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Purpose: To develop and validate a radiomics model for predicting preoperative lymph
node (LN) metastasis in high-grade serous ovarian cancer (HGSOC).

Materials andMethods: FromMay 2008 to January 2018, a total of 256 eligible HGSOC
patients who underwent tumor resection and LN dissection were divided into a training
cohort (n=179) and a test cohort (n=77) in a 7:3 ratio. A Radiomics Model was developed
based on a training cohort of 179 patients. A radiomics signature (defined as the
Radscore) was selected by using the random forest method. Logistics regression was
used as the classifier for modeling. An Integrated Model that incorporated the Radscore
and CT_reported LN status (CT_LN_report) was developed and presented as a radiomics
nomogram. Its performance was determined by the area under the curve (AUC),
calibration, and decision curve. The radiomics nomogram was internally tested in an
independent test cohort (n=77) and a CT-LN-report negative subgroup (n=179) using the
formula derived from the training cohort.

Results: The AUC value of the CT_LN_report was 0.688 (95% CI: 0.626, 0.759) in the
training cohort and 0.717 (95% CI: 0.630, 0.804) in the test cohort. The Radiomics Model
yielded an AUC of 0.767 (95% CI: 0.696, 0.837) in the training cohort and 0.753 (95% CI:
0.640, 0.866) in the test. The radiomics nomogram demonstrated favorable calibration
and discrimination in the training cohort (AUC=0.821), test cohort (AUC=0.843), and CT-
LN-report negative subgroup (AUC=0.82), outperforming the Radiomics Model and
CT_LN_report alone.

Conclusions: The radiomics nomogram derived from portal phase CT images performed
well in predicting LN metastasis in HGSOC and could be recommended as a new,
convenient, and non-invasive method to aid in clinical decision-making.
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INTRODUCTION

Epithelial ovarian cancer (EOC) has the highest mortality rate
among all gynecological malignancies, and approximately two-
thirds of women are staged as International Federation of
Gynecology and Obstetrics (FIGO) III–IV (1). High-grade
serous ovarian cancer (HGSOC) accounts for 70% of EOC
patients and is the lethal histological subtype (2–4). Lymph
node (LN) metastasis in HGSOC patients is observed in up to
75% of patients with stage III–IV disease and in 25% of patients
with stage I–II disease (5, 6). LN status has an important impact
on the FIGO stage of EOC (7–11). For example, stage I patients
with LN metastasis will be rediagnosed as stage III or IV (12–17).
Moreover, LN metastasis in different sites for ovarian cancer may
have not the same impact on progression-free survival (PFS) and
overall survival (OS) (11, 18–20). In the study by Gallotta et al.
(19), the patients with metastatic hepatoceliac lymph nodes
(HCLNs) experienced worse PFS than the patients with
uninvolved ones, but clinicians often underestimate the true
prevalence of disease in this area due to the lack of effective
methods before surgery. Furthermore, patients with stage I
disease (10) and those suitable for neoadjuvant chemotherapy
(21) also should accurately assess the LN status preoperatively.
However, the gold standard methods for EOC staging are surgery
and histopathologic diagnosis, so it is necessary to explore non-
invasive methods to predict LN metastatic preoperatively for
aiding in clinical decision-making.

LN metastasis has been evaluated using computed
tomography (CT), magnetic resonance imaging (MRI), and
positron emission tomography with CT (PET-CT) to measure
LN size (22). LN positive for metastasis is defined as larger than
10 mm in the short-axis diameter and central necrosis in the
portal phase (23). Presently, CT is the first-line imaging method
for ovarian cancer staging and follow-up according to the
European Society of Urogenital Radiology and the American
College of Radiology guidelines (22, 24). However, its accuracy in
predicting LN metastasis is unsatisfactory, with a sensitivity of
48%-80% (25). MRI is recommended as a second-line technique,
with a sensitivity of 54.7% in predicting LN metastasis (9, 25).
PET-CT may improve staging accuracy, but it has a high rate of
false-positive results (24). These low efficacies have led to a
considerable proportion of patients being understaged or
overstaged. Therefore, it is critical to evaluate the LN
metastasis of ovarian cancer in a non-invasive way, which may
guide optimal treatment planning and help to determine
prognosis. However, it is difficult to achieve accurate
preoperative LN staging with the currently available methods.

Radiomics is the process of the conversion of medical images
into high-dimensional, mineable data via the high-throughput
extraction of quantitative features, followed by subsequent data
analysis for decision support. The radiomics approach could
non-invasively provide rich information on diseases, such as
assessing the diagnosis of diseases, evaluating prognosis, and
predicting treatment response (26, 27). At present, radiomics is
mainly applied in oncology to aid in improving clinical decision-
Frontiers in Oncology | www.frontiersin.org 2
making (28). Previous studies have suggested that the
preoperative prediction of LN metastasis can be improved by
using a radiomics-based approach for colorectal cancer, bladder
cancer, intrahepatic cholangiocarcinoma, gastric cancer, and
lung adenocarcinoma (23, 27, 29–32). To the best of our
knowledge, there are few studies that have determined whether
a radiomics signature would enable the superior prediction of LN
metastasis in patients with HGSOC. We hypothesized that the
radiomics signature might help to improve the diagnostic value
of LN metastasis in HGSOC by combining traditional
imaging features.

Therefore, in our study, we aimed to develop and validate a
radiomics nomogram that incorporated both a radiomics
signature and traditional imaging features for the individual
preoperative prediction of LN metastasis in patients
with HGSOC.
MATERIALS AND METHODS

This retrospective study was approved by the Institutional
Review Board of West China Second University Hospital (No.
2020173), and we pledged to abide by the Declaration of Helsinki
(2013 EDITION) in accordance with the relevant medical
research rules of China in the study. The requirement for
written informed consent was waived. All patient sensitive
information was treated with strict secrecy and used solely for
the purposes of this study.

Patients
From May 2008 to January 2018, a total of 486 consecutive
women with pathologically confirmed HGSOC who underwent
appropriate surgical staging and/or debulking surgery with pelvic
and/or para-aortic lymph node dissection were reviewed from
our institutional database. The inclusion criteria were as follows:
(1) pathologically confirmed HGSOC with definite LN stage,
without neoadjuvant chemotherapy (NAC); (2) preoperative
contrast-enhanced CT scans; (3) no chemotherapy or radiation
therapy prior to CT scans; and (4) preoperative enhanced
abdominal CT examination within 2 weeks prior to surgery.

The exclusion criteria were as follows: (1) lack of definite
information on postoperative LN status (n=89); (2) received
NAC or radiotherapy before surgery (n=73); (3) lack of contrast-
enhanced CT scans at our institution (n=53); (4) any artifacts
within the scan area that displayed the lesion (n=10); and (5) the
scan area did not cover the entire lesion (n=5).

A total of 256 patients who met the criteria were randomly
divided into a training cohort (n=179) and a test cohort (n=77)
in a 7:3 ratio (Figure 1).

Clinical data, including age, family history of cancer,
preoperative carbohydrate antigen 125 (CA125) level,
carbohydrate antigen 199 (CA199) level, and dates of baseline
CT imaging, were obtained frommedical records. Our study flow
diagram is shown in Figure 2.
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FIGURE 2 | Workflow of the steps in our study. First, tumors were manually segmented, and radiomic features were extracted from within the defined tumor
contours on CT images. Second, for feature selection, the random forest method was used to rank the remaining features in order of importance according to
different kinds of permutations and combinations. Finally, the performance of the radiomics nomogram was developed based on the Radscore and CT_LN_report in
the training cohort and assessed by ROC curve, calibration curve, and decision curve analyses.
FIGURE 1 | Recruitment pathway for the patients in this study.
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CT Image Acquisition and
Radiologic Evaluation
One multidetector CT scanner (Brilliance 6, Philips Medical
System, Best, Netherlands) was performed on 113 patients. The
scan area was from the pubic symphysis to the diaphragm,
including the non-enhancement scan, arterial phase, and portal
venous phase. The CT scan parameters were as follows: tube
voltage= 120 kVp; tube current= 100–320 mA; beam pitch=0.9;
reconstruction thickness= 2 mm; reconstruction interval= 1 mm;
matrix= 512 × 512. Contrast medium (80–100 ml; Iohexol, GE
healthcare, USA) was injected into the antecubital vein using a
mechanical injector at a rate of 2.5–3.5 ml/s. The arterial phase
and portal venous phase times were 20–25 s and 60–70 s after
contrast agent injection, respectively.

Another multidetector CT scanner (NeuViz 128 1.0, China)
was performed on 143 patients. The CT scan parameters were as
follows: tube voltage= 120 kVp; tube current= automatic
milliampere setting with a range of 100–500 mA; beam
pitch <1; reconstruction thickness= 1 mm; reconstruction
interval= 0.5 mm; matrix= 512 × 512. The method and process
of the contrast-enhanced CT scan were the same as those of the
multidetector CT scanner (Brilliance 6, Philips Medical System,
Best, Netherlands).

All CT images were reviewed by two radiologists (reader 1
and reader 2, with 8 and 12 years of gynecological imaging
experience, respectively) in consensus to evaluate the following
traits: (a) tumor size (the maximum diameter on transverse
images), (b) laterality (the number of tumors), (c) tumor stage,
and the maximal short-axis diameter of the largest LN in the
para-aorta or pelvic cavity were recorded. The maximal short-
axis diameter (>10 mm) or central necrosis in the portal venous
phase was defined as LN positive for metastasis (23, 33). The CT-
reported LN status hereinafter referred to as CT-LN-report. The
two radiologists were blinded to the pathologic details. Any
disagreement was resolved by consultation.

Tumor Segmentation
The preoperative CT images in all patients with HGSOC were
downloaded by means of Digital Imaging and Communications
in Medicine (DICOM) data from the picture archiving and
communication system (PACS). All CT DICOM images were
collected from two different scanners with different scanning
parameters. Portal venous phase images at 1 or 2 mm thickness
were chosen for radiomic feature extraction. The regions of
interest (ROIs) covered the whole tumor and were manually
delineated along the tumor contour on each transverse section by
using open-source imaging software (ITK-SNAP, version 3.6.1;
www.itksnap.org) for 3-D segmentation.

The intra- and interclass correlation coefficients (ICCs) were
calculated to ensure reproducibility and accuracy. Initially, 50
patients with CT images were randomly chosen for ROI
segmentation and radiomic feature extraction. Then, to assess
interobserver reliability, ROI segmentation was performed in a
blinded fashion by reader 1 (with 8 years of experience in
gynecological imaging) and reader 2 (with 12 years of
experience in gynecological imaging). To evaluate intraobserver
Frontiers in Oncology | www.frontiersin.org 4
reliability, reader 1 repeated the same procedure 1 month later.
The remaining image segmentation was completed by reader 1.
An ICC greater than 0.75 was considered to indicate good
agreement of the feature extraction (34).

Radiomics Feature Extraction,
Normalization, and Signature Construction
In total, 696 radiomics features were automatically extracted
from each segmented ROI by Intelligence Foundry Version 3.0.3.
A (GE Healthcare, USA). All features were calculated in three-
dimensional directions within the whole tumor volume. To
minimize the different kinds of CT parameter variations, we
normalized the imaging parameters using Z-score standardization.
The formula was as follows: z =(x-m)/s, where x refers to the
original value, m refers to the mean value, and s refers to the
standard deviation.

The Spearman correlation coefficient was calculated, and 0.95
was used as the threshold to remove highly correlated features.
Then, the importance value of the remaining CT image features
was calculated by means of Random Forest algorithm, and we
selected optimal features in accordance with feature. Logistics
regression was used as the classifier for modeling, with penalty
parameter tuning conducted by five-fold cross-validation. A
radiomics score (Radscore) was calculated for each patient via
a linear combination of selected features that were weighted by
their respective coefficients. The Radiomics Model was
constructed based on Radscore.

Development and Validation of the
Integrated Model
An Integrated Model incorporat ing Radscore and
CT_LN_report was developed and presented as a radiomics
nomogram in the training cohort. The calibration of the
radiomics nomogram was assessed with a calibration curve.
The performance of the radiomics nomogram was then
internally tested in an independent test cohort and the
CT_LN_report negative sample.

Clinical Use of the Radiomics Nomogram
The decision curve analysis (DCA) was used to estimate the
clinical utility of the radiomics nomogram, Radscore, and
CT_LN_report by calculating the net benefits for a range of
threshold probabilities in the training and test cohorts.

Statistical Tools
We performed the statistical analysis in R (version 3.6.4; http://
www.Rproject.org) and IBM SPSS Statistics version 25.0.
Common comparisons of patient characteristics were
conducted by the two-sample t-test or Mann-Whitney U test
for continuous variables. Fisher’s exact test or the c2 test was
used for categorical variables. The area under the curve (AUC)
was calculated to predict the discrimination performance of the
Radiomics Model, Integrated Model, and CT_LN_report in both
the training and test cohorts. The DeLong non-parametric was
used to compare AUCs among prediction models. Decision
curve analysis was used to calculate the net benefit from the
August 2021 | Volume 11 | Article 711648
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use of the Integrated Model, Radiomics Model, and
CT_LN_report at different threshold probabilities in the
training and test cohorts. A two-sided P value less than 0.05
was considered to indicate statistical significance.
RESULTS

Patient Characteristics
All patient characteristics in the training and test cohorts are
shown in Table 1. There were no differences in clinical and
radiologic characteristics between them. The AUC value of the
CT_LN_report was 0.688 (95% CI: 0.626, 0.759) in the training
cohort and 0.717 (95% CI: 0.630, 0.804) in the test cohort, with
sensitivities of 50 and 48.7%, respectively (Table 2). In total, 65
patients (50.4%; 65 of 129) with LN metastasis were understaged,
and 13 patients (10.2%; 13 of 127) without LN metastasis were
overstaged according to the pathologic examination for
LN metastasis.
Frontiers in Oncology | www.frontiersin.org 5
Feature Selection and Radiomics
Model Construction
Nine LN status-related features with non-zero coefficients in the
random forest model were selected based on the training cohort
(Figure 3). The Radscore was calculated by using the following
formula:

Radiomics score = 0:025�WL_ lbp _ hist _ cV1 _ 1

+ 0:019�WL_ lbp _ hist _ cV2 _ 8

+ 0:015� original _ glcm _ClusterProminence

+ 0:015�WL_ lbp _ hist _ cV2 _ 1 +  0:014

� original _ glszm _GrayLevelNonUniformityNormalized

+ 0:013�WL_ lbp _ hist _ cH2 _ 7

+ 0:012� PLBP _ hist _ tumor _ orient4 _ 5

+ 0:012� original _ shape _Maximum2DDDiameterColumn

+ 0:012�WL_ lbp _ hist _ cH2 _ 0
TABLE 1 | Clinical characteristics of the patients in the training and test cohorts.

Training Cohort (n = 179) Test Cohort (n = 77)

Negative for LN Metastasis Positive for LN Metastasis P Value Negative for LN Metastasis Positive for LN Metastasis P Value

No. Patients 89 90 38 39
Age (y) 53.69 ± 8.35 50.32 ± 7.24 0.004 54.37 ± 7.69 48.31 ± 7.34 0.001
CA125 (miu/ml) 0.682 0.615
≧35 miu/ml 87 (97.8%) 86 (95.6%) 36 (94.7%) 38 (97.4%)
<35 miu/ml 2 (2.2%) 4 (4.4%) 2 (5.3%) 1 (2.6%)

CA199 (miu/ml) 0.072 0.481
≧30.9 miu/ml 7 (7.9%) 16 (17.8%) 5 (13.2%) 3 (7.7%)
<30.9 miu/ml 82 (92.1%) 74 (82.2%) 33 (86.8%) 36 (92.3%)

Ascites 0.074 0.335
Present 73 (82%) 82 (91.1%) 30 (78.9%) 34 (87.2%)
Absent 16 (18%) 8 (8.9%) 8 (21.1%) 5 (12.8%)

CT_T_stage 0.000 0.000
I–II 34 (38.2%) 7 (7.8%) 13 (34.2%) 0 (0%)
III–IV 55 (61.8%) 83 (92.2%) 25 (65.8%) 39 (100%)

Laterality (%) 0.069 0.014
Unilateral 34 (38.2%) 23 (25.6%) 19 (50%) 9 (23.1%)
Bilateral 55 (61.8%) 67 (74.4%) 19 (50%) 30 (76.9%)

CT_tumor size 85.23 ± 35.89 83.76 ± 28.71 0.762 86.78 ± 38.29 78.54 ± 27.59 0.281
CT_LN_report 0.000 0.000
Negative 78 (87.6%) 45 (50%) 36 (94.7%) 20 (51.3%)
Positive 11 (12.4%) 45 (50%) 2 (5.3%) 19 (48.7%)
Radscore −0.424 ± 0.875 0.441 ± 0.905 0.000 −0.349 ± 1.529 0.514 ± 0.972 0.004
Au
gust 2021 | Volume 11 | Article
CA125, carbohydrate antigen 125; CA199, carbohydrate antigen 199; CT_T_stage, CT_reported tumor stage; CT_tumor size, CT_reported tumor size; CT_LN_report, CT_reported
lymph node status.
TABLE 2 | Diagnostic efficiency of the CT_LN_report, Radiomics Model, and Integrated Model in the training and test cohorts.

Training Cohort Test Cohort

Sen Spe AUC (95% CI) Sen Spe AUC (95% CI)

CT_LN_report 0.500 0.876 0.688 (0.626–0.759) 0.487 0.947 0.717 (0.630–0.804)
Radiomics model 0.589 0.854 0.767 (0.696–0.837) 0.605 0.872 0.753 (0.640–0.866)
Integrated Model 0.767 0.764 0.821 (0.760–0.882) 0.846 0.789 0.843 (0.750–0.936)
Spe, Specificity; Sen, Sensitivity.
711648
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The Radiomics Model was constructed based on Radscore,
and the distributions of the Radscore for each patient in the
training and test cohorts are shown in Appendix E1 and E2.

Diagnostic Validation of the
Radiomics Model
There was a difference in the Radscore between patients with and
without LN metastasis in the training cohort (0.441 ± 0.905
vs −0.424 ± 0.875; P= 0.000) and the test cohort (0.514 ± 0.972
vs −0.349 ± 1.529; P= 0.004). The Radiomics Model yielded an
AUC of 0.767 (95% CI: 0.696, 0.837) in the training cohort and
0.753 (95% CI: 0.640, 0.866) in the test cohort (Table 2).

Development, Performance, and Validation
of the Integrated Model
An Integrated Model that incorporated the Radscore and
CT_LN_report was developed in the training and test cohorts
and presented as a nomogram Figure 4A. The Integrated Model
yielded an AUC of 0.821 (95% CI: 0.760, 0.882) in the training
cohort and 0.843 (95% CI: 0.750, 0.936) in the test cohort,
showing favorable predictive efficacy (Table 2).

All ROC curves are shown in Figures 4B, C. There were no
differences between the Radiomics Model and CT_LN_report in
the training (P=0.093) and test cohorts (P=0.619), and a
significant difference was present between the Integrated
Model and CT_LN_report and between the Integrated Model
and Radiomics Model in the training cohort (P=0.004) and the
test cohort (P=0.019).

The calibration curve of the Integrated Model demonstrated
good agreement between the predicted and observed LN
Frontiers in Oncology | www.frontiersin.org 6
metastasis rates in the training cohort (Figure 4D) and the test
cohort (Figure 4E).

Validation of the Combine Model in the
CT-Reported LN-Negative Subgroup
In addition, we evaluated the discriminative efficiency of the
Integrated Model nomogram in the CT-reported LN-negative
subgroup (n =179) using ROC analysis by 5-fold cross-
validation. The Integrated Model nomogram yielded an
average AUC of 0.82 (Figure 5).

Clinical Use of the Radiomics Nomogram
The DCA for radiomics nomogram, Radiomics Model, and
CT_LN_report in the training and test cohorts are presented
in Figure 6. The DCA showed that the radiomics nomogram
adds more net benefit to predict LN metastasis than either the
Radiomics Model or the CT_LN_report alone for more than 5–
10% when the threshold probability is within a range from 0.34
to 0.6 in the training and from 0.2 to 0.46 in the test cohorts.
DISCUSSION

In our study, we constructed and validated an Integrated Model
that included the Radscore and CT_LN_report for the prediction
of LN metastasis in patients with HGSOC before surgery.
Compared with the Radiomics Model and CT_LN_report, the
Integrated Model showed excellent discrimination in both the
training cohort (AUC, 0.821) and the test cohort (AUC, 0.843).
Therefore, a radiomics signature could be used to assist clinical
and traditional CT images to improve the diagnostic value for LN
metastasis in HGSOC.

Contrast-enhanced CT is the standard imaging method for
the preoperative evaluation and postoperative surveillance of
women with ovarian cancer, and LN metastasis has been
evaluated to measure LN size (22). Unfortunately, our results
demonstrated that the AUC values of the CT_LN_report were
0.688 and 0.717 with sensitivities of 50 and 48.7% in the training
and testing cohorts, respectively. Therefore, 50.4% of patients
with LN metastasis were understaged, and 10.2% of patients
without LN metastasis were overstaged according to the CT
visual images, which was similar to the findings of several
previous studies (9, 24, 25). In view of CT_LN_report results,
the discrimination of malignancies from benign nodes on the
basis of morphological features remains challenging because
of small LN metastasis and non-specific inflammatory
hyperplasia (35).

Radiomics is the process of the conversion of medical images
into high-dimensional, mineable data via the high-throughput
extraction of quantitative features, followed by subsequent data
analysis for decision support (27) and is mainly used in oncology
to facilitate improved clinical decision-making (28). Therefore,
we first extracted 696 radiomics features from each ROI, and
nine LN status-related features with non-zero coefficients in the
random forest model were selected based on the training cohort.
FIGURE 3 | The coefficients of the nine radiomics features by using the
random forest (RF) method.
August 2021 | Volume 11 | Article 711648
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However, the Radiomics Model achieved AUC values of 0.767
and 0.753 with sensitivities of 58.9 and 60.5% in the training and
test cohorts, respectively, which were similar to those of the
CT_LN_report (P>0.05). Thus, compared with contrast-
enhanced CT, the Radiomics Model alone does not provide
more diagnostic value.

Therefore, to provide a convenient and non-invasive tool for
clinicians, we constructed a radiomics nomogram based on
Frontiers in Oncology | www.frontiersin.org 7
Radscore and CT_LN_report, which showed good calibration
and discrimination in the training cohort (AUC, 0.821) and the
test cohort (AUC, 0.843). Our results demonstrated that the
radiomics nomogram had better predictive efficacy than either
the Radiomics Model or the CT_LN_report alone. Furthermore,
our radiomics nomogram is good for discriminatory ability in
the CT-LN-reported negative subgroup, with an average AUC of
0.82 by five-fold cross-validation. Additionally, the radiomics
A

B C

D E

FIGURE 4 | Radiomics nomogram for the diagnosis of LN metastasis in patients with HGSOC. A radiomics nomogram was developed in the training (A). Comparison
of ROC curves among the Integrated Model, Radiomics Model, and CT_LN_report alone for the prediction of LN metastasis in the training (B) and test cohorts
(C). Calibration curves of the radiomics nomogram in the training (D) and test cohorts (E). Good alignment of the diagonal dashed reference line and solid line indicates
good performance.
August 2021 | Volume 11 | Article 711648
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nomogram adds more net benefit to predict LN metastasis than
either the Radiomics Model or the CT_LN_report alone for more
than 5–10% when the threshold probability is within a range
from 0.34 to 0.6 in the training and from 0.2 to 0.46 in the test
cohorts. Therefore, compared with contrast-enhanced CT and
Radiomics Model, the predictive power of the radiomics
nomogram is clearly superior and may serve as an accurate
and reliable predictive tool for LN metastasis in patients with
HGSOC. At present, for a general gynecologist, it is difficult to
understand the mechanism of radiomics, but the calculation
design part can be completed with the help of the computers.
Furthermore, radiomics can be further developed into the
application-oriented software to assist clinicians in working,
especially for tumor staging evaluation and the selection of an
appropriate treatment strategy preoperatively.

In addition, nine LN status-related features were selected
from 696 radiomics features by RF. Local binary patterns (LBP),
and LBP is an effective texture descriptor for images that
thresholds the neighboring pixels based on the value of the
Frontiers in Oncology | www.frontiersin.org 8
current pixel (36, 37). LBP descriptors efficiently capture the
local spatial patterns and the gray-scale contrast in an image.
Original_glcm_ClusterProminence, and glcm describes the
second-order joint probability function of an image region
constrained by the mask. Cluster Prominence is a measure of
the skewness and asymmetry of the glcm, and a higher value
implies more asymmetry about the mean, while a lower value
indicates a peak near the mean value and less variation about the
mean. Original_glszm_GrayLevelNonUniformityNormalized,
and glszm quantifies gray-level zones in an image, and Gray
Level NonUniformity Normalized (GLNN) measures the
variability of gray-level intensity values in the image, with a
lower value indicating a greater similarity in intensity values.
Or ig ina l_shape_Maximum2DDiameterColumn, and
Shape_Maximum 2D Diameter Column is defined as the
largest pairwise Euclidean distance between tumor surface
mesh vertices in the row-slice (usually the coronal) plane (38).

Our study has several limitations. First, it included a relatively
small number of patients recruited in a single center. Although
the results indicate that the radiomics nomogram has substantial
value in the preoperative evaluation of LN status in patients with
HGSOC, the reliability of the radiomics nomogram for
diagnosing LN metastasis in HGSOC needs to be further
investigated in multiple centers. Second, all images were
manually segmented, which may have resulted in inconsistent,
subjective tumor segmentation and could reduce the model’s
performance. Furthermore, we were unable to obtain genomic
features in all patients with HGSOC due to the retrospective
nature of the study, so we could not analyze the relationship
between LN metastasis and genomic features.

In conclusion, we constructed and validated a radiomics
nomogram that incorporated the Radscore and CT_LN_report
to predict LN metastasis in patients with HGSOC preoperatively.
The radiomics nomogram had a better discrimination ability
in both the training cohort and the test cohort than the
Radiomics Model and CT_LN_report alone, which greatly
improves the diagnostic efficiency and could be recommended
as a new, convenient, and non-invasive method to predict
LN metastasis.
A B

FIGURE 6 | The DCA for the Integrated Model, Radiomics Model, and CT_LN_report in training (A) and test cohorts (B).
FIGURE 5 | ROC curve of the radiomics nomogram in the CT-reported LN-
negative samples by five-fold cross-validation.
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