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Abstract: Artemisia anomala S. Moore is a perennial herbaceous plant classified as Asteraceae of the
genus Artemisia. Many species of Artemisia have been used as medicinal materials. Artemisia anomala
S. Moore has been widely used in China to treat inflammatory diseases. However, the mechanism of
its action on the keratinocyte inflammatory response is poorly understood. Here, we investigated
the anti-inflammatory reaction of Artemisia anomala S. Moore ethanol extract (EAA) using human
keratinocyte (HaCaT) cells, which involved investigating the nuclear factor kappa B (NF-κB), signal
transducer, and activator of transcription-1 (STAT-1), as well as mitogen-activated protein kinase
(MAPK) signaling pathways and atopic dermatitis-like skin lesions in mice. We elucidated the
anti-inflammatory effects of EAA on tumor necrosis factor-α/interferon-γ (TNF-α/IFN-γ)-treated
human keratinocyte cells and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD)-like
mice. The levels of chemokines and cytokines (IL-8, IL-6, TARC, and RANTES) were determined
by an enzyme-linked immunosorbent assay. The NF-κB, STAT-1, and MAPK signaling pathways
in HaCaT cells were analyzed by western blotting. Thickening of the mice dorsal and ear skin
was measured and inflammatory cell infiltration was observed by hematoxylin and eosin staining.
Results showed that EAA suppressed IL-8, IL-6, TARC, and RANTES production. EAA inhibited
nuclear translocation of NFκB and STAT-1, as well as reduced the levels of phosphorylated ERK
MAPKs. EAA improved AD-like skin lesions in DNCB-treated mice. These findings suggest that
EAA possesses stronger anti-inflammatory properties and can be useful as a functional food or
candidate agent for AD.

Keywords: Artemisia anomala S. Moore; atopic dermatitis; dinitrochlorobenzene; keratinocytes

1. Introduction

Artemisia anomala S. Moore is called “Yu-Gi-no” in Korean medicine and ”Nan-Liu-Ji-
Nu” in Chinese medicine, and is a perennial herbaceous plant classified as the Artemisia
genus in the Compositae family [1]. Artemisia anomala S. Moore has long been used in
the treatment of diseases through modern medicine and traditional medicine, such as for
dissipated liver function caused by hepatitis, fever, and inflammation in China, Japan
and Korea [2]. In addition, constituents of Artemisia anomala S. Moore, such as quercetin,
apigenin, and tricin, were reported for anti-inflammation, anti-oxidant and anti-cancer
effects. However, the mechanisms of Artemisia anomala S. Moore in atopic dermatitis (AD)
in terms of its therapeutic effect are not clear [3,4].
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Skin, the most external organ of the human body, plays a central role in maintaining
homeostasis between the body and the external environment, and protects the body from
the penetration of external pathogens such as chemical and physical damage. It is composed
of three main layers including the dermis, epidermis, and subcutaneous fat layer [5,6]. The
epidermis in particular comprises various cell types, such as keratinocytes, langerhans cells,
merkel cells, and melanocytes. Among them, the epidermal keratinocytes, the predominant
type, account for approximately 95% of the total cell population [7,8]. They produce various
cytokines and chemokines, such as IL-8, IL-6, RANTES, and TARC, upon invasion of
external skin pathogens. These factors lead to skin inflammation through an increase in
immunocyte infiltration at the site of inflammation in the skin [9–12]. Previous studies have
reported that transcription factors, such as the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB), signal transducer, and activator of transcription-1 (STAT-1), as
well as mitogen-activated protein kinase (MAPK), play important roles in the production
of cytokines and chemokines in skin inflammation [13–15]. Therefore, inhibition of pro-
inflammatory cytokines and chemokine production through the regulation of transcription
factors, including NF-kB, STAT-1, and MAPKs in epidermal keratinocytes, can be an
adequate strategy for inflammatory skin diseases.

The present study aimed to investigate the anti-inflammatory effects of the Artemisia
anomala S. Moore ethanol extract (EAA) by inhibiting tumor necrosis factor-α/interferon-γ
(TNF-α/IFN-γ)-induced ERK and NFκB signaling in HaCaT cells, and by improving the
skin conditions in 2, 4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis-like lesions
in the mouse model. Additionally, the results of this study will contribute in evaluating
the potential of EAA as an anti-inflammatory ingredient towards protecting the skin from
diseases such as AD.

2. Results
2.1. In Vitro Cell Cytotoxicity in Keratinocytes

The in vitro cell cytotoxicity of EAA was observed by MTT assay. EAA showed
less than 10% cytotoxicity and about 94% and 92% cell viability at 100 and 200 µg/mL,
respectively (Figure 1).
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Figure 1. Cytotoxicity of EAA in HaCaT cells. Cytotoxic effects of EAA at different concentrations on
HaCaT cells were determined using MTT assays. Results are expressed as a mean percentage in the
treated cells compared to the control (solvent) ± S.E. of three independent experiments performed
in triplicates.

2.2. EAA Suppresses the Production of AD-Related Cytokines and Chemokines in Keratinocytes

To investigated the anti-atopic dermatitis effects and mechanism of EAA, the experi-
ments were performed by co-stimulation of TNF-α and IFN-γ in human keratinocytes. At
various concentrations, excluding cytotoxicity, EAA was pretreated for 1 h and then treated
for 24 h with stimulants (TNF-α and IFN-γ). The cytokines and chemokines secreted in the
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cell culture were then analyzed using ELISA in the supernatants. As shown in Figure 2,
EAA significantly reduced the production of cytokines and chemokines, such as RANTES,
IL-8, TARC, and IL-6, in HaCaT cells co-stimulated by TNF-α and IFN-γ in a concentration-
dependent manner. EAA treatment significantly decreased the productions of RANTES,
IL-8, TARC, and IL-6 to 21%, 22.5%, 24.5%, and 8.2% at 50 µg/mL, respectively.
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Figure 2. Inhibitory effects of EAA on TNF-α/IFN-γ -induced pro-inflammatory cytokine and
chemokine production in HaCaT cells. Cells were pretreated with the indicated concentrations
of EAA (1, 10, and 50 µg/mL) for 1 h and then were stimulated with TNF-α/IFN-γ (10 ng/mL
each) for 24 h. Production of (a) RANTES, (b) TARC, (c) IL-6, and (d) IL-8 was determined using
culture supernatants of HaCaT cells. Results are expressed as a mean percentage in the treated cells
compared to the control (solvent) ± S.E. of three independent experiments performed in triplicates.
* p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the TNF-α/IFN-γ-treated control group.

2.3. EAA Inhibits NFκB and STAT-1 Activation in Keratinocytes

NF-κB was controlled for by the inhibition of κB (IκB) proteins. IκB-α forms a complex
with NF-κB, blocks the activation of NF-kB, and activates NF-κB upon isolation. IκB-α is
present in the cytoplasm and eventually degraded. As shown in Figure 3a,c, IκB-α was
remarkably degraded by stimulant treatment with TNF-α/IFN-γ and pretreatment with
EAA significantly recovered this degradation. Furthermore, the levels of phosphorylated
STAT-1 significantly reduced after the treatment with EAA.
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Figure 3. Inhibitory effects of EAA on MAPKs and STAT-1 signaling pathways in TNF-α/IFN-γ-
stimulated HaCaT cells. HaCaT cells were pre-incubated with EAA for 1 h and then exposed to
TNF-α/IFN-γ (10 ng/mL each) for 30 min. (a,c) Effects of EAA on STAT-1 activation and IκB-α
degradation. (b,d) Effects of EAA on MAPK phosphorylation in HaCaT cells. Levels of phospho-
rylation and expression were determined by western blotting using the indicated antibodies. Blots
were normalized to the total protein or β-actin. Results are expressed as a mean percentage in the
treated cells compared to the control (solvent) ± S.E. of three independent experiments performed
in triplicates. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the TNF-α/IFN-γ-treated
control group.

2.4. EAA Inhibits MAPKs in Keratinocytes

TNF-α/IFN-γ stimulation increased the expressions of MAPKs in HaCaT cells (Figure 3b,d).
In the EAA-treated group, MAPKs reduced the TNF-α/IFN-γ-induced increase of ERK in
a concentration-dependent manner, whereas the levels of phosphorylated p38 and JNK did
not change. Furthermore, the levels of total MAPKs were not affected.

2.5. EAA Reduces the Symptoms of AD in Mice

To evaluate the effect of EAA on DNCB-induced AD in mice, we used DNCB to repeat-
edly expose the dorsal and ear skin areas of BALB/c mice. The results show that the skin
condition significantly improved and the epidermal thickness of the dorsal skin reduced in
EAA-treated mice compared to the control group. EAA significantly reduced the ear skin
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thickness that was increased by DNCB in a dose-dependent manner (Figures 4 and 5a).
Furthermore, we analyzed the size of the spleen, which are the main organ in the inflam-
matory reaction. The spleen plays a critical role in hematopoiesis and immune response.
Splenomegaly was used as an indicator of inflammatory reaction. As shown in Figure 5b,
EAA reduced the size of the spleen in the DNCB-induced AD-like skin lesions of the mice.
In addition, EAA significantly reduced the production of cytokines such as TNF-α and
IFN-γ that were increased by DNCB in a dose-dependent manner (Figure 6). Based on
these results, EAA has favorable effects that can reduce the symptoms of AD-like skin
lesions in mice.
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Figure 4. Inhibitory effects of EAA on DNCB-induced AD in the in vivo model. Representative pho-
tographs of dorsal skin lesions and histopathological observations in DNCN-induced AD mice with
the vehicle (solvent), control (DNCB-induced AD), EAA (50 and 100 mg/kg), and dexamethasone
(10 mg/kg) via oral administration. (a) Dorsal skin photographs taken at the end of the experiment
showing AD-like skin lesions. (b) The AD dorsal skin lesions were sectioned and stained with H&E
(magnification ×40, scale bar: 100 µm). (c) Measurement of the epidermal thickness. Bars with
different letters indicate statistically significant differences at * p < 0.05 and *** p < 0.001 compared
with the control group (solvent).
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Figure 5. Effects of EAA on ear thickness and spleen hypertrophy. (a) Photographs of ear skin lesions
and measurements of ear thickness in DNCB-induced mice. Ear skin thickness measured with the
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help of a digital caliper. (b) Photographs of the spleen and spleen weight in DNCB-induced AD
mice. Where applicable, data are presented as the mean ± S.E. (n = 4). Bars with different letters
indicate statistically significant differences at * p < 0.05 and *** p < 0.001 compared with the control
group (solvent).
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Figure 6. Inhibitory effects of EAA on the DNCB-induced pro-inflammatory cytokine production
on skin tissue in the in vivo model. Production of (a) TNF-α and (b) IFN-γ was determined using
real-time RT-PCR. Where applicable, data are presented as the mean± S.E. (n = 4). Bars with different
letters indicate statistically significant differences at ** p < 0.01 and *** p < 0.001 compared with the
control group (solvent).

2.6. HPLC Analysis of EAA

According to the maximum absorption of the standards, the ultraviolet (UV) detector
was set at 280 nm for the HPLC analysis of three standard compounds, including quercetin
(1), apigenin (2), and tricin (3). The HPLC chromatograms of the standard mixture and
EAA extract are presented in Figure 7. The mixed standards were indicated at the retention
time of 29.8 (1), 32.4 (2), and 33.1 min (3). Under the same conditions, the components
of EAA were observed at 29.9 (1), 32.4 (2), and 33.1 min (3) by comparing UV spectral
data with the standard compounds. The amounts of the three components in EAA were
analyzed by applying regression equations calculated from the calibration curves. The
quantitative analysis of the constituents in EAA are summarized in Table 1.
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quercetin, apigenin, and tricin.

Table 1. Quantitative analysis of the constituents in EAA.

Regression Equation Linear Range Content

Compounds tR (min) (y = ax + b, R2) (mg/mL) (mg/g)

Quercetin 29.9 y = 0.494179x + 4.1, 0.9995 10–200 14.1 ± 0.7
Apigenin 32.4 y = 0.124202x + 2.8, 0.9996 10–200 5.2 ± 0.4

Tricin 33.1 y = 0.932455x + 3.8, 0.9998 10–200 0.4 ± 0.05

3. Discussion

Traditional Chinese medicines have been used for various diseases because they
possess numerous pharmacological activities [16]. Therefore, there are useful dietary
sources with health benefits. Among them, Artemisia anomala S. Moore has been evaluated
for its various pharmacological effects but the precise mechanism of its therapeutic effect
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on AD remains unclear [3,4]. In this study, we investigated the effects of EAA in the
DNCB-induced AD mouse model and TNF-α/IFN-γ-stimulated HaCaT cells.

Keratinocytes are critical elements in the regulation of skin pathology in AD. Ker-
atinocytes are located in the outermost part of the epidermis of the skin and play an
important role in the pathogenesis of inflammatory skin disease, in addition to secreting
pro-inflammatory mediators as a cellular source of risk signals. Activated keratinocytes
can induce the upregulation of pro-inflammatory chemokines and chemokines, including
interleukin-6 (IL-6), interleukin-8 (IL-8), regulated upon activation (RANTES; CCL5), and
TARC; CCL17) [17]. These skin-related cytokines and chemokines are involved in the
exacerbation of AD by selectively controlling the migration of immune cells to the skin
lesion site and stimulating an inflammatory response [18]. In this experiment, we eluci-
dated that EAA inhibits the production of pro-inflammatory cytokines and chemokines
in TNF-α/IFN-γ-stimulated keratinocytes. In this experiment, we elucidated that EAA
inhibits the production of pro-inflammatory cytokines and chemokines, such as IL-6, IL-8,
RANTES, and TARC in TNF-α/IFN-γ-stimulated keratinocytes, consistent with previously
reports [17,18].

It is well known that the activation of the degradation of IκB-α, STAT-1, and MAPK in
keratinocytes are associated with AD, and keratinocytes stimulated with TNF-α/IFN-γ are
widely used for verification of the in vitro efficacy of anti-atopic dermatitis [19,20]. In the
current study, EAA suppressed the phosphorylation of STAT-1, ERK and the degradation
of IκB-α in TNF-α/IFN-γ-stimulated keratinocytes.

AD, as an allergic inflammatory skin disease, has high prevalence and recurrence
rates resulting from immune system dysregulation [21]. In the acute phase, AD leads
to the thickening of the epidermis and dermis; the infiltration of various immune cells,
including helper T (Th) cells, mast cells, and eosinophils; and the increase in immune
cells-associated cytokines, such as through the overexpression of Th2 cytokines and IgE
production [22–24]. IgE hyper-production has been associated with the pathogenesis of
AD and the concentration of serum IgE is promoted in patients with AD [13,25]. Steroid
therapy plays a pivotal role in the treatment of AD but its long-term administration is
prohibited due to critical side effects [26–28]. In the present study, we found that EAA
significantly reduced AD symptoms in mice. We observed that EAA treatment reduced
DNCB-induced AD-like skin lesions on the dorsal and ear skin in mice. Furthermore, EAA
improved the splenomegaly, which is an indicator of inflammation (Figures 4 and 5). In
addition, EAA reduced the production of pro-inflammatory cytokines, including TNF-α
and IFN-γ, in DNCB-induced mouse skin (Figure 6).

4. Materials and Methods
4.1. Reagents and Cell Culture

Artemisia Anomala Herba was obtained from the Yeongcheon Oriental Herbal Mar-
ket (Yeongcheon, Korea). EAA was extracted with ethanol as in a previously reported
recipe [1]. ELISA kits for IL-8 (#431501), RANTES (#440804), thymus and activation regu-
latory chemokines (TARC, #441104), IL-6 (#430501), recombinant human tumor necrosis
factor alpha (TNF-α), and the interferon gamma (IFN-γ) were purchased from BioLegend
(San Diego, CA, USA). Antibodies used in the western blot analyses were purchased from
Cell Signaling Technology (Boston, MA, USA).

4.2. Cell Culture

Human keratinocytes HaCaT cells were maintained in DMEM supplemented with
10% FBS (Lonza, Basel, Switzerland), 100 IU/mL penicillin, and 100µg/ mL streptomycin
at 37 ◦C in 5% CO2. Confluent cells were split (1:5–1:8 ratio) by trypsinization and used at
the third/fourth passage after thawing.
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4.3. Cell Viability Test

Cell viability was tested using the MTT assay as described previously [1]. Briefly, cells
were allowed to attach to plates that were treated with 1, 10, 50, 100, and 200 µg/mL EAA
for 24 h. MTT solutions were then added to each well and the cells were incubated for an
additional 2 h. The resulting formazan was dissolved using DMSO and the optical density
at 570 nm on the VERSAmax microplate reader (Molecular Devices, Sunnyvale, CA, USA).

4.4. Enzyme-Linked Immunosorbent Assay (ELISA)

HaCaT cells were seeded in 6-well plates at a density of 5 × 105 cells/well and
cultured overnight at 37 ◦C in a 5% CO2 incubator. The cells were stimulated to 10ng/mL
of TNF-α and 10 ug/mL of IFN-γ for 1 h and cultured for another 24 hr. The supernatant
was collected and cell debris were removed by centrifugation at 1000× g for 10 min.
Chemokines and cytokines were analyzed using the following ELISA kits according to the
manufacturer’s instructions.

4.5. Western Blot Analysis

HaCaT cells were seeded in 6-well plates at a density of 5 × 105 cells/well and
pretreated with the indicated concentrations of EAA for 2 h, followed by stimulation with
TNF-α/IFN-γ (each 10 ng/mL) for 30 min. The total protein was extracted by RIPA lysis
buffer (Millipore, Billerica, MA, USA) containing the protease and phosphatase inhibitor
cocktail (Roche, Basel, Switzerland). The PierceTM BCA protein assay kit (Thermo Fisher
scientific, Waltham, MA, USA) was applied to determine the concentration of total proteins.
Protein samples (30 µg) were separated by sodium dodecyl sulfate-polyacrylamide-gel
electrophoresis and then electrotransfered to Polyvinylidene Difluoride membranes. The
membranes were blocked with 3% bovine serum albumin and incubated with primary
antibodies at 4 ◦C overnight. The blots were subsequently incubated with HRP-conjugated
secondary antibodies at room temperature for 1 h. Specific proteins were detected using
the ClarityTM western ECL substrate (Bio-Rad, Hercules, CA, USA). The signals were
finally captured and the intensity of proteins on the bands was quantified using the Image
J software (National Institutes of Health, Bethesda, MD, USA).

4.6. Atopic-like Dermatitis Mouse Model

Five-week-old male BALB/c mice were purchased from Samtako BioKorea (Osan,
Korea). The atopic-like dermatitis model was performed as in a previously reported
method [20]. All procedures for the animal study were approved by the Korea Institute of
Oriental Medicine Institutional Animal Care and Use Committee (KIOM-IACUC; D-17-013)
and were conducted in accordance with US guidelines (NIH publication #83–23, revised in
1985). Sensitization protocols were carried out as described previously [29].

4.7. Histopathological Observation

In order to reduce the error, the designated researcher continuously measured. Ear
thickness and spleen size were evaluated by a micrometer (Mitutoyo, Kawasaki, Japan). For
the histological analysis, dorsal skins were fixed in 4% paraformaldehyde and embedded
in paraffin wax. The skin tissue sections were stained with hematoxylin and eosin (H&E)
staining to measure changes in the epidermal thicknesses. All skin images were acquired
under Nikon Eclipse Ti microscope (Nikon, Tokyo, Japan). Representative sections of the
epidermis and dermis were collected by H&E staining (magnification ×400, scale bar:
100 µm). The thickness of the skin epidermis was measured from each of the five locations
using Image J software (National Institute of Health, Starkville, MD, USA).

4.8. Isolation of RNA, cDNA Synthesis, and Real-Time Reverse Transcription-Polymerase Chain
Reaction (RT-PCR) Analysis

Total RNA was extracted using the Trizol reagent (Invitrogen Life Technologies, CA,
USA) following the manufacturer’s instructions. The total RNA was quantified by mea-
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surement using a nanodrop2000 spectrophotometer (Thermo Fisher scientific, Waltham,
MA, USA). The total RNA was transformed into cDNA using the ReversTra AceTM qPCR
RT master mix (TOYOBO, Osaka, Japan) according to the following protocol: incubate at
37 ◦C for 20 min; incubate at 50 ◦C for 5 min; heat to 98 ◦C for 5 min; and store the reacted
solution at 4 ◦C. Real-time RT-PCR was performed on a CFX384 Real-time system (Bio-rad,
CA, USA) by using the THUNDERBIRDTM SYBRTM qPCR Mix (TOYOBO, Osaka, Japan).
Primers for PCR amplification were as follows: GAPDH: 5′-AAC GAC CCC TTC ATT
GAC-3′/5′-TCC ACG ACA TAC TCA GCA C-3′; IFN-γ: 5′-AGA GGA TGG TTT GCA
TCT GGG TCA-3′/5′-ACA ACG CTA TGC AGC TTG TTC GTG-3′; and TNF-α: 5′- ATG
AGC ACA GAA AGC ATG AT-3′/5′-TAC AGG CTT GTC ACT CGA AT-3′. The RT-PCR
reactions were cycled 40 times with denaturation (95 ◦C, 15 s) and annealing (60 ◦C, 1 min).
The fold change in the target gene expression relative to the control was normalized to
β-actin using the 2−∆∆Ct method. Real-time RT-PCR was contributed to detect the effects
of relevant inflammatory factors on mRNA.

4.9. Conditions of Chromatographic

The HPLC data were acquired by the SPD 20A system (Shimadzu Co., Nakagyo-ku,
Kyoto, Japan). The solvents used were 0.1% HCOOH and MeCN. Analysis was performed
using a gradient system with a flow rate of 1.0 mL/min and a YMC gel ODS A302 column
(length, 250 mm; inner diameter, 4.6 mm; particle size, 5 µm; YMC CO., LTD., Shimogyo,
Kyoto, Japan) was used. The solvent conditions used in the mobile phases were 0–20 min at
8–20%, 20–30 min at 40%, 30–40 min at 70%, and 40–55 min at 100%. Samples were analyzed
at a wavelength of 360 nm at 25 ◦C. The content of the peak area was obtained from the UV
and standard material. Polyphenol samples were quantified in a LC-UV chromatogram
with three selected standards. Quantification of the polyphenolic compound detected
in a sample of Artemisia anomala was conducted using HPLC 360 nm. The quantification
performance was validated in terms of linearity and content. A calibration curve was
established for each of the standards using five concentration levels (n = 5; 62.5, 125, 250, 500,
and 1000 µg/mL) and the polyphenol content was measured in terms of peak area ratios
with the analyte vs. analyte concentrations using 1/x(x, concentration) weighted linear
regression (n = 5). The plant’s polyphenolic compounds were routinely quantified using
standard curves of structurally related compounds but were quantified using standards
that match each compound.

4.10. Statistical Analysis

Each experiment was performed at least in triplicates. Data were analyzed by the
software GraphPad (Prism 5.0, San Diego, CA, USA). Results were expressed as mean ± S.E
and evaluated using Student’s t-test or analysis of variance. The statistical difference was
defined at a p-value of <0.05 (* p < 0.05, ** p < 0.01, and *** p < 0.001). All experiments were
performed at least in triplicates.

5. Conclusions

This study shows that EAA inhibited the production of cytokines and chemokines,
which are involved in the development and relapse of atopy dermatitis. EAA showed
anti-inflammatory effects through a mechanism of down-regulated phosphorylation of
ERK MAPK and through inhibiting nuclear translocation of NFκB and STAT-1. Moreover,
EAA improved the condition of AD-like skin lesions in the mice model treated with DNCB.
These findings suggest that EAA has stronger anti-inflammatory properties. Therefore,
EAA can be useful as a functional food or candidate agent for AD.
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