, inflammation, and 
apoptosis. The protective mechanism of MGF is mediated by the Nrf2-ARE pathway activation.
Keywords: mangiferin, liver injury, oxidative stress, inflammation, Nrf2

Introduction
The liver is crucial for several physiological functions, including blood volume regulation, nutrient metabolism, lipid and 
cholesterol homeostasis, immune system support, and detoxification.1 Consequently, the liver is vulnerable to a multitude 
of threats. Liver injury encompasses various liver function impairments resulting from various factors, including toxic 
injury, alcoholism, viral infections, and metabolic disorders.2,3 Without prompt prevention and treatment, these condi
tions may progress to more severe forms of liver disease, including hepatitis, cirrhosis, and potentially liver cancer, 
significantly threatening overall health.4 Currently, the therapeutic options available for the treatment of acute liver injury 
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in clinical practice are limited, and these medications are associated with specific adverse effects.5 Consequently, the 
identification and development of novel agents for the prevention and treatment of ALI are of crucial importance.

Carbon tetrachloride (CCl4) is a potent hepatotoxin commonly utilized in the creation of experimental animal models 
to mimic liver injury observed in humans.6 This allows for assessing the potential hepatoprotective properties of different 
functional components. The hepatotoxic effects of CCl4 are primarily caused by the induction of OS and inflammation.7 

In hepatotoxicity, liver cytochrome P450 enzymes convert CCl4 into free radicals that damage proteins, lipids, and DNA, 
leading to lipid peroxidation and membrane disruption in liver cells, which is reflected by the elevation of alanine 
transaminase (ALT) and aspartate transaminase (AST) levels in the blood.8 Furthermore, free radicals stimulate 
neutrophils and inflammatory cells to secrete mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, 
and IL-6, which further disrupt physiological balance, resulting in metabolic dysregulation, necrosis, and liver damage.9 

Consequently, incorporating dietary components rich in antioxidants and anti-inflammatory properties may offer potential 
benefits in ameliorating liver damage.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential regulator of antioxidant defense mechanisms 
and significantly attenuates OS-induced damage.10 Under basal conditions, Nrf2 is sequestered in the cytoplasm by 
its inhibitor Keap1.11 However, the interaction between Nrf2 and Keap1 is disrupted during OS, allowing Nrf2 to 
translocate into the nucleus. Within the nucleus, Nrf2 acts as a master transcriptional activator, inducing the 
expression of a wide array of antioxidant genes, including those encoding NAD(P)H quinone dehydrogenase 1 
(NQO1) and heme oxygenase-1 (HO-1), which are essential for counteracting oxidative damage.12 The orche
strated upregulation of antioxidant enzymes mediated by Nrf2 has been extensively documented to significantly 
mitigate liver injury, highlighting its substantial therapeutic potential for treating liver diseases characterized by 
OS.13

Mangiferin (MGF; Figure 1A) is a naturally occurring compound prevalent in Chinese herbs, including mango 
(Mangifera indica), anemarrhena (Anemarrhena asphodeloides), agarwood (Aquilaria sinensis), guava (Psidium 
guajava), and many others.14–16 This compound is noted for its significant antioxidant and anti-inflammatory 
properties.17,18 Moreover, MGF may offer therapeutic benefits in treating acute organ injuries, particularly in the 
lung, kidney, and cardiovascular systems.19–21 Additionally, MGF exhibits several pharmacological effects, including 
immunomodulatory, anti-diabetic, anticancer, antibacterial, antiviral, and neuroprotective activities.22,23 Research has 
elucidated that oral MGF administration in adults does not have notable adverse effects, indicating a lack of toxicity 
in humans.24 Consequently, MGF has become a highly promising candidate for antioxidant therapy.25 Nevertheless, 
the precise protective mechanisms of MGF against CCl4-triggered ALI remain ambiguous. Hence, we aimed to assess 
the effect of MGF on CCl4-triggered ALI in mice to ascertain its efficacy in treating ALI and elucidate its 
mechanisms.

Material and Methods
Chemicals and Reagents
MGF (purity > 98%) was provided by Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China), while ALT and AST 
kits were obtained from the Nanjing Jiancheng Institute of Bioengineering (Nanjing, China). Malondialdehyde (MDA), 
reduced glutathione (GSH), and superoxide dismutase (SOD) kits were produced by Solarbio Science & Technology Co., 
Ltd. (Beijing, China). Moreover, hematoxylin and eosin (H&E) were acquired from Shenyang WanLei Technology Co., 
Ltd. (Shenyang, China). The enzyme-linked immunosorbent assay (ELISA) kits of IL-1β/6 and TNF-α were procured 
from Shanghai Yamei Bio-Pharmatech Co., Ltd. (Shanghai, China). Antibodies against Nrf2, NQO1, HO-1, Bcl-2, Bax, 
cleaved Caspase-3, p-p65, and p65 were acquired from ABclonal Technology (Wuhan, China). Antibodies against Lamin 
B, β-actin and GAPDH were procured from Abcam (Cambridge, UK), and anti-rabbit secondary antibodies were 
obtained from Proteintech Group Inc. (Wuhan, China). Cell counting kit-8 (CCK-8), mitochondrial superoxide detection, 
Annexin V-FITC cell apoptosis detection, and ATP detection kits were procured from Biyuntian Biotechnology Co., Ltd. 
(Shanghai, China).
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Figure 1 MGF protects against CCl4-triggered liver injury. (A) MGF chemical structure. (B-C) AST and ALT levels after the CCl4 challenge. (D) Liver tissue representative 
image. (E) Changes in liver index in the four groups. (F) H&E-stained liver section representative image (magnification: 100×), scale bar: 200 μm. (G) Quantifying liver tissue 
necrosis area. Data are expressed as mean ± SD (n = 6). **P < 0.01, ***P < 0.001 versus control group. #P < 0.05, ##P < 0.01 versus CCl4 group.
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CCl4-Induced Models and MGF Treatment
Forty adult male ICR mice (eight weeks old; 20–25 g; Jinan Pengyue Experimental Animal Breeding Co., Ltd., Jinan, 
China) were housed in a 12 h light/dark cycle at 50 ± 5% relative humidity and 21 ± 1 °C, with free access to food and 
water. All the animal experiments were approved by the Institutional Animal Care and Use Committee of Jining 
Medical University (JNMC-2023-DW-125). The animals used in this study were handled following the Guide for the 
Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publications No. 8023, 
revised 1978).

The mice were randomly assigned to four groups (n = 10/group): untreated control, CCl4 model, CCl4 + low-dose 
MGF (50 mg/kg), and CCl4 + high-dose MGF (100 mg/kg). After dissolving CCl4 in a 1:1 ratio in corn oil, it was 
intraperitoneally administered to induce ALI at 1.5 mL/kg. The MGF group mice received 50 or 100 mg/kg MGF once 
daily for a week.

After a week of conditioning, various saline-dissolved MGF doses were administered orally for seven days, with control 
mice receiving an equivalent volume of saline. After 1 h of the final drug administration, the mice were intraperitoneally 
injected with CCl4. Briefly, 24 h later, we collected blood samples from anesthetized mice hearts and centrifuged them at 
3000 rpm and 4 °C for 10 min to acquire blood serum stored at –80 °C for additional biochemical analysis. The mice were 
euthanized, and tissues from the right liver lobe were harvested for subsequent histopathological, immunohistochemical, and 
immunofluorescence staining analyses. The residual liver tissues were preserved at –80 °C for additional biochemical assays.

Cell Culture and Treatment
HepG2 cells were obtained from the China Cell Line Bank (Beijing, China) and maintained in DMEM supple
mented with 10% fetal bovine serum, 100 U/mL penicillin, and 100 U/mL streptomycin at 37 °C in a humidified 
atmosphere with 5% CO2. Cells were regularly passaged to maintain logarithmic growth and seeded into appro
priate culture plates or flasks. MGF was added at 20 μM for 24 h,26,27 and the cells were stimulated with 20 mM 
CCl4 for 6 h before cell viability was detected.28 To investigate the role of Nrf2, selected wells were co-treated 
with 10 μM ML385 (Nrf2 inhibitor) and MGF,29,30 followed by exposure to 20 mM CCl4 for 6 h. CCK-8 kits 
(Biyuntian Biotechnology, China) were used to assess cell viability, and absorbance was measured at 450 nm.

Biochemical Analysis for Liver Markers
ALT and AST levels were quantitatively measured in homogenized liver tissue samples and supernatants from HepG2 
cell culture to evaluate the extent of liver injury. Standardized colorimetric assays were employed, following the 
manufacturer’s instructions, to assess enzyme activities indicative of liver damage.

Liver Index Calculation and Histological Examination of Liver Tissues
At the end of the experimental period, each mouse was weighed, and their livers were removed and weighed. The liver 
index was then calculated using the formula: liver index = (liver weight / body weight) × 100%. Liver tissues were fixed 
in 4% paraformaldehyde for over 24 h, embedded in paraffin, sectioned (4–5 μm), and stained with H&E. Subsequently, 
we examined histopathological alterations in the liver using a light microscope and quantified the extent of necrosis using 
ImageJ (NIH, Bethesda, MD, USA).

TUNEL Assay
Following the dewaxing of liver paraffin-embedded sections, they were incubated with the TUNEL reaction mixture per 
the instructions, subsequently counterstaining the nuclei with DAPI. The sealed slides were examined using 
a fluorescence microscope, photographed, and recorded. Six randomly chosen fields were analyzed using the ImageJ 
software to determine the positive cell number/field.
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Liver OS Marker Analysis
Liver tissues and HepG2 cells were collected and homogenized, and the supernatant was collected by centrifugation at 
12,000 rpm for 15 min at 4 °C. Using commercially available kits, we quantified the MDA, GSH, and SOD levels per 
protocol.

TNF-α and IL-1β/6 Level Quantification
Liver tissue homogenates and HepG2 cell culture medium were collected and centrifuged at 12,000 rpm for 15 min at 4 
°C to isolate supernatants. TNF-α and IL-1β/6 level quantification in the supernatants were conducted through mouse- 
specific ELISA kits following the protocols.

Immunohistochemical and Immunofluorescence Staining
Liver tissues were embedded in paraffin, and 5-µm-thick sections were prepared. Following dewaxing and hydration, 
sections were incubated for 20 min in 0.3% hydrogen peroxide in methanol to suppress endogenous peroxidase activity. 
The sections were subjected to antigen retrieval by treatment with citrate buffer (pH 6.0) and three rounds of microwave 
heating for 5 min. After 30 min at room temperature (RT), the sections were blocked using 5% bovine serum albumin 
(BSA), treated with Bcl-2 and Bax primary antibodies, and incubated at 4 °C overnight. Tissue slices were rinsed three 
times with phosphate-buffered saline (PBS) and incubated for 1 h with the appropriate horseradish peroxidase (HRP)- 
conjugated secondary antibody at 37 °C. Following three additional PBS washes, the substrate 3,3’-diaminobenzidine 
was applied for visualization. Finally, samples were examined and imaged under a microscope.

For immunofluorescence analysis, liver-frozen tissue samples were embedded in OCT compounds to prepare 10- 
µm-thick frozen sections. These sections were fixed in 4% paraformaldehyde for 30 min, followed by being treated with 
3% BSA for 30 min at RT, and incubated overnight with primary antibodies at 4 °C. Subsequently, the slides were 
exposed to fluorochrome-conjugated secondary antibodies and examined using a fluorescence microscope, and ImageJ 
software was used to quantify fluorescence intensity.

Western Blotting Analysis
Total and nuclear protein extraction from liver tissues and HepG2 cells was conducted using the Total and Nuclear and 
Cytoplasmic Protein Extraction Kit (Wanlei Biotechnology, China) according to the manufacturer’s protocols, and the 
protein extracts were quantified using the BCA method. Equal protein concentrations were subjected to electrophoresis 
on a 10% SDS-PAGE polyacrylamide gel. Afterward, the samples were transferred to a PVDF membrane at low 
temperatures, rinsed with a blocking solution, blocked for 60 min, and incubated at 4 °C with a primary antibody 
overnight. Following three washes in TBST the next day, the membrane was incubated for 2 h with an HRP-conjugated 
secondary antibody at RT. Immunoblots were visualized using an enhanced chemiluminescent substrate (Biyuntian 
Biotechnology, China) and quantified using ImageJ software (NIH, USA).

Flow Cytometry Analysis
HepG2 cell apoptosis was assessed using annexin V/propidium iodide (PI) double staining and flow cytometry. 
Following treatment with MGF and CCl4, the cells were harvested, washed with PBS, and resuspended in a binding 
buffer. Subsequently, the cells were stained with annexin V-FITC and PI following the manufacturer’s instructions 
(Biyuntian Biotechnology, China). The samples were analyzed by flow cytometry (Beckman Coulter), and the resulting 
data were analyzed by Kaluza software (Beckman Coulter).

Determination of Mitochondrial Reactive Oxygen Species (ROS)
HepG2 cells were treated for 24 h to quantify mitochondrial ROS according to the specified protocol. After treatment, 
cells were incubated with MitoSOX Red and MitoTracker Green reagents at 37 °C for 15 min. Subsequently, the cells 
were washed with PBS to remove the excess probe. Fluorescence microscopy (Nikon, Tokyo, Japan) was used to analyze 
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the cells. The intensity of MitoSOX Red fluorescence was directly correlated with the level of mitochondrial ROS 
production.

Determination of ATP content
ATP levels in HepG2 cells were measured using a firefly luciferase-based ATP Assay Kit (Biyuntian Biotechnology, 
China) following the manufacturer’s protocol. The cells were rinsed with PBS, lysed in ATP assay buffer, and 
ultrasonicated. The supernatant was collected by centrifugation, and 100 μL of it was mixed with 100 μL of ATP 
detection solution. The luminescence was measured using a microplate reader (Bio-Rad Laboratories, Hercules, CA). 
ATP concentrations were determined using an ATP standard curve, and protein levels were measured using a BCA 
protein assay kit. Cellular ATP levels were expressed as nmol/mg of protein.

Statistical Analysis
GraphPad Prism software (version 9; GraphPad Software, San Diego, USA) was used for statistical analysis. Data are 
reported as the mean ± standard deviation (SD), and their normality was assessed using the Shapiro–Wilk test. Student’s 
t-test was employed for normally distributed data to compare continuous variables between the two groups, while the 
Mann–Whitney U-test was used for non-normally distributed data. For multiple comparisons involving more than two 
groups, we conducted a one-way analysis of variance followed by the Bonferroni post-hoc test for normally distributed 
data and the Kruskal–Wallis test for non-normally distributed data, with P < 0.05 considering statistical significance.

Results
Impact of MGF on CCl4-Induced ALI in Mice
To assess the therapeutic potential of MGF in mitigating CCl4-induced ALI, we evaluated its effects on key biochemical 
markers and histological alterations in mice models. Serum AST and ALT levels increased in the CCl4-challenged group 
compared to those in the control group (Figure 1B-C). Compared to the model group, MGF treatment effectively lowered 
AST and ALT levels in a dose-dependent manner. The liver index was significantly increased in the model group, which 
was partially reversed by MGF (Figure 1D-E). To further evaluate the protective effect of MGF on CCl4-induced ALI, 
we examined liver histopathology. The control group exhibited a fully intact hepatocyte structure with a clear, apparent 
central vein, whereas the hepatic sinusoids were organized in a radial pattern along the central veins (Figure 1F-G).

Meanwhile, the model group depicted destructed hepatic lobule structure, hyperemia, inflammatory infiltration, and 
necrosis among the liver lobules. MGF could regenerate liver tissue and effectively decrease the necrotic region 
compared to the model group. Additionally, it significantly alleviated inflammatory infiltration and liver damage. 
Accordingly, MGF exerted a protective effect against CCl4-induced ALI in mice.

Effect of MGF on Hepatocyte Apoptosis in CCl4-Triggered ALI Mice
TUNEL and IHC assays were conducted to evaluate the effects of MGF on hepatocyte apoptosis in CCl4-induced ALI 
mice. Figure 2A-B represent a significantly elevated apoptotic cell percentage (positive for TUNEL staining) in the 
model group in contrast to the control group, which was dose-dependently diminished by MGF. The IHC assay 
demonstrated elevated levels of Bax and cleaved Caspase-3, reduced levels of Bcl-2, and a lower Bcl-2/Bax ratio in 
the model group compared to the control group. These alterations were reversed in the MGF treatment groups relative to 
the model group (Figure 2C–G). These results suggest that MGF can mitigate hepatocyte apoptosis, exerting a protective 
effect.

MGF Ameliorated OS and Inflammation in the Mice’s Liver Tissues
The hepatic OS biomarkers SOD and GSH were significantly lower, whereas MDA levels were significantly higher in the 
model group liver tissue than in the control group. MGF treatment significantly reversed these changes compared with 
the model group (Figure 3A–C). ELISA findings indicated that TNF-α and IL-6/1β levels were significantly higher in the 
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Figure 2 MGF effect on CCl4-triggered cell apoptosis in liver tissues. (A) Representative TUNEL-stained sections demonstrating apoptosis in mice liver tissue 
(magnification: 200×). (B) Statistical analysis of TUNEL-positive cells was performed. (C) Determination of Bcl-2, Bax, and cleaved Caspase-3 expression in the liver by 
immunohistochemistry (original magnification, 200×). (D–G) Bcl-2, Bax, Bcl-2/Bax ratio, and cleaved Caspase-3 densitometric analysis. Data are expressed as mean ± SD (n 
= 6). **P < 0.01, ***P < 0.001 versus control group. #P < 0.05, ##P < 0.01 versus CCl4 group.
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Figure 3 MGF ameliorates CCl4 exposure-caused OS and inflammatory responses in the mice liver tissues. (A) MDA levels (B) SOD and (C) GSH activities in the mice liver 
tissues. (D) TNF-α, (E) IL-1β, and (F) IL-6 levels in mice liver tissues. (G) Indicating Nrf2, NQO1, HO-1, p-p65 and p65 protein expression in different groups through 
Western blotting. (H–K) Quantification of the Western blotting data for Nrf2, NQO1, HO-1, and p-p65/p65. Data are expressed as mean ± SD (n = 6). **P < 0.01, ***P < 
0.001 versus control group. #P < 0.05, ##P < 0.01, ###P < 0.001 versus CCl4 group.
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model group, while MGF treatment inhibited the expression of proinflammatory factors (Figure 3D–F). These findings 
suggest that the hepatoprotective effect of MGF is associated with a reduction in OS and inflammatory responses.

MGF Effect on Nrf2-ARE Signaling Pathway in Mice
The Nrf2-antioxidant response element (ARE) pathway is crucial for cellular defense against OS, as it regulates the increase 
in antioxidant enzymes and protective proteins to combat ROS. Our experimental data, illustrated in Figure 3G–K and 
Figure 4A–F, revealed through Western blotting and immunofluorescence assays that liver tissues from the model group 
exhibited a marked reduction in the expression of Nrf2, NQO1, and HO-1, concomitant with a substantial elevation in p-p65 
expression. Conversely, The administration of MGF reversed these changes, increasing Nrf2, NQO1, and HO-1 levels 
while decreasing p-p65 expression. These findings indicate that MGF confers a protective effect by activating the Nrf2- 
ARE signaling pathway.

MGF Attenuated CCl4-Induced Cytotoxicity and Apoptosis in HepG2 Cells
To elucidate the impact of MGF on CCl4-induced cell viability, we conducted a CCK-8 assay. These findings indicated 
that CCl4 (20 mM) induced substantial cytotoxicity, which was mitigated by pretreatment with MGF (20 μM) 
(Figure 5A). However, cell viability was significantly decreased following incubation with ML385. As depicted in 
Figures 5B–C, ALT and AST levels were reduced after MGF treatment, whereas these levels increased following ML385 
treatment. Correspondingly, the cell apoptosis rate was markedly reduced by MGF treatment but was significantly 
elevated after incubation with ML385 (Figures 5D–J). These findings demonstrate that MGF mediates its hepatoprotec
tive effects through a mechanism dependent on Nrf2.

MGF ameliorated inflammation and OS in HepG2 cells via the Nrf2-ARE pathway
As illustrated in Figures 6A–C, TNF-α and IL-6/1β levels were elevated following CCl4 treatment. Conversely, these 
cytokine levels were markedly reduced after MGF treatment. Consistent with our expectations, Nrf2 inhibition increased 
TNF-α and IL-6/1β expression. Furthermore, MGF pretreatment mitigated CCl4-induced upregulation of MDA and 
reduction in SOD and GSH levels. Conversely, inhibition of Nrf2 signaling was associated with decreased SOD and GSH 
levels, along with an increase in MDA levels, as depicted in Figures 6D–F. Our findings indicate that MGF pretreatment 
mitigates ROS generation induced by CCl4 and enhances ATP levels. Conversely, the disruption of Nrf2 signaling results 
in increased ROS generation and decreased ATP levels (Figures 6G–I). Further studies found that MGF promoted the 
nuclear translocation of Nrf2, increased the expression levels of NQO1 and HO-1, and inhibited the expression of p-p65. 
Conversely, administration of ML385 resulted in a reduction in Nrf2 nuclear translocation and the expression of NQO1 
and HO-1, while concurrently elevating the expression of p-p65 (Figures 7A–F). These results substantiate our hypoth
esis that MGF activates Nrf2, attenuating oxidative damage and inflammation.

Discussion
Liver diseases are a major global health issue and cause high annual mortality.31 Current liver-protection drugs often 
have limited effectiveness and many side effects, underscoring the urgent need for new, safer hepatoprotective agents.32 

Traditional Chinese medicine has a long history of treating liver disorders, and MGF, a compound from various herbs, 
demonstrates great promise.33 Our research suggests that MGF effectively improves liver injury by restoring liver 
structure and function and reducing inflammation, OS, and apoptosis, highlighting its potential as an innovative 
therapeutic agent.

The organ index, a vital biological marker for evaluating the functional status of animals, provides concrete evidence 
of histopathological changes. Previous studies have reported increased liver indices in mice subjected to acute hepatic 
injury, corresponding to heightened pathological damage.34 Notably, our research demonstrated that MGF significantly 
reduced the liver index of CCl4-induced mice, indicating its therapeutic potential. To corroborate these findings on 
hepatic tissue morphology, H&E staining of liver sections was performed, which revealed that MGF mitigated hepatocyte 
necrosis. Blood biochemistry provides a comprehensive assessment of hepatic function in the context of liver diseases.35 

Elevated serum levels of ALT and AST, well-established biomarkers of liver dysfunction, were observed in our study, 
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Figure 4 MGF impact on the Nrf2 pathway in CCl4-treated mice. Immunofluorescence of (A) Nrf2, (B) NQO1, and (C) HO-1 in liver tissues. (D–F) Mean integrated 
optical density of immunofluorescence staining for Nrf2, NQO1, and HO-1. Data are expressed as mean ± SD (n = 6). **P < 0.01, ***P < 0.001 versus control group. #P < 
0.05, ##P < 0.01 versus CCl4 group.
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Figure 5 Effect of MGF on CCl4-induced cytotoxicity and apoptosis in HepG2 cells. (A) Cell viability was evaluated using the CCK-8 assay. (B) ALT and (C) AST levels in the 
supernatants of HepG2 cells. (D) Flow plots of apoptosis in the different groups. (E) Quantification of apoptotic cells. (F) Indicating Bcl-2, Bax, and cleaved Caspase-3 
protein expression in different groups through Western blotting. (G–J) Quantitative results for Bcl-2, Bax, Bcl-2/Bax ratio, and cleaved Caspase-3. Data are expressed as 
mean ± SD (n = 6). ***P < 0.001 versus control group. #P < 0.05, ##P < 0.01, ###P < 0.001 versus CCl4 group. &P < 0.05, &&P < 0.01 versus CCl4+MGF group.
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Figure 6 MGF relieves CCl4-induced inflammatory response and OS in HepG2 cells. (A) TNF-α, (B) IL-6, and (C) IL-1β levels in different groups. (D) MDA level, (E) SOD, 
and (F) GSH activities in each group. (G-H) Mitochondrial superoxide was detected through immunofluorescence using MitoSox Red and MitoTracker Green staining. (I) 
ATP content in different groups. Data are expressed as mean ± SD (n = 6). ***P < 0.001 versus the control group. #P < 0.05, ##P < 0.01 versus CCl4 group. &P < 0.05, &&P < 
0.01 versus CCl4+MGF group.
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corroborating previous findings.36 Pretreatment of mice with MGF led to a dose-dependent decrease in ALT and AST 
levels, thereby substantiating its protective effect against CCl4-induced ALI.

OS is the primary cause of CCl4-induced liver injury.7,37 SOD and GSH are key antioxidants that neutralize ROS and 
protect cells from damage.38 MDA, a lipid peroxidation by-product, is an indirect marker of cellular damage.39 

Accordingly, GSH, SOD, and MDA are crucial biomarkers for assessing OS in the liver. It has been demonstrated that 
CCl4 exposure results in a reduction in SOD and GSH levels in hepatic tissue, concomitant with an elevation in MDA 
levels.30 Furthermore, the administration of antioxidants has been observed to ameliorate liver injury.40,41 Chowdhury 
A et al42 found that MGF could improve the activity of GSH and SOD, and reduce the hepatotoxicity caused by 
acetaminophen. Our extensive in vivo and in vitro studies consistently demonstrated that treatment with MGF resulted in 

Figure 7 MGF impact on Nrf2 pathway in CCl4-treated HepG2 cells. (A) Indicating Nrf2, NQO1, and HO-1 protein expression in different groups through Western 
blotting. (B–D) Quantifying Western blotting data for Nrf2, NQO1, and HO-1. (E) Indicating p-p65 and p65 protein expression in different groups through Western 
blotting. (F) Quantifying Western blotting data for p-p-65/p65. Data are expressed as mean ± SD (n = 6). **P < 0.01, ***P < 0.001 versus control group. #P < 0.05, ###P < 
0.001 versus CCl4 group. &P < 0.05 versus CCl4+MGF group.
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increased levels of GSH and SOD, along with a reduction in MDA content in liver tissues and HepG2 cells. These 
findings suggest that MGF may mitigate liver injury by attenuating oxidative stress.

The complex interaction between inflammation and OS is a critical determinant of CCl4-induced liver injury.43 

Neutrophils, which serve as key effectors, are robustly activated by CCL4, releasing inflammatory mediators.44 Notably, 
proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, are instrumental in the pathological progression of ALI, 
thereby intensifying tissue damage.45 Excessive free radicals produced during this process exacerbate the inflammatory 
response by inducing the release of cytokines and activating hepatic macrophages, thereby perpetuating the deleterious 
cycle of inflammation and OS.46 Meng X et al47 reported that CCl4 can induce the release of TNF-α and IL-1β/6 via the 
TLR4/NF-κB signaling pathway, thereby initiating hepatic injury. Notably, our findings demonstrated that MGF treat
ment significantly attenuated the levels of these proinflammatory cytokines in CCl4-exposed mice and decreased the 
expression of p-p65, indicating its potential to interrupt the inflammatory cascade and ameliorate liver injury.

The central role of mitochondria as the primary target of CCl4-mediated apoptosis is well documented.48 This 
apoptotic pathway is intricately regulated by anti-apoptotic and pro-apoptotic members of the Bcl-2 family.49 

Specifically, Bcl-2 functions as an anti-apoptotic protein, inhibiting the release of apoptotic effectors such as 
cytochrome c (cyt-c). In contrast, Bax, a pro-apoptotic protein, antagonizes Bcl-2 to promote the release of cyt-c 
into the cytoplasm, activating caspase-3 and -9 and initiating apoptosis.50 Consistent with prior research indicating that 
CCl4 induces apoptosis in various tissues and cell types through the mitochondrial pathway,51 our results demonstrated 
a marked upregulation of Bax and cleaved Caspase-3 and downregulation of Bcl-2 in mouse livers. These findings 
further substantiate the role of the mitochondrial apoptotic cascade in mediating CCl4-induced hepatocellular apopto
sis. Remarkably, MGF treatment enhances Bcl-2 expression and reduces Bax and cleaved Caspase-3 levels in mouse 
liver, indicating its regulatory effect on this pathway. Furthermore, given that mitochondria are the primary targets of 
ROS attack, with excessive ROS production contributing to OS and mitochondrial dysfunction, our observations 
indicate that MGF mitigates CCl4-induced mitochondrial ROS generation and increases ATP levels. Consequently, we 
hypothesize that MGF directly ameliorates CCl4-induced excessive hepatocellular apoptosis in mice by alleviating OS.

The Nrf2-ARE pathway constitutes a pivotal endogenous anti-OS mechanism identified to date, acting as a primary 
means by which cellular systems respond to OS.52 Under normal conditions, Nrf2 is sequestered in the cytoplasm by 
interacting with Keap1, a critical regulatory protein. However, in response to OS, Nrf2 translocates to the nucleus, 
forming heterodimers with Maf proteins and subsequently binding to AREs within the promoters of target genes.53 This 
coordinated process initiates the transcription of various antioxidant enzymes, including HO-1, NQO1, and SOD. 
Previous studies have underscored the vulnerability of the Nrf2 antioxidant defense system to disruption by chemical 
agents, such as CCl4, which intensifies hepatic OS.54 Numerous natural derivatives have exhibited hepatoprotective 
effects through the activation of the Nrf2 pathway.55–57 Consistent with these findings, MGF attenuates the activation of 
the NLRP-3 inflammasome induced by LPS and d-galactosamine while simultaneously activating the Nrf2 pathway.58 In 
this study, the proteins Nrf2, NQO1, and HO-1 were significantly downregulated in mouse hepatocytes following CCl4- 
induced injury, a finding that aligns with previous research.48 Conversely, administration of MGF led to a marked 
upregulation of these proteins, suggesting that MGF may mitigate CCl4-induced ALI by activating the Nrf2-ARE 
pathway. This hypothesis is further substantiated by in vitro studies, which illustrate that MGF mitigates CCl4-induced 
hepatocyte damage through Nrf2 pathway activation. Conversely, the administration of ML385, an inhibitor of Nrf2 
activation, nullifies this protective effect. Due to practical constraints, we could not determine the impact of MGF on 
liver injury in Nrf2–/– mice within the scope of this research. Additionally, our findings do not definitively exclude the 
possibility that MGF may mitigate ALI through mechanisms independent of the Nrf2 signaling pathway.

Conclusions
Our findings indicate that CCl4 can induce liver injury, whereas treatment with MGF mitigates ALI by inhibiting OS, 
inflammation, and apoptosis (Figure 8). The protective mechanism of MGF is mediated by the Nrf2-ARE pathway 
activation.
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