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Abstract
Litter size is one of the most important economic traits for pig production as it is directly

related to the production efficiency. Litter size is affected by interactions between multiple

genes and the environment. While recent studies have identified some genes associated

with prolificacy in pigs, transcriptomic studies of specific genes affecting litter size in porcine

ovaries are rare. In order to identify candidate genes associated with litter size in swine, we

assessed gene expression differences between the ovaries of Yorkshire pigs with

extremely high and low litter sizes using the RNA-Seq method. A total of 1 243 differentially

expressed genes were identified: 897 genes were upregulated and 346 genes were down-

regulated in high litter size ovary samples compared with low litter size ovary samples. A

large number of these genes related to steroid hormone regulation in animal ovaries, includ-

ing 59 Gene Ontology terms and 27 Kyoto Encyclopedia of Genes and Genomes pathways

involved in steroid biosynthesis and ovarian steroidogenesis. From these differentially

expressed genes, we identified a total of 11 genes using a bioinformatics screen that may

be associated with high litter size in Yorkshire pigs. These results provide a list of new can-

didate genes for porcine litter size and prolificacy to be further investigated.

Introduction
Litter size is one of the most important economic factors in pig production and is affected by
interactions between multiple genes and the environment [1, 2]. The size of litters varies
between pigs in different breeding farms. Altering litter size by conventional breeding methods
can be slow, and has shown low heritability. However, using marker assisted selection (MAS)
can speed up genetic improvements in litter size traits [3]. As the ovary directly mediates ovula-
tion, it has a significant impact on the fecundity of mammals, and therefore, genetic differences
in the ovaries may contribute to the observed differences in litter size [4, 5].
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There has been some recent progress in characterizing the major genes involved in the pro-
lificacy of swine, such as the estrogen receptor (ESR) [6, 7], follicle-stimulating hormone beta
subunit (FSHB) [8], retinol-binding protein 4 (RBP4) [9, 10], prolactin receptor (PRLR) [9],
melatonin receptor 1a (MTNR1A) [11], osteopontin (OPN) [12], bone morphogenetic protein
(BMP) families [13], and growth differentiation factor (GDF9) [14]. With the recent publica-
tion of the pig genome, more candidate genes or quantitative trait loci (QTLs) have been exten-
sively investigated for their involvement in porcine litter size [3, 15, 16]; but genomic location,
function and interaction of these genes requires further research.

RNA sequencing (RNA-Seq) can measure genes, both quantitatively and functionally, at the
transcriptome level [17]. To date, RNA-Seq has been used to study specific ovarian genes of
important livestock animals (e.g., yak [18], and goat [19, 20]), but transcriptomic studies of
specific genes in pigs are rare, and have mainly focused on the molecular regulation mechanism
of fat deposition and muscle development [21–23]. Therefore, transcriptomic analysis of pig
ovaries using RNA-Seq may explain heredity of porcine fecundity, and be used to identify key
genes relating to litter size.

Yorkshire is one of the world's most famous lean pig breeds, and is known for its higher fer-
tility and high litter size [24, 25]. However, in pig production, some Yorkshire pigs always have
low litter sizes, which seriously restricts productivity. In the present study, we sampled ovaries
of Yorkshire pigs with extremely high and low litter sizes, and analyzed the differential expres-
sion of genes (DEGs) using RNA-Seq. The aim of this analysis was to identify major genes that
control prolificacy, and thus provide a molecular basis for genetic improvement of reproduc-
tive traits in swine.

Materials and Methods

Ethics statement
Yorkshire (a Danish lean-type breed) pigs were obtained from the Anhui Daziran Primary Pig
Breeding Farm, Huaibei, Anhui, China. All experimental procedures and sample collection
were performed according to the Regulations for the Administration of Affairs Concerning
Experimental Animals (Ministry of Science and Technology, China; revised in June 2004) and
approved by the Institutional Animal Care and Use Committee of Anhui Agricultural Univer-
sity, Hefei, China, under permit No. ZXD-P20140809. This report fully adhered to the ARRIVE
Guidelines for the reporting of animal research [26]. A completed ARRIVE guideline checklist
is included (S1 Checklist). The animals were reared in the same environment and fed the same
diet ad libitum during the experimental period. Food was withheld from the animals on the
night before they were slaughtered.

Animals and ovary collection
A total of twelve healthy female pigs were used in this study from two groups: the extreme high
litter size group (YH: n = 6), and the extreme low litter size group (YL: n = 6) (Table 1), repre-
senting pigs with high and low fecundity, respectively. In order to reduce, as far as is possible,
the effects of age and parity on litter size, three pigs of similar age and parity from each group
were selected as biological replicates for RNA-Seq. Their intact ovaries were rapidly harvested
from their carcasses and immediately frozen in liquid nitrogen. All tissue samples were stored
at −80°C until the total RNA extraction procedure was performed.

mRNA library preparation and sequencing
The ovaries were completely ground and total RNA was extracted using TRIzol (Invitrogen,
Carlsbad, CA, USA). The quality of the total RNA was checked using the Agilent 2100
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Bioanalyzer system (Santa Clara, CA, USA). A total amount of 3 μg RNA per sample was used
as input material for the RNA sample preparations. Sequencing libraries were generated using
NEBNext1 UltraTM RNA Library Prep Kit for Illumina1 (NEB, USA) following manufactur-
er’s recommendations. Briefly, mRNA was extracted from total RNA using oligo (dT) magnetic
beads and sheared into short fragments of about 200 bases. These fragmented mRNAs were
then used as templates for cDNA synthesis. The cDNAs were then PCR amplified to complete
the library. The cDNA library was sequenced using an Illumina HiSeqTM 2000 platform.

Analysis of RNA-Seq data
Raw RNA-Seq reads were processed through in-house perl scripts. Clean reads were obtained
by removing reads containing low quality reads and/or adaptor sequences from raw reads [27],
and mapped to the pig genome (Sus scrofa 10.2) using TopHat software [28], allowing up to
two base mismatches. The gene expression level was then calculated using the reads per kilo
bases per million reads (RPKM) method [29]. We considered the gene was expressed exclu-
sively in one of the two groups if its RPKM� 0.3 in one group and< 0.3 in the other group.
Differential expression analysis was performed using the Benjamini and Hochberg’s approach
for controlling the false discovery rate [30]. Genes with an adjusted P value< 0.05 were
assigned as differentially expressed (DEG).

DEG lists were submitted to the databases of Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) for enrichment analysis of the significant overrepresentation of GO
terms and KEGG-pathway categories [31, 32]. In all tests, P values were calculated using the Ben-
jamini-corrected modified Fisher’s exact test and� 0.05 was taken as a threshold of significance.

Quantitative PCR analysis
The RNA-Seq results were validated using an RNA samples from the YH group (n = 6) and the
YL group (n = 6), respectively. Six DEGs enriched in the ovarian steroidogenesis pathway, two
DEGs (one upregulated, and the other downregulated in the YH group) were enriched for met-
abolic pathways, two DEGs with the highest numbers of reads in both YH and YL, and two
genes (one expressed only in the YH group, and the other expressed only in the YL group)

Table 1. Prolificacy characteristics of Yorkshire pigs with high and low litter sizes.

Group Sample ID Months of age Total parity numbers TNB NBA Use

YH YH1 30 4 16.5 ± 1.8 13.0 ± 0.4 RNA-Seq and qPCR

YH2 30 4 16.5 ± 1.8 13.0 ± 0.4 RNA-Seq and qPCR

YH3 35 5 17.0 ± 1.1 15.2 ± 1.3 RNA-Seq and qPCR

YH4 45 7 14.6 ± 1.8 11.0 ± 1.2 qPCR

YH5 46 7 16.4 ± 1.4 13.6 ± 1.0 qPCR

YH6 45 7 14.6 ± 1.8 11.0 ± 1.2 qPCR

YL YL1 30 4 5.2 ± 1.9 5.2 ± 1.9 RNA-Seq and qPCR

YL2 30 4 5.0 ± 0.7 4.0 ± 0.4 RNA-Seq and qPCR

YL3 35 5 5.8 ± 2.1 5.0 ± 1.6 RNA-Seq and qPCR

YL4 30 4 6.3 ± 2.1 5.3 ± 1.4 qPCR

YL5 31 4 5.5 ± 1.7 4.6 ± 0.6 qPCR

YL6 34 5 5.3 ± 0.8 4.5 ± 0.9 qPCR

Values are means ± standard error. YH represents the extreme high litter size group, and YL represents the extreme low litter size group. TNB represents

the total number born, and NBA represents the number born alive.

doi:10.1371/journal.pone.0139514.t001
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were analyzed by quantitative PCR (qPCR) (S1 Table). Total RNA (1.0 mg) was used to synthe-
size first-strand cDNA using PrimeScript RT Master Mix (TaKaRa, Osaka, Japan). Q-PCR was
performed using SYBR Premix Ex Taq (TaKaRa, Osaka, Japan) in the CFX96 Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA). The primers were designed using the Primer
Express (Applied Biosystems) software. All the mRNA nucleotide sequences were obtained
from the NCBI Entrez Nucleotide database (http://www.ncbi.nlm.nih.gov/sites/entrez?db =
nuccore&itool = toolbar), or from the EMBL-EBI database (http://www.ebi.ac.uk). The primers
used for qPCR are listed in S1 Table. The thermal cycling conditions were 95°C for 10 min, fol-
lowed by 40 cycles of 95°C for 15 s and 60°C for 1 min. There were three replicates for each
amplification. Cycle threshold (Ct) values were analysed using a linear mixed model as
described below.

Ctjkl ¼ m þ Lj þ Ak þ Pl þ ejkl;

in which L is the effect of fecundity, A is the fixed effect of age, and P is the fixed effect of parity
of animal [33]. Then the Ct values were transformed to quantities using the comparative Ct
method. Data was normalized using the porcine β-actin reference gene. Comparison of gene
expression levels conditional on prolificacy levels was performed using the t-test, and correla-
tions between qPCR and RNA-Seq measures were calculated.

Results

Overview of sequencing data
After removing the low quality and adaptor sequences, we obtained approximately 52 to 66
million (M) clean reads for six RNA-Seq libraries, and high percentages of mapped reads rang-
ing from 79.15 to 80.68%. Most mapped reads were located within an exon (71.6 to 85.6%)
while a smaller percentage of mapped reads (less than 19. 0%) were located within the introns
and intergenic regions (Table 2). These results indicated that our six libraries were of high qual-
ity, and had high coverage of the pig genome. This allowed us to compare the ovary transcrip-
tomes from pigs with high and low litter size. The data is available from the Sequence Read
Archive (SRA) (Accession no. SRP058401, Bioproject: PRJNA283575).

Differentially expressed genes between YH and YL groups
After mapping to the pig genome, a total of 17 485 and 19 178 genes were obtained from the
YH and YL libraries, respectively. Four hundred and two genes were expressed only in YH, 2

Table 2. RNA sequencing results of mRNA from the ovaries of Yorkshire pigs with high and low litter sizes.

Sample ID1 Clean reads, M2 Mapping rate, %3 exons, % Intron, % Intergenic, %

YH1 52.66 80.67 82.20 3.70 14.20

YH2 60.14 80.68 85.60 2.40 12.00

YH3 64.89 80.07 82.20 4.10 13.70

YL1 65.60 79.80 73.20 8.30 18.60

YL2 57.76 80.16 71.60 9.40 19.00

YL3 65.04 79.15 78.30 6.00 15.70

1. YH1, YH2, YH3 and YL1, YL2, YL3 are replicate from the YH and YL groups. YH represents the extreme high litter size group, and YL represents the

extreme low litter size group.
2. Indicates millions of reads.
3. Uses the Sus scrofa 10.2 as the reference genome annotation to classify the mapping tags into the different regions. Ratio was calculated by the

number of tags on each region divided by the total tags on the whole genome.

doi:10.1371/journal.pone.0139514.t002
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059 genes were expressed only in YL, and 17 083 genes were co-expressed in both libraries (Fig
1A). A total of 1 243 genes were differentially expressed between the two groups, in which 897
genes were upregulated and 346 genes were downregulated in the YH group (Fig 1B and S2
Table). The 10 most differentially expressed genes (log2FoldChange�4) from the total of 1 243
DEGs identified between the high and low litter size samples were: homogentisate 1,2 dioxy-
genase (HGD); phosphoenylpyruvate carboxykinase (PCK1),HSD17B2; early growth response
4 (EGR4), a member of the ras oncogene family (RAB33A); solute carrier protein family 6
(SLC6A20B); zinc finger protein (GLI1); U6 spliceosomal RNA (U6); solute carrier protein
family 7 (SLC7A11); and spectrin alpha chain eyrythrocytic 1 (SPTA1), respectively (Table 3).

Functional enrichment analysis of differentially expressed genes
To define the biological functions of the 1 243 DEGs, GO and KEGG analysis were carried out.
Fifty-nine significantly enriched GO terms (corrected P< 0.05) were identified, including sin-
gle-organism metabolic process, lipid metabolic process, oxidation-reduction process, lipid
biosynthetic process, organic acid metabolic process, carboxylic acid metabolic process, oxoa-
cid metabolic process, small molecule metabolic process, fatty acid metabolic process, cellular
lipid metabolic process, catalytic activity, steroid metabolic process, and glucose metabolic pro-
cess (Table 4 and S3 Table). Meanwhile, 27 significantly enriched KEGG pathways were identi-
fied, including metabolic pathways, valine/leucine and isoleucine degradation, fatty acid
metabolism, carbon metabolism, steroid biosynthesis, butanoate metabolism, ovarian steroido-
genesis, biosynthesis of unsaturated fatty acids, PPAR signaling pathway, synaptic vesicle cycle,
and biosynthesis of amino acids (Table 5 and S4 Table). Among these GO terms and KEGG
pathways, the steroid biosynthesis and ovarian steroidogenesis pathways are the ones related to

Fig 1. Comparative results of gene expression levels and differentially expressed gene distributions between the ovaries of Yorkshire pigs with
extremely high (YH) and low (YL) litter size. (A) Venn diagram showing genes only expressed in the YH group (yellow circle), only expressed in the YL
group (light red circle), and common to both groups (intersection). (B) Scatter plot of differentially expressed genes (YH vs. YL). Red points represent
upregulated genes with log2 (fold change) > 1 and padj < 0.05 (–log10 (padj)� 1.3); Blue points represent downregulated genes with log2 (fold change) < -1
and padj < 0.05 (–log10 (padj)� 1.3). Green points represent genes with no significant difference. Fold change = gene normalized expression of the YH
group / gene normalized expression of the YL group.

doi:10.1371/journal.pone.0139514.g001
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steroid hormone regulation in animal ovaries and therefore likely to be contributing to litter
size. However, as most GO and KEGG assignments and distributions are related to reproduc-
tion, growth and development, and metabolism, our results indicate that the DEGs are
involved in a wide range of regulatory functions in porcine ovaries.

Validation of DEGs by qPCR
Twelve genes were used for qPCR analysis from the ovaries of the YH and YL groups to vali-
date the expression profiles obtained by RNA-Seq. Consistent with the RNA-Seq findings, we
verified that hydroxysteroid (17-beta) dehydrogenase 2 (HSD17B2), cytochrome P450 E class
group 1 (CYP11A1), steroidogenic acute regulatory protein (STAR), low density lipoprotein
receptor (LDLR), scavenger receptor class B member 1 (SCARB1), cytochrome c oxidase, sub-
unit I domain (CO1), and cytochrome c oxidase subunit III domain (COX3) genes were all
upregulated, while luteinizing hormone/choriogonadotopin receptor (LHCGR), and insulin-
like growth factor 1 (IGF-1) genes were downregulated in high litter size samples. Matrix
metallopeptidase 13 (MMP13) gene was not significant difference between the two groups.
However, branched-chain amino acid aminotransferase II (BCAT2) and dopachrome tauto-
merase (DCT) genes were validated as different expression with P> 0.05 in YH versus YL
groups (Table 6 and Fig 2). Therefore, results obtained from RNA-Seq were statistically con-
firmed for 83.3% of the tested genes by qPCR. In all cases, the relative fold change of gene
expression was in the same direction between the RNA-Seq and qPCR data.

Table 4. The top 10 most significantly enriched Gene Ontology (GO) terms from differentially expressed genes (DEGs) in Yorkshire pigs.

GO term Description P value Corrected P value DEGs

GO:0044710 single-organism metabolic process 4.91E-19 9.99E-16 221

GO:0055114 oxidation-reduction process 8.01E-15 8.15E-12 115

GO:0044281 small molecule metabolic process 1.03E-09 3.01E-07 97

GO:0006629 lipid metabolic process 3.56E-15 4.83E-12 82

GO:0006082 organic acid metabolic process 4.36E-10 1.37E-07 58

GO:0019752 carboxylic acid metabolic process 4.36E-10 1.37E-07 58

GO:0043436 oxoacid metabolic process 4.36E-10 1.37E-07 58

GO:0044255 cellular lipid metabolic process 4.83E-09 1.23E-06 54

GO:0008610 lipid biosynthetic process 3.86E-10 1.37E-07 51

GO:0006631 fatty acid metabolic process 3.07E-09 8.32E-07 22

doi:10.1371/journal.pone.0139514.t004

Table 3. Detailed information on the top 10most differentially expressed genes.

Gene Name readcount_ YH readcount_ YL log2FoldChange P val P adj Up/Down
(YH/YL)

Interpro Description

HGD 77.54 0.53 7.18 8.29E-05 0.00436 Up Homogentisate 1,2-dioxygenase

PCK1 417.45 3.35 6.96 0.000101 0.005071 Up Phosphoenolpyruvate carboxykinase,

HSD17B2 235.38 1.91 6.95 0.000661 0.019735 Up Hydroxysteroid (17-beta) dehydrogenase 2, mRNA.

EGR4 245.79 2.15 6.84 0.000716 0.020727 Up Early growth response 4

RAB33A 488.52 5.84 6.39 4.92E-11 1.96E-08 Up Member RAS oncogene family (RAB33A), mRNA

SLC6A20B 0.81 15.67 -4.27 0.000992 0.026366 Down Solute carrier family 6, member 20B

GLI1 0.81 16.24 -4.32 0.000719 0.020791 Down Zinc finger protein GLI1

U6 0.41 12.20 -4.91 0.002086 0.043381 Down U6 spliceosomal RNA

SLC7A11 0.39 16.53 -5.42 0.000196 0.008195 Down Solute carrier family 7, member 11

SPTA1 2.43 331.59 -7.09 7.43E-10 2.25E-07 Down Spectrin, alpha, erythrocytic 1

doi:10.1371/journal.pone.0139514.t003
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Identification of candidate genes for pig litter size
To accurately identify the key genes that may influence porcine litter size, we created a Venn
diagram of the 10 most DEGs between high and low litter size samples (Table 3), the 10 most
expressed genes in the ovaries of pigs with high litter size (Table 7), the 10 most expressed
genes in the ovaries of pigs with low litter size (Table 7), and the 21 genes enriched in the ste-
roid metabolic process and ovarian steroidogenesis of the above-mentioned (S5 Table). The
results showed that 11 genes appeared in the two or more sets, including the CO1, glutathione
peroxidase 3 (GPX3), beta-microseminoprotein (MSMB), COX3, tissue inhibitor of metallo-
proteinase 1 (TIMP1), cytochrome b (CYTB), STAR, 3-beta hydroxysteroid dehydrogenase
(HSD3B), CYP11A1, SCARB1, and hydroxysteroid (17-beta) dehydrogenase 2 (HSD17B2) (Fig
3). These 11 genes may be candidates for porcine fecundity and litter size.

Discussion
Ovaries are one of the most important animal reproductive organs. They directly mediate ovu-
lation and female hormone secretion, which has a significant impact on the fecundity of mam-
mals [34–36]. Some specific genes relating to animal fecundity have been reported using

Table 5. The top ten significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways from differentially expressed genes (DEGs).

Pathway ID Pathway P value Corrected P value DGEs

ssc01100 Metabolic pathways 1.14E-18 2.90E-16 191

ssc01200 Carbon metabolism 2.64E-11 1.67E-09 35

ssc00280 Valine, leucine and isoleucine degradation 3.04E-12 3.86E-10 26

ssc01212 Fatty acid metabolism 1.05E-11 8.92E-10 25

ssc04913 Ovarian steroidogenesis 2.96E-08 1.08E-06 21

ssc00071 Fatty acid degradation 5.62E-07 1.59E-05 17

ssc00100 Steroid biosynthesis 2.08E-09 1.06E-07 16

ssc00650 Butanoate metabolism 5.30E-09 2.24E-07 16

ssc01040 Biosynthesis of unsaturated fatty acids 3.97E-07 1.26E-05 12

ssc00062 Fatty acid elongation 1.40E-06 3.56E-05 12

doi:10.1371/journal.pone.0139514.t005

Table 6. Summary of qPCR and RNA-Seq results.

Gene qPCR results RNA-Seq Fold Change (H/
L)

Significant
diffs.

Confirmed Correlation
RNA-Seq
vs. qPCRYH mean

(SE)
YL mean

(SE)
Fold Chang

(H/L)
P value
(H/L)

HSD17B2 0.02372 0.00025 96.419 0.037 123.469 Up Yes 0.85

CYP11A1 0.64853 0.02040 31.789 0.003 15.909 Up Yes 0.83

STAR 1.23509 0.01774 69.642 0.008 11.766 Up Yes 0.56

LDLR 0.03103 0.00056 55.888 0.001 7.555 Up Yes 0.74

SCARB1 0.67635 0.01722 39.268 0.010 12.028 Up Yes 0.62

CO1 3.26406 0.35572 9.176 0.005 5.799 Up Yes 0.85

COX3 3.84001 0.37585 10.217 0.003 4.490 Up Yes 0.76

BCAT2 0.53987 0.16381 3.296 0.293 6.860 Up No 0.39

IGF-1 0.03046 0.25306 0.120 0.037 0.283 down Yes 0.82

LHCGR 0.02432 0.19728 0.123 0.009 0.244 down Yes 0.63

DCT 0.00006 0.00058 0.100 0.174 0.275 down No 0.28

MMP13 0.00003 0.00061 0.048 0.322 0.009 No Yes 0.65

doi:10.1371/journal.pone.0139514.t006
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transcriptome analysis of certain characteristics in ovaries [18, 37], however similar studies on
litter size in pigs had not been conducted to date. It is well-known that there is gene expression
specificity in different tissues and cells. The ovaries contain a mixture of different tissue, and
the expression of candidate genes may differ between them. We strove to ensure that we
obtained intact ovaries and ground them completely for the purpose of RNA extraction, to
ensure that the RNA-Seq results were representative of the complete porcine ovarian transcrip-
tome. Additionally, the age of the sow is known to greatly affect litter size. In order to minimize
this and the effect of parity, we selected six pigs of similar age and parity for RNA-Seq. Two
sequencing libraries were constructed from extremely high and low litter size samples. High
quality transcriptome data was generated (60 million clean reads; 80% genome mapping rate),
which was sufficient for the quantitative analysis of gene expression.

Previous studies of goat ovaries suggested that the most differentially expressed genes iden-
tified by RNA-Seq were likely to be important for improving litter size [19]. Some of the top 10
most differentially expressed genes found in our study have been reported to be candidate
genes involved in important metabolic processes. For example: the PCK1 gene has previously
been shown to be associated with lipid metabolism in animals [38–41]; theHSD17B2 gene has
been identified as a key regulator of steroid hormone metabolism [42–46]; the EGR4 gene is a
candidate gene for reproductivity in animal ovary and testis [47–50]; and the RAB33A gene
may affect the risk of developing certain disease, such as tuberculosis [51, 52]. However, while
there was an association between HGD and meat quality traits reported in Chinese red cattle
[53, 54], these gene association studies have mainly concentrated on humans or animal models.
Therefore, the role of these genes in pig fecundity requires further investigation.

Fig 2. Verification of the RNA-Seq results using the qPCRmethod. Fold change values greater than 2 and P < 0.05 indicate overexpression in the YH
group, and fold change values less than 0.5 and P < 0.05 indicate overexpression in the YL group. Genes with asterisk differ significantly (P < 0.05).

doi:10.1371/journal.pone.0139514.g002
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From our GO and KEGG analysis, we found that the functions of the 10 most DEGs
between high and low litter size samples were mainly in the metabolic pathways, ovarian ste-
roidogenesis, citrate cycle (TCA cycle), pyruvate metabolism, and the PPAR signaling pathway.
It is accepted that the molecular regulation of animal traits is very complex and the relationship
between genes and traits is often that of “one-to-many” or “many-to-one”. The DEGs were not
only enriched in reproduction-related pathways but also in those involved with lipid and fatty
acid metabolism. This suggests that the genes may be associated with both reproduction and
fat metabolism. It is easily appreciated that, in the life of organisms, all physiological processes
interact with each other. The pathways mentioned above are, to a greater or lesser degree,
involved in the development of follicular cells and oocytes. Consequently, functional studies
should be performed with these DGEs in order to identify key candidate genes influencing
reproductive traits in swine.

Previous research with gene expression microarrays and QTL mapping analysis, identified
27 candidate genes, co-localizing with QTL for porcine litter size traits, which fulfill biological,
positional, and functional criteria [55, 56]. These genes, which include CYP19A1, CYP2E1,
RBP4,MSRB2, and SLC16A3, mainly encode specific proteins, hormones and cytokines.
CYP11A1 (which belongs to cytochrome P450 E class group 1), RBP4 (retinol-binding protein
4), and SLC5A10, SLC7A11 & SLC6A20B (which belong to the solute carrier family) were also
identified in our study as DEGs in pigs, suggesting that they may also be relevant to porcine
prolificacy (S2 Table). However, apart from these DEGs, the other candidate genes found

Table 7. Detailed information of the top 10 most expressed genes in the YH and YL groups.

Group Gene
Name

Readcount_YH Readcount_YL log2FoldChange P val P adj Up/Down(YH/
YL)

Interpro Description

YH CO1 1062714.38 183270.39 2.54 6.86E-07 8.59E-05 Up Cytochrome c oxidase subunit I domain

GPX3 829844.21 63398.00 3.71 2.35E-07 3.43E-05 Up Glutathione peroxidase 3

MSMB 462726.06 19382.82 4.58 1.90E-18 6.77E-15 Up Beta-microseminoprotein

COX3 444826.68 99075.58 2.17 1.34E-05 0.001048 Up Cytochrome c oxidase subunit III
domain

TIMP1 407692.96 34203.54 3.58 7.45E-07 9.19E-05 Up Tissue inhibitor of metalloproteinases-
like

STAR 350027.39 29747.05 3.56 1.76E-08 3.57E-06 Up Steroidogenic acute regulatory protein,
animal

HSD3B 256334.52 26353.57 3.28 3.39E-11 1.45E-08 Up 3-beta hydroxysteroid dehydrogenase

CYTB 187523.02 46638.76 2.01 9.15E-05 0.00469 Up Cytochrome b

CYP11A1 148774.93 9351.70 3.99 2.42E-16 3.04E-13 Up Cytochrome P450 E class group 1

SCARB1 128598.74 10691.72 3.59 9.40E-14 7.03E-11 Up Scavenger receptor class B, member 1

YL CO1 1062714.38 183270.39 2.54 6.86E-07 8.59E-05 Up Cytochrome c oxidase, subunit I domain

COX3 444826.68 99075.58 2.17 1.34E-05 0.001048 Up Cytochrome c oxidase subunit III
domain

COL1A2 25163.69 68810.42 -1.45 0.000946 0.02541 Down Collagen triple helix repeat

GPX3 829844.21 63398.00 3.71 2.35E-07 3.43E-05 Up Glutathione peroxidase 3

CYTB 187523.02 46638.76 2.01 9.15E-05 0.00469 Up Cytochrome b

TIMP1 407692.96 34203.54 3.58 7.45E-07 9.19E-05 Up Tissue inhibitor of metalloproteinases-
like

STAR 350027.39 29747.05 3.56 1.76E-08 3.57E-06 Up Steroidogenic acute regulatory protein,
animal

SEPP1 81114.92 29232.10 1.47 0.001024 0.027035 Up Selenoprotein P precursor 1

HSD3B 256334.52 26353.57 3.28 3.39E-11 1.45E-08 Up 3-beta hydroxysteroid dehydrogenase

MSMB 462726.06 19382.82 4.58 1.90E-18 6.77E-15 Up Beta-microseminoprotein

doi:10.1371/journal.pone.0139514.t007
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previously to co-localize with QTL for porcine litter size were not identified in our study. This
may be because of inter-species differences, or it may be a consequence of an insufficiently
large sample size.

Genes that are highly expressed in reproductive tissues or cells may also indicate that the
gene itself is activated, as shown in previous studies [57–59]. Therefore, we identified the 10
most highly expressed genes in the ovaries of high and low litter size pigs, respectively
(Table 7). Eight of these genes (CO1, GPX3,MSMB, COX3, TIMP1, STAR, HSD3B, and CYTB)
were upregulated in the high litter size samples. Some of them may be involved in specific
reproductive processes. For example, previous research has shown thatMSMB participates in
spermatogenesis [60], and that HSD3B and STAR regulate specific gonadal development and
hormone metabolism pathways [61–64]. The other most highly expressed genes may play
other important roles in biological processes. CO1 and COX3 genes have been extensively uti-
lized in polymorphic and phylogenetic analysis in some species [65, 66] and GPX3 is associated
with certain cancers [67, 68].

Fig 3. Venn diagram for identification of key genes influencing porcine litter size. T10DEGs represents the top 10 most DEGs between the high and
low litter size samples; T10YH represents the top 10 most expressed genes in the high litter size samples; T10YL represents the top 10 most expressed
genes in the low litter size samples; E21OS represents the 21 genes enriched in the steroid metabolic process and ovarian steroidogenesis. Six, in the light
green overlapping set surrounded by the red triangle, represents the CO1,GPX3,MSMB, COX3, TIMP1, andCYTB genes; two, in the brown overlapping set
surrounded by the red triangle, represents the STAR andHSD3B genes; two, in the light brown overlapping set surrounded by the red triangle, represents the
CYP11A1 and SCARB1 genes; and one, in the violet overlapping set surrounded by the red triangle, represents theHSD17B2 gene. Therefore, 11 genes
(CO1,GPX3,MSMB, COX3, TIMP1, CYTB, STAR, HSD3B, CYP11A1, SCARB1, andHSD17B2) were present in two or more assemblies.

doi:10.1371/journal.pone.0139514.g003
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Furthermore, in order to identify more candidate genes relate to porcine litter size, we
emphatically analyzed the 21 candidate genes (S5 Table) that may be associated with ovarian
steroid hormone secretion. We showed that 19 of these 21 genes were all upregulated in the
ovaries of pigs with high litter size. This suggests that the ovarian steroidogenesis pathway may
be activated. These 21 genes mainly contribute to ovarian steroidogenesis and development of
follicular cells.

Finally, by comparing the most highly expressed genes in the high and low litter size sam-
ples with the 10 most DEGs, and the 21 genes enriched in the steroid metabolic process and
ovarian steroidogenesis, we identified a total of 11 candidate genes (CO1, GPX3,MSMB,
COX3, TIMP1, CYTB, STAR, HSD3B, CYP11A1, SCARB1, and HSD17B2) relating to porcine
fecundity and litter size. Therefore, the reproductive roles of these 11 genes in pigs should be
further investigated in specific ovarian cells (such as theca and granulosa cells) in order to
determine their functions both in vitro and in vivo.

Conclusion
This study screened for DEGs in the ovarian tissues of extremely high and low litter size York-
shire pigs using RNA-Seq. We identified 897 genes that were upregulated and 346 genes that
were downregulated in the high litter size samples. After analyzing the function of these genes,
we found 11 DEGs that may be relevant to the prolificacy of pigs. This new information pro-
vides a solid foundation for further studies of the molecular mechanisms underlying porcine
prolificacy. In the future, biochemical and physiological analyses of these candidate genes will
be conducted.
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