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Membranous nephropathy (MN) is a rare but potentially severe autoimmune disease and a
major cause of nephrotic syndrome in adults. Traditional treatments for patients with MN
include steroids with alkylating agents such as cyclophosphamide or calcineurin inhibitors
such as cyclosporine, which have an undesirable side effect profile. Newer therapies like
rituximab, although superior to cyclosporine in maintaining disease remission, do not only
affect pathogenic B or plasma cells, but also inhibit the production of protective antibodies
and therefore the ability to fend off foreign organisms and to respond to vaccination. These
are undesired effects of general B or plasma cell-targeted treatments. The discovery of
several autoantigens in patients with MN offers the great opportunity for more specific
treatment approaches. Indeed, such treatments were recently developed for other
autoimmune diseases and tested in different preclinical models, and some are about to
jump to clinical practice. As such treatments have enormous potential to enhance
specificity, efficacy and compatibility also for MN, we will discuss two promising
strategies in this perspective: The elimination of pathogenic antibodies through
endogenous degradation systems and the depletion of pathogenic B cells through
chimeric autoantibody receptor T cells.

Keywords: membranous nephropathy, antigen-specific antibodies, B cells, chimeric autoantibody receptor,
sweeping antibody, autoantibodies
INTRODUCTION

Membranous nephropathy (MN) is a rare but potentially severe kidney disease and a major cause of
nephrotic syndrome in adults. According to the new KDIGO 2021 Clinical Practice Guidelines, a
nephrotic syndrome is defined as proteinuria of more than 3.5 grams per 24 hours or a protein-to-
creatinine ratio of more than 3 g/g in combination with low plasma albumin, peripheral edema, and
hyperlipidemia (1). The descriptive term “membranous” refers to the prominent change that is
classically seen in light microscopy: a diffuse thickening of the glomerular basement membrane (2).
Additionally, granular depositions of immunoglobulins and complement components can be
detected by immunofluorescence microscopy, suggesting a role of both autoantibodies and the
complement system in the pathogenesis of MN. The hallmark findings in electron microscopy
include electron-dense deposits in a subepithelial localization, i.e. on the outer aspect of the
glomerular basement membrane (GBM), and an extensive effacement of podocyte foot processes.
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Due to the prominent glomerular IgG positivity in biopsies of
affected patients, MN has long been assumed to be an antibody-
mediated autoimmune disease. The discoveries of several target
antigens for circulating autoantibodies in MN patients in the past
decade has corroborated this assumption. These targets include
neutral endopeptidase (NEP) (3), M-type phospholipase A2
receptor (PLA2R1) (4), thrombospondin type-1 domain-
containing protein 7A (THSD7A) (5), neural epidermal growth
factor-like 1 protein (NELL-1) (6), semaphorin 3B (SEMA3B)
(7), protocadherin 7 (PCDH7) (8), NCAM1 (9) and HTRA1
(10). PLA2R1-associated MN is diagnosed in around 70% of
cases and thus represents the most common MN sub-entity.

The current view on the pathogenesis of MN (Figure 1) is
that predisposing factors, such as an underlying genetic
disposition and/or immune dysregulation, in combination with
an initiating trigger such as an infection, a malignancy or
environmental factors lead to loss of tolerance for the
respective autoantigen with consecutive activation of B cells
and production of autoantibodies (11–18). B cells differentiate
towards plasma and/or memory B cells, which in turn produce
large amounts of autoantibodies. These autoantibodies reach the
kidney via the circulation and bind to their target antigen, which
Frontiers in Immunology | www.frontiersin.org 2
is assumed to induce damage to podocytes with subsequent loss
of plasma proteins to the urine, likely via complement-
dependent and complement-independent mechanisms (19).
Complement-independent mechanisms have been ill-defined
so far, but may include modification of cellular signaling,
antigen/receptor blocking or stimulation or interference with
the antigens’ biological function, e.g. enzymatic activity.
Importantly, the direct pathogenicity of autoantibodies has
been demonstrated by transfer experiments of patient-derived
anti-NEP and anti-THSD7A autoantibodies, which cause MN in
animals (3, 20). Even though such a mechanism has not been
demonstrated for anti-PLA2R1 autoantibodies, the association of
high autoantibody levels with an unfavorable clinical outcome in
patients with PLA2R1-associated MN and the development of
MN transgenic mice expressing the murine PLA2R1 after
transfer of rabbit anti-PLA2R1 antibodies strongly argue for a
pathogenic role of anti-PLA2R1 autoantibodies (21, 22).
Alternative proposed mechanisms of immune deposit
formation in MN include glomerular deposition of preformed
immune complexes and binding of circulating antibodies to a
planted antigen (23, 24), but the relevance of these mechanisms
is less clear.
FIGURE 1 | Current view on the pathogenesis of membranous nephropathy and potential targets for antigen-specific treatments. Predisposing factors such as
underlying genetic dispositions and/or immune dysregulation in combination with an initiating trigger such as an infection, a malignancy or environmental factors may
lead to loss of tolerance for the respective autoantigen with consecutive activation of B cells and production of autoantibodies. B cells differentiate to plasma and/or
memory B cells, which in turn produce large amounts of autoantibodies. These autoantibodies reach the kidney via the circulation and bind to their target antigen
(e.g. PLA2R1 or THSD7A), which induces damage to podocytes with subsequent urinary loss of plasma proteins. Complement-dependent and complement-
independent injury mechanisms are likely to be involved. Depletion of autoantibody-producing B cells or elimination of pathogenic autoantibodies constitute potential
antigen-specific treatments for MN.
February 2022 | Volume 13 | Article 822508

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Köllner et al. Antigen-Specific Treatment Strategies
CURRENT TREATMENTS FOR MN

The clinical outcome in patients with MN is highly variable with
about one-third of patients experiencing spontaneous remission
within one year after diagnosis, whereas another 20-30% develop
end-stage renal disease within 10 years (25). The identification of
patients with an unfavorable outcome, which would benefit from
early immunosuppressive treatment, represents a major clinical
challenge. Classical treatment regimens for MN include the use
of steroids in combination with alkylating agents or calcineurin
inhibitors (26–29). Recently, two large prospective clinical trials
have investigated the use of rituximab in the treatment for MN.
The MENTOR trial compared rituximab with cyclosporine and
found rituximab to be superior to cyclosporine in maintaining
remission for up to 24 months (30). The RI-CYCLO trial found
comparable remission rates with the use of rituximab and
cyclophosphamide and no significant differences in the safety
profiles of these medications (31).

The novel KDIGO guidelines define clusters of patients according
to the risk of disease progression and loss of renal function. Categories
comprise low risk, moderate risk, high risk, and very high risk,
depending on proteinuria, serum albumin, estimated GFR (eGFR),
and anti-PLA2R1 antibody levels (1). Patients with a low ormoderate
risk of disease progression are usually treated with optimal supportive
care (e.g. antiproteinuric therapy with renin-angiotensin aldosterone
system inhibition (RAAS) and blood pressure control) and
monitored for 3-6 months. In case of worsening proteinuria, eGFR
or antibody levels, patients should be evaluated for treatment with
rituximab or calcineurin inhibitors. Patients with a high risk of disease
progression should be treated with rituximab or cyclophosphamide
plus steroids or a calcineurin inhibitor plus rituximab and patients
with a very high risk should receive cyclophosphamide plus
steroids (1).

While calcinerin inhibitors and cyclophosphamide are broad
immunosuppressants, rituximab is targeting B cells expressing
the surface marker CD20. Initially developed as a lymphoma
treatment, it acts through different mechanisms of action: i)
Antibody-dependent cellular cytotoxicity (ADCC) through
either NK cells, monocytes or granulocytes (32–34) (ii)
apoptosis of B cells through caspase 3 activation (35) and iii)
complement-dependent cytotoxicity (36, 37).

In summary, the targets of autoimmunity in MN have been
increasingly understood and therapies have shifted from broad
immunosuppression using alkylating agents and calcineurin
inhibitors towards a more pathogenesis-based treatment
targeting autoantibody-producing B cells using rituximab.
However, rituximab treatment may entail resistance towards
apoptosis, ADCC, CDC and downregulation or loss of CD20
(38), which can decrease treatment efficacy. It also affects pre-
existing protective antibodies, reduces the body’s ability to
generate an immune response against foreign organisms, and
greatly decreases the response to vaccination. These are
undesired effects of B cell–targeted treatments, in particular in
the setting of a worldwide pandemic (39), and may limit the use
of agents such as rituximab in the treatment of antibody-
mediated diseases. Additionally, the increasing knowledge on
specific antigens in MN principally enables antigen-specific
Frontiers in Immunology | www.frontiersin.org 3
treatment strategies, which would ideally target the
immunological disease mechanisms while sparing protective
immunity. Such antigen-specific therapies would have
enormous potential to enhance specificity, efficacy and
compatibility. Hence, there is a considerable gap between the
increasing knowledge on the pathogenic role of autoantibodies
and autoantigens in MN on the one side and the currently
available treatments with limited specificity on the other side.

In the following, we will discuss two promising strategies that
could be applied in the field of MN: The elimination of
pathogenic antibodies through endogenous degradation
systems and the elimination of autoreactive B cells through
chimeric autoantibody receptor T cells (Figure 1).
NO SWEEPING UNDER THE RUG: THE
SWEEPING ANTIBODY TECHNOLOGY

Physiologically, immunoglobulins (IgG) are constantly taken up
by endothelial cells and shuttled to the sorting endosome. At pH
6 inside the sorting endosome IgG binds to the neonatal Fc
receptor (FcRn) and is transported to the cell surface. Now at pH
7.4 the IgG is released from the FcRn back into the circulation
due to a reduced affinity at neutral pH. This system prolongs the
half-life of IgG in the circulation to approximately 30 days (40).
Consequently, antibodies may also prolong the half-life of their
target antigen by constant recirculation from endothelial cells
back to the plasma.

Sweeping antibodies as potential therapeutics to remove
soluble antigens from plasma were first described by Igawa
et al. (41). Sweeping antibodies are engineered IgG that
remove soluble antigens from the circulation, which is enabled
by two distinct modifications: a pH-dependent binding to the
antigen and an increased affinity of the antibody Fc part to an Fc
receptor (FcR) (41). A pH-dependent antigen binding can be
achieved by histidine mutagenesis, meaning that amino acids in
the Fab region of the antibody are substituted for histidines. In
the acidic environment of the sorting endosome, the protonated
histidines lead to conformational changes in the Fab region of
the sweeping antibody, which results in weakening of the binding
to the antigen and finally dissociation of antibody and antigen.
Enhanced immune complex uptake into the endosome is
achieved by mutations in the Fc region, increasing the binding
to either FcRn or FcgRIIB.

After injection, a sweeping antibody binds its target molecule
in the circulation. The resulting immune complex is then taken
up into endothelial cells by pinocytosis or FcR-mediated
endocytosis. In the sorting endosome, the pH shifts from
neutral to slightly acidic (pH 6) and the antigen is released
from the sweeping antibody. While the sweeping antibody –
bound by the FcRn – is shuttled to the cell surface and released
there, the antigen is degraded in the lysosome. The enhanced
affinity to the FcR allows efficient recirculation of the therapeutic
sweeping antibody from endothelial cells to the plasma, which in
turn leads to further removal of antigens from the circulation,
creating the “sweeping” effect. Several different mutations have
February 2022 | Volume 13 | Article 822508
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been described that enhance active internalization of antigen-
antibody complexes via FcRn, leading to efficient degradation of
the antigen (42–44).

Sweeping can also occur through the FcgRIIB (45). FcgRIIB is
the only inhibitory Fc receptor with an immunoreceptor-based
inhibitory motif (ITIM) and normally has a very low affinity for
IgG monomers (IgG1<IgG2a=IgG2b<IgG3) (46). FcgRIIB is, for
example, expressed on B cells regulating their activation (47),
and on myeloid-derived cells modulating endocytosis through
clathrin-coated pits (48). Liver sinusoidal endothelial cells
(LSECs) are scavenger cells specialized to clear blood from
smaller immune complexes through pinocytosis (49). In mice,
three quarters of all FcgRIIB are expressed in the liver and 90% of
liver FcgRIIB is found on the surface of LSECs (50). Interestingly,
Ganesan et al. could demonstrate that small immune complexes
are cleared via FcgRIIB-mediated uptake into the liver (50).
Binding to FcgRIIB can be dramatically enhanced by mutating
the Fc part of the sweeping antibody, leading to efficient clearing
of soluble antigens (51).

Recently, it could be demonstrated that the sweeping
antibody principle can also be applied for the elimination of
antigen-specific antibodies. Devanaboyina et al. (52) used
therapeutic antibodies including fragments of either the myelin
oligodendrocyte glycoprotein (MOG), an antigen in multiple
sclerosis, or HER2, a tumor protein (52). The therapeutic
antibodies specifically bound to anti-MOG and anti-HER2
antibodies, which lead to rapid clearance of the resulting
immune complex in mice. In a follow-up study, the authors
could demonstrate a therapeutic effect using similar constructs in
a mouse model of multiple sclerosis (53).

The increasing knowledge on pathogenic autoantibodies in
MN and their target antigens offers excellent conditions to apply
the sweeping antibody concept also in this disease. Sweeping
antibodies with the Fab region substituted for an antigen
fragment could be generated and tested for their capacity to
bind and eliminate specific autoantibodies. As virtually 100% of
patients with PLA2R1-associated MN have antibodies against the
most N-terminal domain (the cysteine-rich domain) of PLA2R1
(54–56), a sweeping antibody containing this part of PLA2R1 may
be a promising candidate – yet therapeutic antibodies could be
engineered for any MN antigen and tailored to the immune and
epitope profile of each individual patient. After administration, the
therapeutic sweeping antibodies bind their targets, the pathogenic
autoantibodies, in the circulation. The resulting immune complex
is then taken up by liver LSECs through enhanced affinity for
FcgRIIB or by other endothelial cells via FcRn, resulting in
lysosomal degradation of the pathogenic autoantibodies and
potentially recirculation of the therapeutic sweeping antibody
(Figure 2A). Fewer autoantibodies could bind their target
antigen in the kidney, potentially leading to amelioration of
disease activity. This can improve the course of MN without
affecting parts of the immune system that are essential for the
body’s defense e.g. against infection. In summary, the elimination
of pathogenic autoantibodies through endogenous degradation
systems represents a promising therapeutic strategy for patients
with MN.
Frontiers in Immunology | www.frontiersin.org 4
STRIKING THE EVIL AT ITS ROOTS:
CHIMERIC AUTOANTIBODY
RECEPTOR T CELLS
Chimeric antigen receptor (CAR) T cells are a promising
treatment for cancer, used with remarkable success for
example in refractory or relapsed B cell lymphoma (57–59). To
obtain such CAR T cells, peripheral blood mononuclear cells
from the patient’s blood are isolated and stimulated with
interleukin 2 and anti-CD3 antibodies, leading to their
proliferation. The T cells are transduced with a construct
encoding for the CAR of interest, e.g. the antigen-binding
domain of an anti-CD19 antibody fused to a transmembrane
and several intracellular signaling domains such as 4-1BB and
CD3z (60). Upon transfusion back to the patient, the CAR T cells
eliminate cells expressing the target antigen, in this case CD19,
which is a marker of B cells. A huge advantage of this treatment is
the generation of long-termmemory CAR T cells, which offer the
opportunity for constant elimination of newly emerging target
cells without the need for repetitive dosing.

This strategy can also be applied for the treatment of antibody-
mediated autoimmune diseases, with one essential modification:
the antigen-binding domain of a conventional CAR is replaced by
a part of the autoantigen of interest, resulting in a chimeric
autoantibody receptor (CAAR). A T cell expressing this CAAR
(CAAR T cell) will bind to and eliminate B cells that express the
corresponding B cell receptor (BCR), a membrane-bound
immunoglobulin matching the antibody produced by this
particular cell clone. This approach was firstly tested in an
animal model of pemphigus vulgaris (PV). T cells expressing a
CAAR consisting of the PV autoantigen desmoglein 3 fused to
CD137-CD3z specifically eliminated anti-desmoglein 3-specific
autoreactive B cells (61). Moreover, the CAAR T cells erased their
targets even in the presence of circulating anti-desmoglein 3
antibodies and did not show significant off target effects. In a
follow-up study, the authors preclinically examined the
pharmacodynamics and toxicity of this CAAR and showed that
the desmoglein 3-CAAR T cells specifically deplete primary
human desmoglein 3-specific B cells from PV patients and is
effective in an active animal model of PV (62).

Applying the CAAR T cell strategy for the treatment of MN
would be a pioneering approach. The antibody binding sites in
the antigens PLA2R1 and THSD7A have been already
characterized, in parts even down to the level of single antigen
domains and smaller epitopes (54–56, 63–65). Given this
knowledge, to achieve an optimal intermembrane distance of
the immunologic synapse (the space between the CAAR T cell
and the target B cell) and minimize potential off-target effects, it
appears reasonable to fuse smaller fragments of PLA2R1 or the
other MN antigens to the chimeric receptor (Figure 2B). In case
of PLA2R1 and THSD7A the most N-terminal regions are
considered as immunological hot spots, as most reactivity with
patient autoantibodies is found in these areas (56, 63, 64).
Therefore, a CAAR containing only the N-terminal region of
the respective autoantigen might be sufficient to eliminate a
number of autoreactive B cells large enough to ameliorate
February 2022 | Volume 13 | Article 822508
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disease. It would also be possible to perform an antibody
mapping first, e.g. using domain-specific ELISAs, and tailor the
CAAR strategy to the individual epitope profile.

Although the CAR T cell therapy has revolutionized the
treatment of malignancies, it has several potential flaws. First,
the manufacturing of personalized CAR T cells is very complex,
time-consuming and expensive. Second, CAR T cell therapy
could involve serious adverse effects, such as the cytokine release
syndrome (CRS), caused by the activation of CAR T cells and
their production of proinflammatory cytokines (66, 67), or
neurotoxicity, which often accompanies CRS, possibly due to
cerebral endothelial dysfunction (68). Third, it is questionable
whether the generation of memory T cells is always desirable in
light of many patients achieving full remission of disease after
some time.

The generation of CAR NK cells represents an alternative
strategy to overcome some of these undesired effects. Due to their
Frontiers in Immunology | www.frontiersin.org 5
limited lifespan, CAR NK cells show a relatively low toxicity
towards normal tissue of the recipient (69). They offer the
possibility of “off the shelf” therapy as they can be obtained
from peripheral blood mononuclear cells of healthy donors,
umbilical cord blood, induced pluripotent stem cells, and even
NK92 cell lines (70). Currently, most of the CAR NK constructs
derive from CAR T cell approaches, but there are attempts to
design also CARs tailored specifically for NK cells (71). To date,
CAR NK cell therapy seems to be a safe additional approach for
cancer therapy, with several clinical trials running (72, 73). In
conclusion, CAAR T cell therapy and, alternatively, the safer and
likely more cost-efficient and easier to manufacture CAAR NK
cell therapy represent an elegant and promising therapeutic
strategy for patients with MN.

Notably, is also possible to approach T cell therapy from the
opposite site, by regaining immune tolerance. To achieve this, the
function of one key player of immune tolerance has to be
A B

FIGURE 2 | Antigen-specific therapies suited for MN. (A) Schematic of the sweeping antibody principle with enhanced FcgRIIB binding. 1. After injection, sweeping
antibody and autoantibody bind in the circulation. 2. Scavenger cells like liver sinusoidal endothelial cells (LSECs) that express FcgRIIB bind the circulating immune
complex (IC) and internalize it through pinocytosis. 3. Due to a pH shift from neutral to pH 6 inside the sorting endosome, the autoantibody is released from the IC-
receptor complex. 4. The autoantibody is degraded inside the lysosome. 5. The Fc receptor-bound sweeping antibody is returned to the surface and can bind new
circulating autoantibodies causing the “sweeping” effect. Magnified: structure of a PLA2R1 sweeping antibody: The Fab part is substituted for the most N-terminal
domains of PLA2R1 (cysteine-rich and fibronectin type II) to create specificity for anti-PLA2R1 autoantibodies. Mutations in the Fc part of the sweeping antibody
enhance the affinity towards FcgRIIB. (B) Schematic of chimeric autoantibody receptor (CAAR) T cell principle. The CAAR comprises fragments of the target antigen
(in this case the cysteine-rich and fibronectin type II domains of PLA2R1), a transmembrane domain, and several intracellular signaling domains. The CAAR enables
binding to a B cell, which expresses the corresponding B cell receptor (BCR), a membrane-anchored IgG corresponding to the autoantibody that is produced by the
B cell. CAAR-mediated binding of the T cell to the pathogenic B cell leads to release of granzyme B, which eliminates the target B cell. Magnified: structure of a
second generation CAAR. It includes the autoantibody receptor as a ectodomain, here the most N-terminal domains of PLA2R, a transmembrane part and an
endodomain with co-stimulation module and the CD3z with three immunoreceptor tyrosine-based activation motifs (ITAMs). The co-stimulatory domain improves the
half-life in vivo, proliferation and cytotoxity of the CAAR T cell.
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modified: the so called regulatory T cells or Tregs. About 5-7% of
all CD4+ T cells in the human body are Tregs. The identity and
function of Tregs are characterized by the expression of various
markers such as the cytotoxic T lymphocyte-associated protein-4
(CTLA-4), the interleukin 2 receptor subunit a (CD25), the
transcription-maintaining factor STAT5, and the forkhead box
P3 (FOXP3). FOXP3 has a key function for the maintenance of
immune tolerance (74).

Tregs can be transduced with so called BARs (chimeric B cell-
targeting antibody receptors) containing an extracellular domain
consisting of the immunodominant parts of the antigen, which
means they are basically comparable to CAARs on cytotoxic T
cells. Instead of killing the B- cell upon binding, such BAR Tregs
suppress antigen-specific B cells directly without affecting the T
cell response (75).
CONCLUSION

MN is an antibody-mediated autoimmune disease and several
autoantigens have been identified over the past years. The direct
pathogenicity of the involved autoantibodies has either been shown
or is strongly suspected (20, 22), and treatment strategies have
shifted towards targeting of B cells (30, 31, 76). In light of these
developments, the establishment of antigen-specific treatments
represents the consequential continuation of MN therapy. We are
aware that the therapeutic conceptsdiscussed in this article havenot
been tested in MN, not even at an experimental level. However,
future research should take into account such potential strategies,
particularly as antigen-specific animal models become more and
more available (22, 77). Clearly, the possible adverse effects of such
treatments should not be overlooked, but there is a realistic chance
that they would not be as severe as the ones of currently used
therapeutics. Especially in case ofCARTcells, huge efforts aremade
to reduce side effects andmake themmore controllable, e.g. through
transient transduction, suicide genes or elimination markers (78).

The actual charm of the two treatment approaches that we
presented here is the option to combine and apply them as a
therapeutic package tailored for the individual patient. As an
example, one could imagine the following procedure: After
Frontiers in Immunology | www.frontiersin.org 6
confirming the diagnosis of PLA2R1-associated MN by kidney
biopsy, the antibody profile is analyzed using a domain-specific
ELISA, revealing reactivity with the cysteine-rich domain.
Subsequently, sweeping antibodies containing the cysteine-rich
domain are applied to eliminate the circulating autoantibodies.
This acutely reduces binding of pathogenic antibodies at the
glomerular filtration barrier and additionally paves the way for
CAAR T or NK cells carrying a CAAR which contains the
cysteine-rich domain. The CAAR T or NK cells thus eliminate
autoreactive B cells, which prevents further production of
pathogenic antibodies. Without previous clearance of
antibodies, CAAR cells may in fact be neutralized by the
circulating antibodies binding to the CAAR, potentially
making them ineffective in eliminating autoreactive B cells. As
an alternative or additive strategy, PLA2R1-specific immune
tolerance could be restored by suppression of autoreactive B cells
using Tregs expressing a BAR that contains the cysteine-
rich domain.

In summary, the increasing knowledge about the targets of
autoimmunity in MN offers a huge potential for the application
of antigen-specific treatment strategies, which would ideally
spare protective immunity.
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