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Decoding human handmovement from electroencephalograms (EEG) signals is essential

for developing an active human augmentation system. Although existing studies have

contributed much to decoding single-hand movement direction from EEG signals,

decoding primary hand movement direction under the opposite hand movement

condition remains open. In this paper, we investigated the neural signatures of the

primary hand movement direction from EEG signals under the opposite hand movement

and developed a novel decoding method based on non-linear dynamics parameters of

movement-related cortical potentials (MRCPs). Experimental results showed significant

differences in MRCPs between hand movement directions under an opposite hand

movement. Furthermore, the proposed method performed well with an average binary

decoding accuracy of 89.48 ± 5.92% under the condition of the opposite hand

movement. This study may lay a foundation for the future development of EEG-based

human augmentation systems for upper limbs impaired patients and healthy people and

open a new avenue to decode other hand movement parameters (e.g., velocity and

position) from EEG signals.

Keywords: EEG, hand movement decoding, human augmentation, human factors, human-machine interaction

INTRODUCTION

Human augmentation refers to using assistive devices and technologies to help people overstep
human motor, perception, and cognition limitations. The applications of human augmentation
have shown diversity, including but not limited to prostheses (Kvansakul et al., 2020), exoskeleton
(Chen et al., 2017; Yandell et al., 2019), and augmented reality (Kansaku et al., 2010; Chen et al.,
2021). For human augmentation systems, providing active assistance instead of passive assistance
according to human intention is of high value. Fusing human intention into augmentation
technology makes it possible to establish a more intelligent, flexible, and user-friendly system.

Brain-computer interfaces (BCIs) have been the essential tool to detect human intention
with the development of neuroscience. BCIs could translate human intention from neural
signals directly. Among various brain signal recording methods, electroencephalogram
(EEG) is more practical for human augmentation because it is non-invasive, cheap, and
convenient to use. Over the past decades, numerous studies have been focused on using
EEG signals to decode human intention and develop a body augmentation system, e.g.,
P300 speller (Farwell and Donchin, 1988), steady-state visually evoked potential-based
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BCI systems (Gao et al., 2021), e.g., exoskeleton control (Kwak
et al., 2015) and motor rehabilitation (Zhao et al., 2016), motor
imagery (MI)-based mobile wheelchair (He et al., 2016; Zhang
et al., 2016), movement-related cortical potential (MRCP)-based
robotic arm control (Schwarz et al., 2020a,b). Compared with
evoked potentials-based BCIs (Yin et al., 2015a,b) and MI-based
BCIs (Pei et al., 2022), MRCP-based BCIs do not rely on external
evoked stimuli (such as P300) and repetitive imagination (such
as MI). It can decode human intention from natural movement
execution and provide a more realistic application scene for
human augmentation.

MRCP-based hand (or arm) movement intention decoding
is an important branch of MRCP-based movement intention
decoding. Existing studies on upper limb movement intention
decoding include movement parameters decoding (e.g., direction
(Robinson et al., 2013; Chouhan et al., 2018), position (Hammon
et al., 2008; Sosnik and Zheng, 2021), velocity (Robinson et al.,
2013; Ubeda et al., 2017; Korik et al., 2018), acceleration
(Bradberry et al., 2009), handgrip force (Haddix et al., 2021)
and movement type recognition (Ofner et al., 2019). Reviewing
existing studies about upper limb movement decoding, we find
that most existing studies are concentrated on single hand (or
arm) movement decoding. However, for the practical application
of human augmentation, both-hand movement is common.
Considering this issue, in 2020, Schwarz et al. (2020) first used
the low-frequency EEG features to discriminate unimanual and
bimanual daily reach-and-grasp movement types and achieved
a multi-class classification accuracy of 38.6% for a combination
of one rest and six movement types. Furthermore, to put the
single-hand and both-hand movement intention decoding from
EEG signals into an active human augmentation system, in
2020, we investigated the neural signatures and classification of
single-hand and both-handmovement directions, and the 6-class
classification achieved a peak accuracy of 70.29% (Wang et al.,
2021).

It should be noted that both studies by Schwarz et al. (2020)
and Wang et al. (2021) are focused on the discrimination
of single-hand and both-hand movement. However, it is not
enough to discriminate single-hand movement from both-hand
movement. In many both-hand movement cases, we value the
primary hand movement (e.g., the movement direction, velocity,
or trajectory of single right hand) instead of whether we move
one hand or both hands. Thus, it is necessary to decode the
primary hand movement under the opposite hand movement
condition. To solve the problem, in this study, we stride the first
step by investigating the decoding of the movement direction of
the primary hand (i.e., right hand in this paper) from EEG signals
recorded during the opposite hand (i.e., left hand in this paper)
movement. Notably, in this paper, we define the movement
condition with the opposite hand movement as “W-OHM.”

The contribution of this paper is that it is the first work to
investigate the neural signatures and decoding of primary hand
movement direction from EEG signals under the opposite hand
movement and propose a novel decoding method based on non-
linear dynamics parameters of MRCPs. This work not only can
lay a foundation for the future development of BCI-based human
augmentation systems for upper limbs impaired patients and

healthy people, but it also may open a new avenue to decode
other hand movement parameters (e.g., velocity and position)
from EEG signals.

The remainder of the paper is structured as follows:
section Methods introduces the methods. Section Results shows
the results. Section Discussion and Conclusion presents the
discussion, limitations of our work, and future work.

METHODS

Experimental Paradigm and Procedure
We recruited and measured 14 participants (one female), aged
between 22 and 27 years. They reported having normal vision
and no brain diseases. According to the Hand-Dominance-Test,
they were all confirmed to be right-handed (Bryden, 1977).
The study adhered to the principles of the 2013 Declaration
of Helsinki. The research was approved by the local research
ethics committee. All data were recorded at the IHMS Lab
of the School of Mechanical Engineering, Beijing Institute of
Technology, China. Subjects were seated on a chair in a room free
of noise and electromagnetic interference. In front of them, there
was a monitor for experimental instructions. Figure 1 shows the
experimental protocol.

Considering that all subjects were right-handed, we regarded
the right-hand movement as the primary movement to be
decoded and the left-hand movement as the opposite hand
movement. For the primary movement task, all subjects were
required to move their right hands in right or left directions.
We preliminarily set the opposite hand movement in the vertical
directions rather than horizontal directions. All subjects were
asked to move their left hands in forward and backward
directions. The movement of both hands was restricted in
the horizontal plane parallel to the desktop. We defined the
movement of right-hand in the right or left direction as “R” or
“L” and the movement of left-hand in the forward or backward
direction as “F” or “B.” As shown in Figure 1A, on the monitor,
two solid blocks colored as red and green correspond to the
movement cue of left and right hands, respectively. When one
trial was initiated, the red block would randomly appear in the
F or B directions, and the green block would randomly appear
in the L or R directions. That means, after 0 s (movement-cue
onset), subjects were indicated for the movement directions and
prepared for the movement. At the fourth second, both blocks
changed from the solid into hollow, which were regarded as go-
cue. Immediately, subjects were required to move both hands
from the initial center to target positions appointed by green and
red blocks. The movement tasks must be completed before the
7th second. After the 7th second, both hands were required to
move back to the initial center position. At the 11th second, one
trial ended.

During the experiment, the gaze of subjects was asked to
fix on the screen to avoid eye movement. The experiment was
composed of four sessions, including the right-hand movement
in the R or L direction with the left-hand movement in the F
or B direction. One session consisted of five runs, and each run
consisted of 16 trials. In total, we recorded 80 trials per session.
It meant that, for each combination of directions, there were 80
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FIGURE 1 | Experimental protocol. (A) Timeline of experiment setup. Note that time 4 s refers to the Go-Cue, and time 4.5 s is the actual movement onset. (B)

Illustration of both hand movement directions. Note that “F” and “B” refer to the movement of left-hand in the forward or backward direction, respectively, and “R” and

“L” refer to the movement of right-hand in the right and left direction, respectively.

FIGURE 2 | Used electrodes position diagram.

trials uniformly. Between each run, the subjects were asked to
perform a break of 2 min.

Experimental Paradigm and Procedure
EEG signals were recorded by using a 64-electrode portable
wireless EEG amplifier (NeuSen.W64, Neuracle, China), located
at the following positions (according to the international 10–
20 system): Cz, C1, C2, C3, C4, Fz, F3, F4, FCz, FC3, FC4,
CP3, CP4, Oz, O1, O1, T7, T8, POz, Pz, P3, P4, P7, P8 (Wang
et al., 2021), as shown in Figure 2. The selected electrodes

involved the frontal, central, parietal, and occipital regions,
which were related to the cognition, motion, perception function.
The reference electrode was placed at CPz, and the ground
electrode was placed at AFz. Electrooculogram (EOG) signals
were recorded from two electrodes located below the outer
canthi of the eyes. Two position-detecting sensors (FASTRACK)
were positioned at tiger positions of both hands to track
hands movement in real-time. The sampling rate of EEG
signals was 1,000Hz, and the sampling rate of position sensors
was 60 Hz.
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TABLE 1 | EEG signals decoding algorithm steps.

EEG signals decoding algorithm

Step 1: Down-sample EEG signals to 100Hz and

re-reference by binaural electrodes;

Step 2: Baseline correction and common average

reference for EEG signals;

Step 3: Eye movement artifacts rejection by

independent component analysis;

Step 4: Band-pass filter in [0.01, 4] Hz by using fast

Fourier transform filter;

Step 5: Apply z-score for EEG signals normalization;

Step 6: Extract features from EEG signals by using

echo state network (ESN);

Step 7: Reshape ESN features to one-dimension and

use PCA for feature dimension reduction;

Step 8: Apply LDA for primary hand movement

directions decoding.

EEG, EOG, and position data were processed in MATLAB
R2019b. The algorithm in steps for EEG signals-based primary
hand movement direction decoding is listed in Table 1. For
the signals preprocessing, EEG and EOG data were first down-
sampled to 100Hz, and each channel signal of EEG was re-
referenced by subtracting the average of binaural electrodes.
Baseline correction was used to eliminate the baseline drift for
both EEG and EOG signals and common average reference was
applied to remove common background noise for EEG signals.
Eye movement artifacts were removed by using independent
component analysis (ICA). The specific steps are as follows:
(1) decomposing EEG signals into dependent component by
applying independent component transform; (2) computing the
correlation coefficients between the independent component and
EOG signals; (3) rejecting the component whose correlation
coefficient exceeds 0.4; (4) applying the inverse transformation
on the remained component into EEG signals.

Movement Related Cortical Potential
(MRCP)
To correlate the neural activity during movement preparation
and execution, MRCPs were extracted from EEG signals in the
low-frequency band. After signal preprocessing, a zero-phase,
4th order Butterworth filter was used to filter EEG signals in
the low-frequency band [0.01, 4] Hz. The weighted average filter
was applied for electrode Cz to remove the spatial common
background noise (Liu et al., 2018). To observe the difference
of MRCPs for right-hand movement direction decoding, the
MRCPs were obtained under condition of W-OHM for right-
hand movement in L and R directions. The MRCPs under
condition of W-OHM were average across all subjects.

Feature Extraction
After signal preprocessing, a fast Fourier transform (FFT) filter
was used to filter EEG signals in the frequency band [0.01, 4] Hz
(Wang et al., 2010). For the primary hand movement decoding,
an echo state network (ESN) was used to extract non-linear

dynamics of EEG signals as the classification feature (in short
ESN feature) (Sun et al., 2019).

As shown in Figure 3A, ESN is composed of the input layer,
reservoir (hidden layer), and readout layer. The connecting
matrix from the input to reservoir layers is defined as Win.
The internal connection matrix of the reservoir is sparse, and
is defined asWNN . Both Win andWNN are randomly initialized
and kept invariant during network updating. The connecting
matrix from the reservoir to readout layer is defined asWout , and
it is updated with the input and output data. WithWin, the ESN
maps the input signals from the low-dimensional space into the
high-dimensional non-linear space:

x (n) = f • ( Winu (n) + Wnnx (n− 1)) , (1)

f • was set to be tanh • to realize the non-linearity
of the network. In the high-dimensional non-linear space,
the ESN model trains the Wout by linear regression (e.g.
Ridge Regression).

Wout = YtX
T(XXT

+ λrI)
−1

, (2)

where λr is the readout regularization coefficient.
As the core part of the ESN, the reservoir layer has the

following parameters: (1) sparsely connecting with the sparse
degree c, (2) reservoir size (i.e., the number of neurons) NN,
(3) spectral radius ρ (usually ρ < 1, to ensure that the effects
of input and reservoir states on network vanishing after enough
time), (4) the output of the reservoir layer at the current
time x(n), and (5) internal connection matrix WNN (randomly
initialized and kept invariant during network updating). With
the enormous and sparse reservoir layer, the ESN could capture
the dynamics of a non-linear system. As mentioned in Waldert
et al. (2008), EEG signals are non-steady and non-linear. From
this perspective, we made a hypothesis that using the proposed
method to establish the movement decoding model could obtain
well-decoding performance.

In this paper, the multi-channel time-domain signals at the
current time point were used as input signals, and the multi-
channel time-domain signals at the next time point were used as
output signals (as shown in Figure 3B). The output connection
matrixWout , which could reflect the non-linear dynamics of EEG
signals over time, was chosen as the ESN features for decoding. In
addition to the parameters c and NN that have a major influence
on the ESN performance and were determined in the subsequent
training (by using mesh grid search), we empirically set the
residual parameters: (1) ρ = 0.98; (2) x(0) was zero-matrix; (3)
λr = 1 × 10−4. Besides, before encoding EEG signals to ESN
features, z-score was applied for normalization, as follows

Z =
X − µ

σ
, (3)

where X is the raw EEG signals before normalization, µ

and σ are the mean and standard deviation of EEG signals,
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FIGURE 3 | ESN schematic diagram. (A) Network structure diagram. (B) Illustration of the input and output data selection based on the time series of EEG signals.

u(·) refers to the input data and y(·) refers to the output data.

respectively. The original feature dimensions could be calculated
by the following equation,

NumF = C • (NN + C + 1) , (4)

where NumF is the original feature dimension, NN is the
reservoir size, C is the channel number. To suppress feature
redundancy and accelerate computation, principal component
analysis (PCA) was applied to reduce feature dimension.
Choosing the principal component with the percentage above
99%, the dimension of ESN feature was reduced to 40.

Classification
The fixed window [0, 1] s of the Go-Cue (i.e., [−0.5 0.5]
s of the actual movement onset, calibrated by FASTRACK)
was used for the primary hand movement direction decoding.
Linear discriminant analysis (LDA) classifier was performed to
decode the primary hand movement direction. The classification
accuracy was used to measure the decoding performance, and
the decoding accuracy was calculated by dividing the number of
correctly classified test samples by the total number of the test
samples. Mean classification accuracy was calculated by a 5 ×

5 cross-validation. For the primary hand movement direction
decoding under W-OHM, the classification accuracy was first
calculated separately for the opposite hand movement in F or B
direction and then averaged.

Statistics
Power tables from Cohen were used to evaluate the number of
participants needed to obtain a significant result (Puce et al.,
2003). When 14 participants were involved in this experiment,
partial eta squared (R2) was calculated as 0.417 by using ANOVA
in IBM SPSS Statistics 25. Effect size for F-ratios was calculated
as follows:

f 2 =
R2

1− R2
(5)

When f 2 is 0.7153, the equivalent effect size d is 1.6. At the given
two-tailed α = 0.05 and the recommended power level of 80%,

the number of participants needed for significant results was 9,
which justified the sufficiency of subjects in our experiment.

RESULTS

Neural Signatures
(1) Movement related cortical potential: Figure 4 shows the
MRCPs at electrode Cz under the condition of W-OHM.
Considering that the primary purpose of this study was to decode
right-hand movement directions, the MRCPs associated with the
right-hand movement in L and R directions were presented.
The MRCPs were calculated from −1.5 to 1.5 s of the Go-
Cue and averaged across all subjects. As shown in Figure 4,
under all movement conditions, the amplitudes of MRCPs kept
steady around 0 µV from −2 to 0 s, which was the movement
preparation period. A positive peak was observed at around
300ms, and after that a substantial negative shift arose and
peaked at about 500ms. The peak time of the negative shift
was in agreement with the actual movement onset calibrated by
FASTRACK (as labeled in Figure 1). For the movement under
condition of W-OHM, the average negative shift maximums of
the MRCPs for right-hand movements in R and L directions
were −9.4153 and −10.4324 µV, respectively. By comparing
the negative shift amplitudes of MRCPs between two primary
hand movement directions, larger negative shift amplitude of the
primary hand movement in L direction was found. However, this
difference was not significant (Wilcoxon signed-rank test, p =

0.17). Furthermore, Wilcoxon signed-rank test showed that there
was a significant difference between the MRCPs (from −1.5 to
1.5 s) associated with two primary hand movement directions (p
< 0.01).

(2) Time-Frequency plots: Figure 5 presents the grand average
time-frequency plots in the time period [−1.5, 1.5] s of the
movement cue onset across all subjects. It was seen that a
prominent increment in spectral power appeared after the
movement cue onset in the low frequencies of smaller than
7Hz (especially smaller than 4Hz), indicating that main power
modulations during bimanual movement was centralized in the
low frequency band, and this result was similar to the finding in
Robinson et al. (2015).
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FIGURE 4 | The averaged MRCPs at electrode Cz during the time period

[−1.5, 1.5] s of Go-Cue. “L” and “R” refer to the right-hand movement in right

and left directions. Note that time 0 s is the Go-Cue, and time 0.5 s is the

actual movement onset.

FIGURE 5 | Time-Frequency plots of movement. The averaged results are in

frequencies [0 16] Hz at Cz channel from −1.5 to 1.5 s of the movement cue

onset. Note that time 0 s is the Go-Cue, which indicates the movement

execution, and time 0.5 s is the actual movement onset.

(3) Scalp topographical maps: The average EEG potential
topographical distributions of the primary hand movements
under the condition of W-OHM are shown in Figure 6. The
scalp topographical maps were plotted from −1,000 to 1,500ms
with an interval of 500ms in between. It was seen that cortical
brain activities were steady from −1,000 to 0ms with no specific
modulation patterns. A significant decline in EEG potentials on
central regions and a significant increment on occipital regions
occurred from 0 to 500ms. After 500ms, peaks of these plots
were centralized on central regions increasingly. Furthermore,
the potential of EEG signals on temporal lobes turned into a
negative shift and reached the negative maximum gradually,
which was in line with the finding in Puce et al. (2003).

FIGURE 6 | Averaged EEG potential topographic maps of hand movement

across all subjects. Note that time 0 s is the Go-Cue, which indicates the

movement execution, and time 0.5 s is the actual movement onset.

Parameters Selection
The parameters of reservoir sparse degree c and reservoir sizeNN
were critical to the performance of the proposed decoding model.
The reservoir sparse degree is related to the number of neurons
activated, and the reservoir size is associated with the complexity
of the proposed model. Only with befitting parameters, the
proposed model could capture the dynamics of EEG signals well.
In this study, we used the mesh grid search to determine well-
behaved subject-specific parameters c and NN. For determining
the reservoir sparse degree c, the step size was set to be 0.1, and
the search range was in [0.1, 0.9]. For determining the reservoir
size NN, the search set was {10, 20, 30, 40, 50, 60, 70} (Sun et al.,
2019).

Table 2 shows the subject-specific decoding accuracies and
parameters selected (NN and c) by using ESN-based models
under condition of W-OHM. Figure 7 shows the example of
the decoding accuracy of Subject 1 under condition of W-OHM
against the reservoir sparse degree c and reservoir size NN. It was
seen that, with the increase of the reservoir sparse degree c, the
variation of decoding accuracy was slight for each reservoir size
NN. Furthermore, with the increment of the reservoir size NN,
the decoding accuracy was gradually improved and tended to be
steady. The parameter combination with the best performance,
i.e., “c 0.4, NN 60,” was selected for Subject 1 under condition of
W-OHM.

Decoding Performance Comparison
In this study, the classification performance of the proposed
ESN model was compared with two models in (Wang et al.,
2021), and we named two comparison models as Model 1 and
Model 2 in this study. Specifically, Model 1 used potential
amplitudes of EEG signals as feature and used LDA as classifier,
and Model 2 used the sum of spectral power of EEG signals as
feature and used LDA as classifier. For both model 1 and model
2, no personalized parameters tuning strategy was applicable.
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TABLE 2 | Subject-specific decoding accuracies and parameters selected (NN

and c) under W-OHM by using the proposed model.

Subject No. acc [%] NN c

S1 91.33 60 0.4

S2 92.44 70 0.7

S3 96.94 60 0.5

S4 91.81 50 0.1

S5 89.88 60 0.7

S6 97.69 70 0.3

S7 96.88 50 0.7

S8 86.56 70 0.3

S9 87.37 70 0.5

S10 82.75 60 0.4

S11 89.56 70 0.7

S12 84.25 70 0.6

S13 75.00 60 0.4

S14 90.19 70 0.9

Mean ± Std 89.48 ± 5.92 63.57 ± 7.18 0.51 ± 0.21

FIGURE 7 | ESN parameter selection with different reservoir sparse degree c

and reservoir size NN.

Table 3 shows the decoding accuracy comparison results based
on different kinds of classification models under condition of
W-OHM. Figure 8 shows the decoding accuracy comparison
under condition of W-OHM among three kinds of models in
the box-plot form. As shown in Table 3, the highest average
decoding accuracy was obtained when using the proposedmodel,
and was 89.48 ± 5.92%. Correspondingly, when using Model 1
and Model 2, the decoding accuracies were 82.28 ± 6.98% and
74.99 ± 6.13%, respectively. Significant differences were found
between classification models by performing one-factor analysis
of variance [F(2,39) = 16.88, p < 0.01]. The post-hoc pairwise

TABLE 3 | Decoding accuracies across subjects under condition of W-OHM

using different kinds of models.

Subject No. Model 1 [%] Model 2 [%] Proposed Model [%]

S1 86.88 75.56 91.33

S2 81.25 77.69 92.44

S3 80.81 88.25 96.94

S4 71.56 70.19 91.81

S5 80.93 70.63 89.88

S6 89.25 77.10 97.69

S7 92.94 80.38 96.88

S8 74.56 70.81 86.56

S9 89.88 76.06 87.37

S10 77.13 73.31 82.75

S11 86.75 67.69 89.56

S12 86.06 82.75 84.25

S13 68.50 63.56 75.00

S14 85.44 75.81 90.19

Mean ± Std 82.28 ± 6.98 74.99 ± 6.13 89.48 ± 5.92

FIGURE 8 | Box-Plots of average decoding accuracy under W-OHM by using

three kinds of models. The asterisk marks significant differences.

Tukey-Kramer post hoc test: *p < 0.05, **p < 0.01.

comparison with the Tukey-Kramer method showed that there
were significant differences between the Model 1 and Model 2 (p
= 0.02), the Model 1 and the proposed model (p = 0.02), and
the Model 2 and the proposed model (p < 0.01), as shown in
Figure 8.

Computational Time Comparison
Table 4 shows the computational time comparison results
of different decoding models. The total computational time
included the sum of signal processing, feature extraction,
dimensionality reduction, and classification of a single sample.
For the proposed model, averaged NN and c (64 and 0.5)
calculated from Table 2 was used for calculating computational
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TABLE 4 | Computational time of different decoding models.

Computational Time [ms]

Model 1 Model 2 Proposed Model

13.1 7.4 37.5

time. As shown in Table 4, the computational time of the Model
1, Model 2, and proposed decoding models was 13.1, 7.4, and
37.5ms, respectively. It showed the feasibility of putting the
proposed decoding model into real-time detection.

DISCUSSION AND CONCLUSION

This paper explored using EEG signals to decode primary
hand movement direction under the opposite hand movement.
MRCPs, time-frequency plots, and scalp topographic maps were
shown for neural signatures. The decoding model was built
by using an ESN to extract non-linear dynamics parameters
of MRCPs as decoding features. Experimental results showed
that the proposed method performed well in decoding primary
hand movement directions with the opposite hand movement.
This paper is the first to investigate neural signatures and
decoding of hand movement parameters under the opposite
hand movement.

In this study, we followed the classic center-out paradigm
(Robinson et al., 2013, 2015; Chouhan et al., 2018), and evolved
it to both-hand center-out paradigm for the both-movement
decoding. Specifically, we set the primary hand movement in
L or R directions and the opposite hand movement in F
or B directions. Considering that two hands often move in
different directions in practical human-machine collaboration
systems, we preliminarily set the primary hand and opposite
hand movement in orthogonal directions. The advantages of
this paradigm were that it was basic and representable for
hand movement decoding and its experiment results were
general and could be extended to practical hand movement
decoding problem. By comparing the negative shift amplitudes
of MRCPs between two primary hand movement directions, a
larger negative shift amplitude of the primary hand movement
in L direction was found (L: 10.4324 vs. R: 9.4153 µV). This
result was in accord with our previous study, which indicated
that the larger negative shift amplitude of MRCP might be
related to the higher torque-level for the leftward motion of
the right arm (Wang et al., 2021). The increment of spectrum
energy was mainly centralized in the low-frequency band, which
was similar to the finding in Waldert et al. (2008), which
indicated that hand movement directions could be decoded from
power modulations in the low-frequency band. The increment
of event-related potentials (ERPs) on central regions and the
decrement of ERPs on temporal regions were found in scalp
topographic maps from 500 to 1,500ms, which was in line
with the findings in Puce et al. (2003) and (Wang et al.,
2021), respectively.

Experimental results showed that the proposed decoding
model outperformed the models used in (Wang et al., 2021

(89.48% vs. 82.28% or 74.99%). One main reason for the
results is likely that the proposed method could capture
more discriminable information of MRCPs for decoding hand
movement direction. This ability of the proposed model may
be because ESN can establish a complex non-linear dynamic
system of EEG signals with a large reservoir size and complex
transmission relationships between neurons and can constantly
update the network parameters according to the information
from the previous moment. Furthermore, compared with other
neural network (e.g., convolution neural network and deep belief
network), ESN, as one kind of recurrent neural network, could
capture the nonstationary and nonlinear features and is good at
dealing with the time sequence problem.

This work has values in at least two implications. First,
the proposed method can capture more meaningful non-linear
information of MRCPs for decoding hand movement direction.
Thus, this work may open a new avenue to decode other hand
movement parameters, such as velocity and trajectory. Second,
since, for human augmentation, many tasks need to be carried
out by the movement of both hands, these findings can lay
a foundation for the future development and use of human
augmentation systems based on hand movement decoding from
EEG signals.

However, at least three limits exist in this work. First, although
the proposed decoding method of primary hand movement
direction under the opposite hand movement performed well,
the movement intensity of the left hand was kept at a certain
level. For further exploration of the decoding of primary hand
movement under the opposite hand movement, different kinds
and intensities of the opposite hand movement, including more
natural and complex movement, should be considered. Second,
like many studies in the field of using EEG signals to decode hand
movement (Robinson et al., 2015; Chouhan et al., 2018; Schwarz
et al., 2020), we used able-bodied subjects to investigate neural
signatures and decoding of hand movement direction. However,
it is unclear whether these results can be extended to persons
with disabilities. Thus, more subjects, especially the target users
(including the disabled), should be applied to validate these
findings further. Third, in this study, all recruited participants
were right-handed, and 1 female among which was recruited.
Though the influence of handedness and gender were focused
on in this paper, handedness and gender may be the factors
that influenced the decoding of primary hand movement under
opposite hand movement, which could be explored in future.

Our future work will be dedicated to solving the weaknesses
mentioned above, including using more types of hand movement
directions given more types and intensities of the opposite hand
movements, using more subjects and even some persons with
motion impairment and exploring the influence of handedness
and gender on decoding.
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